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Abstract. China has been conducting a series of actions on air quality improvement for the past decades, and
air pollutant emissions have been changing swiftly across the country. Provinces are an important administrative
unit for air quality management in China; thus a reliable provincial-level emission inventory for multiple years is
essential for detecting the varying sources of pollution and evaluating the effectiveness of emission controls. In
this study, we selected Jiangsu, one of the most developed provinces in China, and developed a high-resolution
emission inventory of nine species for 2015–2019, with improved methodologies for different emission sectors,
best available facility-level information on individual sources, and real-world emission measurements. Resulting
from implementation of strict emission control measures, the anthropogenic emissions were estimated to have
declined 53 %, 20 %, 7 %, 2 %, 10 %, 21 %, 16 %, 6 %, and 18 % for sulfur dioxide (SO2), nitrogen oxides (NOx),
carbon monoxide (CO), non-methane volatile organic compounds (NMVOCs), ammonia (NH3), inhalable par-
ticulate matter (PM10), fine particulate matter (PM2.5), black carbon (BC), and organic carbon (OC) from 2015
to 2019, respectively. Larger abatement of SO2, NOx , and PM2.5 emissions was detected for the more devel-
oped region of southern Jiangsu. During the period from 2016 to 2019, the ratio of biogenic volatile organic
compounds (BVOCs) to anthropogenic volatile organic compounds (AVOCs) exceeded 50 % in the month of
July, indicating the importance of biogenic sources for summer O3 formation. Our estimates in annual emissions
of NOx , NMVOCs, and NH3 were generally smaller than the national emission inventory, MEIC (the Multi-
resolution Emission Inventory for China), but larger for primary particles. The discrepancies between studies
resulted mainly from different methods of emission estimation (e.g., the procedure-based approach for AVOC
emissions from key industries used in this work) and inconsistent information of emission source operation
(e.g., the penetration and removal efficiencies of air pollution control devices). Regarding the different periods,
more reduction of SO2 emissions was found between 2015 and 2017 and of NOx , AVOCs, and PM2.5 between
2017 and 2019. Among the selected 13 major measures, the ultra-low-emission retrofit in the power sector was
the most important contributor to the reduced SO2 and NOx emissions (accounting for 38 % and 43 % of the
emission abatement, respectively) for 2015–2017, but its effect became very limited afterwards as the retrofit
had been commonly completed by 2017. Instead, extensive management of coal-fired boilers and the upgrade
and renovation of non-electrical industry were the most important measures for 2017–2019, accounting collec-
tively for 61 %, 49 %, and 57 % reduction of SO2, NOx , and PM2.5, respectively. Controls on key industrial
sectors were the most effective for AVOC reduction in the two periods, while measures relating to other sources
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(transportation and solvent replacement) have become more important in recent years. Our provincial emission
inventory was demonstrated to support high-resolution air quality modeling for multiple years. Through scenario
setting and modeling, worsened meteorological conditions were found from 2015 to 2019 for PM2.5 and O3 pol-
lution alleviation. However, the efforts on emission controls were identified to largely overcome the negative
influence of meteorological variation. The changed anthropogenic emissions were estimated to contribute 4.3
and 5.5 µg m−3 of PM2.5 concentration reduction for 2015–2017 and 2017–2019, respectively. While O3 was
elevated by 4.9 µg m−3 for 2015–2017, the changing emissions led to 3.1 µg m−3 of reduction for 2017–2019,
partly (not fully though) offsetting the meteorology-driven growth. The analysis justified the validity of local
emission control efforts on air quality improvement and provided a scientific basis to formulate air pollution
prevention and control policies for other developed regions in China and worldwide.

1 Introduction

Severe air pollution is of great concern for fast industrial-
ized countries like China, especially in economically devel-
oped regions, where an overlap of serious pollution levels
and dense populations has resulted in high exposure and ad-
verse health outcomes (Klimont et al., 2013; Hoesly et al.,
2018). An emission inventory, which contains complete in-
formation on the magnitude, spatial pattern, and temporal
change of air pollutant emissions by sector, is essential for
identifying the sources of air pollution and effectiveness of
emission controls on air quality through numerical modeling
(Zhao et al., 2013). Improving the understanding of emis-
sion behaviors and reducing the uncertainty of emission es-
timates have always been the main focus of emission inven-
tory studies, given the big variety of source categories, fast
changing mix of manufacturing and emission control tech-
nologies, and insufficient measurements of real-world emis-
sions. At the global and continental scales, emission invento-
ries have been developed by combining available information
of large point sources and improved surrogate statistics for
area sources, e.g., the Emissions Database for Global Atmo-
spheric Research (EDGAR; https://edgar.jrc.ec.europa.eu/,
last access: 10 October 2022, Crippa et al., 2020) and the
Regional Emission Inventory in Asia (REAS; https://www.
nies.go.jp/REAS/, last access: 10 October 2022, Kurokawa
and Ohara, 2020). As the largest developing country in the
world, China has been proven to contribute greatly to global
emissions (Klimont et al., 2013; Huang et al., 2014; Wiedin-
myer et al., 2014; Miyazaki et al., 2017).

Along with the improved methodology and increasing
availability of emission source and field measurement data,
the applicability and reliability of recent Chinese emission
inventories (e.g., the Multi-resolution Emission Inventory for
China, MEIC; Zheng et al., 2018) have been considerably
improved compared to the earlier large-scale studies for Asia
or the world. When the research focus switches to smaller
provincial and city scales, the uncertainty of the national
emission inventory may increase, attributed mainly to the in-
sufficient information on detailed emission sources, partic-
ularly for medium-/small-sized stationary and area sources.

Certain “proxies” including population and economic densi-
ties were commonly applied to downscale the emissions from
coarser to finer horizontal resolution, based on the assump-
tion that those proxies were strongly associated with emis-
sion intensity. Such a “coupling effect”, however, has been
demonstrated to be weakened for recent years. For example,
a great number of big industrial facilities have been gradually
moved out of urban centers, resulting in an inconsistency be-
tween emission and population hotspots. Therefore, inappro-
priate application of those proxies could lead to great uncer-
tainty in emission estimation and thereby enhanced bias in
air quality modeling (Zhou et al., 2017; Zheng et al., 2017).
For the urgent demand for preventing regional air pollution
and relevant health damage, therefore, development of high-
resolution emission inventories has been becoming essential,
especially in regions with developed industry, large popula-
tion, and complex emission sources (Zheng et al., 2009; Shen
et al., 2017; Zhao et al., 2018). With an increased propor-
tion of point sources and more complete facility-based infor-
mation, the improved emission inventory could reduce the
arbitrary use of a proxy-based downscaling technique and
thereby the uncertainty of the emission estimates (Zhao et
al., 2015; Zheng et al., 2021).

For the past decade, China has been conducting a series
of actions to tackle the serious air pollution problem. With
the mitigation of severe fine particulate matter (PM2.5) pol-
lution set as a priority from 2013 to 2017, the National Ac-
tion Plan on Air Pollution Control and Prevention (NAPA-
PCP; State Council of the People’s Republic of China (SCC),
2013) pushed stringent end-of-pipe emission controls (e.g.,
the ultra-low-emission control for power sector) and the re-
tirement of small and energy-inefficient factories (Q. Zhang
et al., 2019; Y. Zhang et al., 2019; Zheng et al., 2018). On
top of that, China announced the “Three-Year Action Plan
to Fight Air Pollution” (TYAPFAP) to further reduce PM2.5
and ozone (O3) levels for 2018–2020 (SCC, 2018). Substan-
tially enhanced measures have been required for reducing in-
dustrial (e.g., application of ultra-low-emission control for
selected non-electrical industries) and residential emissions
(e.g., promotion of advanced stoves and clean coal during
heating seasons). These measures have changed the air pollu-
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tant emissions and thereby air quality over the country. Stud-
ies have been conducted to assess the contribution of the na-
tion actions to the improvement of air quality, based usually
on the national emission inventory. For example, Q. Zhang
et al. (2019) estimated a nationwide 30 %–40 % reduction in
PM2.5 concentration attributed to NAPAPCP from 2013 to
2017.

The province is an important administrative unit for air
quality management in China. Given the heterogeneous eco-
nomical and energy structures as well as atmospheric condi-
tions, there is usually large diversity in the strategies and ac-
tions of reducing regional air pollution adopted by the local
governments, leading to various levels of progress of emis-
sion and air quality changes (Liu et al., 2022; N. Wang et al.,
2021). Limited by incomplete or inconsecutive information
on emission sources and a lack of on-time emission measure-
ments, however, there were few studies on provincial-level
emission inventories for multiple years. Studies based on the
national emission inventories would support policy makers
less in formulating the emission control measures and evalu-
ating their effectiveness on emission reduction and air quality
improvement (An et al., 2021; Huang et al., 2021). Contrary
to NAPAPCP, which has been analyzed, few analyses have
been conducted for TYAPFAP since 2017, partly due to a
lack of the most recent emission data, preventing compar-
ison and comprehensive understanding of the effectiveness
of emission controls for the two phases. Jiangsu Province,
located on the northeast coast of the Yangtze River Delta re-
gion (YRD), is one of China’s most industrial developed and
heavy-polluted regions. It contributed to 10.1 % of the gross
domestic product (GDP) in mainland China (ranking the sec-
ond place in the country) and 6.4 %, 11.3 %, and 11.4 % of
national cement, pig iron, and crude steel production in 2020,
respectively (National Bureau of Statistics of China, 2016–
2021). MEIC indicated the emissions per unit area of anthro-
pogenic sulfur dioxide (SO2), nitrogen oxides (NOx), non-
methane volatile organic compounds (NMVOCs), PM2.5,
and ammonia (NH3) in Jiangsu were 2.8, 6.5, 7.0, 4.5, and
4.8 times the national average in 2017, respectively. Result-
ing from the implementation of air pollution prevention mea-
sures, PM2.5 pollution in Jiangsu has been alleviated since
2013, while the great changes in emissions due to varying
energy use and industry and transportation development have
made it the province with the highest O3 concentration and
the fastest growth rate of O3 in the YRD in recent years
(Zheng et al., 2016; Wang et al., 2017; S. J. Zhang et al.,
2017; Zhou et al., 2017).

In this study, therefore, we took Jiangsu as an example to
demonstrate the development of a high-resolution emission
inventory and its application to evaluate the effectiveness of
emission control actions. We integrated methodological im-
provements of the regional emission inventory by our previ-
ous studies (Zhou et al., 2017; Zhao et al., 2017, 2020; Wu et
al., 2022; Y. Zhang et al., 2019; Zhang et al., 2020; Y. Zhang
et al., 2021) and compiled and incorporated the best avail-

able facility-level information and real-world emission mea-
surements (see details in the “Methodology and data” sec-
tion). A provincial-level emission inventory for 2015–2019
was then thoroughly developed for nine gaseous and particu-
late species (SO2, NOx , NMVOCs, carbon dioxide (CO), in-
halable particulate matter (PM10), PM2.5, NH3, black carbon
(BC), and organic carbon (OC)). The difference between our
emission inventory and others, as well as its main causes, was
carefully explored. Using a measure-specific integrated eval-
uation approach, we further identified the drivers of emission
changes of SO2, NOx , PM2.5, and anthropogenic volatile or-
ganic compounds (AVOCs), with an emphasis on the impacts
of 13 major control measures summarized from NAPAPCP
and TYAPFAP. Finally, air quality modeling was applied to
assess the reliability of our emission inventory and to quan-
tify the contribution of emission controls to the changing
PM2.5 and O3 concentrations for 2015–2017 within NAPA-
PCP and 2017–2019 within TYAPFAP, and the differentiated
impacts of emission controls on air quality were revealed for
the two phases.

2 Methodology and data

2.1 Emission estimation

2.1.1 Emission source classification

We applied a four-level framework of emission source cate-
gories for Jiangsu emission inventory, based on a thorough
investigation on the energy and industrial structures in the
province. The framework included six first-level categories,
covering all the social and economic sectors in Jiangsu: the
power sector, industry, transportation, agriculture, residen-
tial, and biogenic source (for NMVOCs only). Moreover, the
framework contained 55 second-level categories based on fa-
cility/equipment types and economical subsectors; 240 third-
level categories classified mainly by fuel, product, and mate-
rial types; and a total of 870 fourth-level categories including
sources of combustion, manufacturing, and emission control
technologies of emission facilities (details on the first three-
level sectors are listed in Table S1 in the Supplement).

Compared to the guidelines of national emission inventory
development (He et al., 2018), 42 new categories (third-level)
were added in this study, contained mainly in the second-
level categories including metal products and the mechanical
equipment manufacturing industries, non-industrial solvent
usage from ship fittings and repairs, household appliances,
and housing retrofitting emissions. These categories were
identified as important sources of NMVOC emissions in
Jiangsu. In particular, ship coating emissions, coming mainly
from solvent usage during spraying, cleaning, and gluing in
a wide range of procedures, could account for nearly 20 %
of the solvent use emissions in the YRD region (Mo et al.,
2021). Therefore, the updated framework provides a more
complete coverage of source categories, thus considerably
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reducing the bias of emission estimation due to missing po-
tentially important emitters.

2.1.2 Emission estimation methods

We applied the “bottom-up” methodology (i.e., the emissions
were calculated at the finest source level (e.g., facility level
if data allowed) and then aggregated to upper categories/re-
gions) to develop the high-resolution emission inventory for
Jiangsu (and its 13 cities, as shown in Fig. S1 in the Supple-
ment) for 2015–2019. As mentioned in the Introduction, we
have conducted a series of studies and made substantial im-
provements to the methodology of regional emission inven-
tory development by source category or species, compared to
the ones at larger spatial scales. Here we integrated those im-
provements as briefly described below, and additional further
details can be found in corresponding published articles.

– Power plant. We developed a method of examining,
screening, and applying online measurement data from
the continuous emission monitoring systems (CEMSs;
Y. Zhang et al., 2019) to estimate the emissions at the
power unit/plant level. For units without CEMS data,
we applied the average flue gas concentrations obtained
from CEMSs for units with the same installed capac-
ity. The emissions were calculated based on the annual
mean hourly flue gas concentration of air pollutant ob-
tained from CEMSs and the theoretical annual flue gas
volume of each unit/plant:

Ei,j = Ci,j ×ALj ×V 0
m, (1)

whereE is the emission of air pollutant; i, j , andm rep-
resent the pollutant species, individual plant/unit, and
fuel type, respectively; C is the annual average concen-
tration in the flue gas; AL is the annual coal consump-
tion; and V 0 is the theoretical flue gas volume per unit
of fuel consumption, which depends on the coal type
and can be calculated following the method in Zhao et
al. (2010).

– Industrial plant. Emissions were principally calculated
based on activity level data (production output or energy
consumption) and emission factor (emissions per unit
of activity level). For point sources with abundant infor-
mation, we used a procedure-based approach to calcu-
late the emissions of pollutants (Zhao et al., 2017). For
example, we subdivided the iron and steel industry into
sintering, pelletizing, iron making, steel making, rolling
steel, and coking. The activity data and emission fac-
tors of each procedure were derived based on multiple
pieces of information collected from regular enterprise
reports, statistics, and/or on-site investigation at the fa-
cility level (see Sect. 2.1.3). The emissions of air pollu-
tants were calculated using Eq. (2):

Ei =
∑

j,r
ALj,r ×EFi,j,r × (1− ηi,j,r ), (2)

where r is the industrial procedure, AL is the activ-
ity level, EF is the unabated emission factor, and η is
the pollutant removal efficiency of end-of-pipe control
equipment.

– Petrochemical industry. Certain procedures in petro-
chemical industry have been identified as the main con-
tributors to AVOC emissions from the sector. For ex-
ample, equipment leaks, storage tanks, and manufac-
turing lines were estimated to be responsible for over
90 % of the total emissions (Ke et al., 2020; Liu et al.,
2020; Yen and Horng, 2009). Through field measure-
ments and in-depth analysis of different emission cal-
culation methods, L. Zhang et al. (2021) suggested that
a procedure-based method would provide a better es-
timate of NMVOC emissions for petroleum industries
than the common approach that applied a full emission
factor for the whole factory. In this study, therefore,
we applied the procedure-based method for four key
procedures (manufacturing lines, storage tanks, equip-
ment leaks, and wastewater collection and treatment
systems), with the best available information from on-
site surveys and regular enterprise reports.

– Agriculture. Agricultural NH3 emissions can be influ-
enced by the meteorology, soil environment, and farm-
ing practices and, thus, are more difficult to track com-
pared to SO2 and NOx that commonly come from
power and industrial plants. For example, high temper-
atures and top-dressing fertilization conducted in sum-
mer could elevate NH3 volatilization from urea fertil-
izer uses in the YRD. Our previous work (Zhao et al.,
2020) quantified the effects of meteorology, soil prop-
erties, and various agricultural processes (e.g., fertilizer
use and manure management) on YRD NH3 emissions
for 2014. Here we expanded the research period and
obtained the agricultural NH3 emission inventory for
2015–2019 in Jiangsu.

– Off-road transportation. In this work, we combined the
method developed by Zhang et al. (2020) and newly
tested emission factors to estimate the emissions from
off-road machines in Jiangsu for multiple years. We de-
veloped a novel method to estimate the emissions and
their spatiotemporal distribution for in-use agricultural
machinery, through the combination of satellite data,
land and soil information, and in-house investigation
(Zhang et al., 2020). In particular, the machinery us-
age was determined based on the spatial distribution and
the growing and rotation pattern of the crops. Moreover,
12 construction and agricultural machines with different
power capacity and emission grades (China I–III) were
selected, and emission factors were measured under var-
ious working loads (unpublished).

– Biogenic source. Located in the subtropics, Jiangsu has
abundant broadleaf vegetation, a main contributor to
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biogenic volatile organic compound (BVOC) emissions.
Our previous work (Y. Wang et al., 2020) evaluated
the effect of land cover data, emission factors, and O3
exposure on BVOC emissions in the YRD with the
Model of Emissions of Gases and Aerosols from Nature
(MEGAN). Here we followed the improved method by
Y. Wang et al. (2020) and calculated BVOC emissions
with integrated land cover information, local BVOC
emission factors, and the influence of actual O3 stress
in Jiangsu.

– Other sources. Emissions from on-road vehicles and
residential sectors were estimated following our previ-
ous work (Zhou et al., 2017; Zhao et al., 2021), with
updated activity levels and emission factors.

– NMVOC speciation. We updated NMVOC speciation
by incorporating the local source profiles from field
measures (Zhao et al., 2017; L. Zhang et al., 2021)
and massive literature reviews of previous studies (Mo
et al., 2016; Li et al., 2014; Huang et al., 2021;
R. Wang et al., 2020). Compared with the widely
used SPECIATE 4.4 database (https://www.epa.gov/
air-emissions-modeling/speciate, last access: 10 Octo-
ber 2022, Hsu et al., 2018), we included new source
profiles from local measurements for the production of
sugar, vegetable oil, and beer and refined the source pro-
files for the use of paints, inks, coatings, dyes, dyestuffs,
and adhesives in the manufacturing industry (L. Zhang
et al., 2021) and selected production processes of chem-
ical engineering (Zhao et al., 2017). Moreover, we ap-
plied more detailed profiles for some finer categories
compared to the coarser source categories in the guide-
lines of national emission inventory development, for
example, NMVOC release during filling into petrol and
diesel release; metal surface treatment into water-based
and solvent-based paints; and ink printing into offset,
gravure, and letterpress printing. These efforts made the
NMVOC speciation more representative of local emis-
sion sources (L. Zhang et al., 2021).

2.1.3 Data compilation, investigation, and incorporation

In this study, we compiled, investigated, and incorporated
most available information on emission sources to im-
prove the completeness, representativeness, and reliability
of provincial emission inventory. In particular, we collected
officially reported data from the Environmental Statistics
Database (ESD, 2015–2019) and the Second National Pol-
lution Source Census (SNPSC, 2017) for stationary sources
(mostly power and industrial ones). Both of them contained
basic information on their location, raw material and energy
consumption, product output, and manufacturing and emis-
sion control technologies. The former database was routinely
reported for relatively big point sources every year, but some

information could be outdated or inaccurate attributed to in-
sufficient on-site inspection. Through wide on-site surveys,
in contrast, the latter database included many more plants and
provided or corrected crucial information at facility level,
such as removal efficiency of air pollutant control devices
(APCDs). However, the database was developed for 2017
and could not track the changes for recent years. Therefore,
we further applied an internal database from the Air Pollu-
tion Source Emission Inventory Compilation and Analysis
System (APSEICAS; http://123.127.175.61:31000, last ac-
cess: 10 October 2022), which was developed by the Jiangsu
Provincial Academy of Environmental Sciences. Following
the principle of SNPSC, the information of APSEICAS has
been collected and dynamically updated since 2018, based
mainly on in-depth investigation for individual enterprises
conducted jointly by themselves and local environmental ad-
ministrators. We conducted cross-validation and necessary
revision according to the three above-mentioned databases,
to ensure the accuracy of information as much as possible.

As a result, we obtained sufficient numbers of point
sources with satisfying facility-level information for
provincial-level emission inventory development (57 457,
32 324, and 48 826 for 2017, 2018, and 2019, respectively).
The shares of coal consumption by those sources of the total
ranged 90 %–94 % for the 3 years. The high proportions
of point sources could effectively reduce the uncertainty in
estimation and spatial allocation of air pollutant emissions.
For the remaining industrial sources, the emissions were
calculated using the average emission factor of each sector
in each city and were spatially allocated according to
the distribution of local industrial parks and GDP data
extracted from a database of the Chinese Academy of
Sciences (CAS) for 2015 at a horizontal resolution of
1 km (https://www.resdc.cn/DOI/DOI.aspx?DOIid=33, last
access: 10 October 2022).

Other information on area industrial sources, transporta-
tion, and agricultural and residential sources was taken from
economical and energy statistical yearbooks at the city level.
Activity data that were not recorded (e.g., civil solvent us-
age, catering, and biomass burning) were indirectly esti-
mated from relevant statistics, including population, building
area, and crop yields.

2.2 Analysis of emission change

In this study, we summarized 13 major control measures
adopted between 2015 and 2019, based on NAPAPCP,
TYAPFAP, and relative action plans promulgated by the
Jiangsu government (Fig. S2 in the Supplement). These
include the (1) ultra-low-emission retrofit of coal-fired
power plants, (2) extensive management of coal-fired boil-
ers, (3) upgrade and renovation of non-electrical industry,
(4) phasing out of outdated industrial capacities, (5) promo-
tion of clean energy use, (6) phasing out of small polluting
factories, (7) construction of port shore power, (8) compre-
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hensive treatment of mobile source pollution, (9) VOC emis-
sion control in key sectors, (10) application of leak detec-
tion and repair (LDAR), (11) oil and gas recovery, (12) re-
placement with low-VOC paints, and (13) control of non-
point pollution. We applied the method from Q. Zhang et
al. (2019) to quantify the benefits of those air clean actions
for emission abatement. Briefly, the emission reduction re-
sulting from the implementation of a specific measure was
estimated by changing the parameters of emission calcula-
tion associated with the measure within the concerned period
and keeping other parameters constant (same as initial year).
The emission reduction from each measure was then esti-
mated for 2015–2017 and 2017–2019. The provincial-level
emission inventory developed in Sect. 2.1 was adopted as the
baseline of the emission estimates. It is worth noting that the
aggregated emission reduction from all the measures is not
equal to the actual reduction, as the factors leading to emis-
sion growth were not counted in this analysis.

2.3 Air quality modeling

2.3.1 Model configurations

To evaluate the provincial-level emission inventory, we used
the Community Multiscale Air Quality (CMAQ v5.1) model
developed by the US Environmental Protection Agency
(USEPA), to simulate the PM2.5 and O3 concentrations in
Jiangsu. As the simulation periods, 4 months representing
the four seasons (January, April, July, and October) of each
year between 2015 and 2019 were selected, with a spin-up
time of 7 d for each month to reduce the impact of the ini-
tial condition on the simulation. As shown in Fig. S1, three
nested domains (D1, D2, and D3) were applied with the
horizontal resolutions of 27, 9, and 3 km, respectively, and
the most inner domain, D3, covered Jiangsu and parts of
the YRD region including Shanghai, northern Zhejiang, and
eastern Anhui. MEIC was applied for D1, D2, and the re-
gions outside of Jiangsu in D3, and the provincial-level emis-
sion inventory was applied for Jiangsu in D3. The emission
data outside Jiangsu in D3 were originally from MEIC and
downscaled to the resolution of 3 km× 3 km with the “proxy-
based” approach. The Carbon Bond Mechanism (CB05) and
AERO5 mechanisms were used for the gas-phase chemistry
and aerosol module, respectively.

The meteorological field for the CMAQ model was ob-
tained from the Weather Research and Forecasting model
(WRF v3.4). Meteorological initial and boundary conditions
were obtained from the National Centers for Environmen-
tal Prediction (NCEP) datasets for the assimilation in sim-
ulations. Ground observations at 3 h intervals were down-
loaded from National Climatic Data Center (NCDC) to eval-
uate the WRF modeling performance, and statistical indica-
tors including bias, index of agreement (IOA), and root mean
squared error (RMSE) were calculated (J. Yang et al., 2021).
The discrepancies between simulations and ground observa-

tions were within an acceptable range (Table S2 in the Sup-
plement).

In order to evaluate the model performance of CMAQ,
we collected ground observation data of hourly PM2.5 and
O3 concentrations at the 110 state-operated air quality mon-
itoring stations within Jiangsu (https://data.epmap.org/page/
index, last access: 10 October 2022; see the station locations
in Fig. S1). Correlation coefficient (R), normalized mean
bias (NMB), and normalized mean error (NME) values be-
tween observations and the simulation for each month were
calculated to evaluate the performance of CMAQ modeling:

NMB=
∑n

p=1

(
Sp−Op

)
/
∑n

p=1
Op× 100% (3)

NME=
∑n

p=1

∣∣Sp−Op
∣∣/∑n

p=1
Op× 100%, (4)

where Sp and Op are the simulated and observed concentra-
tion of air pollutant, respectively, and n indicates the number
of available data pairs.

We further compared the modeling performance using the
provincial-level emission inventory in D3 with that using
MEIC in D2. Basically, the proxies of total population and
GDP were poorly correlated with gridded emissions dom-
inated by point sources, and the proxy-based methodology
would result in great uncertainty in downscaling emissions
and thereby air quality modeling from coarser to finer reso-
lution. For example, Zheng et al. (2017) suggested a much
larger bias for high-resolution simulation (additional 8 %–
73 % at 4 km) than that at coarser resolution (3 %–13 % for
36 km) when MEIC was applied in predicting surface con-
centrations of different air pollutants. Our previous work in
the YRD also demonstrated that downscaling the national
emission inventory with the proxy-based method resulted
in a clearly larger bias in high-resolution (3 km) air quality
modeling than the provincial-level emission inventory with
more point sources included (Zhou et al., 2017). To avoid
expanding the modeling bias, therefore, we did not directly
downscale MEIC into the entire D3, and the improvement
of provincial emission inventory could be demonstrated with
better model performance (in D3) than MEIC (in D2).

2.3.2 Emission and meteorological factors affecting the
variation of PM2.5 and O3

Besides the baseline simulations conducted for 2015, 2017,
and 2019, we set up two extra scenarios, the meteorological
variation (VMET) and the anthropogenic emission variation
(VEMIS), to assess the impacts of emission and meteorolog-
ical changes on the interannual variations of PM2.5 and O3
concentrations and to reveal their varying contributions for
different periods, as summarized in Table S3 in the Supple-
ment. VMET used the varying meteorological fields for the
3 years but fixed the emission input at the 2017 level and was
thus able to quantify the impact of changing meteorological
conditions on PM2.5 and O3 concentrations. For example, the
difference between 2015 and 2017 in VMET indicated the
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contribution of changing meteorology to variation of air pol-
lutant concentration. Similarly, the emission variation sce-
nario (VEMIS) used the varying emission inventory for the
3 years but fixed meteorological fields at the 2017 level and
was thus able to quantify the impact of changing emissions
on PM2.5 and O3 concentrations. The contributions between
2015 and 2017 and those between 2017 and 2019 could then
be compared to evaluate the effectiveness of emission control
on air quality for the two periods. Notably, the anthropogenic
emission change in the modeling scenario referred to that for
the entire D3 domain, and thus the contribution of emission
control to the changing air quality was from both Jiangsu
and nearby regions. Given the clearly larger emission inten-
sity for the former compared to the latter (An et al., 2021),
the contribution of local emissions was expected to be more
important for the air quality than regional transport. More-
over, the BVOC emissions were selected in accordance with
the meteorological field used for the given year; thus the in-
terannual changes of BVOC emissions were counted in the
contribution of changing meteorology.

3 Results and discussions

3.1 Air pollutant emissions by sector and region

3.1.1 Anthropogenic emissions by sector and their
changes

From 2015 to 2019, the total emissions of anthropogenic
SO2, NOx , AVOCs, NH3, CO, PM10, PM2.5, BC, and OC
in Jiangsu were estimated to decline by 53 %, 20 %, 6 %,
10 %, 7 %, 21 %, 16 %, 6 %, and 18 % down to 296, 1122,
1271, 422, 7163, 565, 411, 32, and 36 Gg in 2019, respec-
tively (Table S4 in the Supplement). On top of SO2 and
NOx , NMVOCs have been incorporated into national eco-
nomic and social development plans with emission reduction
targets in China since 2015 because of their harmful impact
on human health and important role in triggering O3 forma-
tion. The central government required the total national emis-
sions of SO2, NOx , and AVOCs to be cut by 15 %, 15 %, and
10 % during the 13th Five-Year Plan period (2015–2020), re-
spectively (Zhang et al., 2022). Our estimates show that the
actual SO2 and NOx emission reductions were larger than
planned in Jiangsu, due to the implementation of stringent
pollution control measures. However, AVOC emissions did
not decline considerably within the research period, resulting
from less penetration of efficient APCDs and more fugitive
leakage that were difficult to capture. As shown in Fig. 1,
the GDP and vehicle population grew by 40 % and 24 %, re-
spectively, while coal consumption declined slightly during
2015–2019. Along with stringent emission reduction actions,
the provincial emissions of SO2, NOx , and PM2,5 were grad-
ually decoupling from those economical and energy factors,
while CO was still strongly influenced by the change of coal
consumption.

Figure 1. Emission trends and underlying social and economic fac-
tors. Coal consumption is obtained from Chinese Energy Statis-
tics (National Bureau of Statistics, 2016–2021). The GDP, popula-
tion, and vehicle population data come from the National Bureau of
Statistics (2016–2021). Data are normalized by dividing the value
of each year by their corresponding value in 2015.

We present the sectoral contribution to anthropogenic
emissions and their interannual changes in Figs. 2 and 3, re-
spectively. The industrial sector was identified as the major
contributor to SO2, CO, AVOCs, PM10, and PM2.5 emis-
sions, of which the contribution accounted on average for
50 %, 62 %, 64 %, 68 %, and 61 % during 2015–2019, re-
spectively (Fig. 2a, c, d, f, and g). The sector was found to
drive the reductions in emissions of SO2, NOx , CO, PM10,
PM2.5, and BC. In particular, the benefit of emission controls
for the industrial sector after 2017 was found to clearly ele-
vate and to surpass that of the power sector for SO2, NOx ,
PM10, and PM2.5 (Fig. 3a, b, f, and g).

The power sector, accounting for more than half of provin-
cial coal burning, though, was not the most important con-
tributor to the emissions of any pollutant (Fig. 2). Upgrad-
ing the units with advanced APCDs, phasing out outdated
boilers, and retrofitting for ultra-low-emission requirement
significantly reduced SO2, NOx , and particulate emissions
from the power sector (Liu et al., 2015; Y. Zhang et al.,
2021). With the completion of the ultra-low-emission retrofit
in 2017, the declines of emissions for most species slowed
down for the power sector (Fig. 3). The results indicated
that the potential for further emission abatement from end-
of-pipe controls has been very limited for the sector, unless
an energy transition with less coal consumption is sustain-
ably undertaken in Jiangsu.

The transportation sector on average accounted for 51 %,
17 %, 14 % and 42 % of NOx , CO, AVOC, and BC emis-
sions, respectively (Fig. 2b, c, d, and h). The growth of ve-
hicle population resulted in a 38 % increase in the annual
NOx emissions from transportation from 2015 to 2019, faster
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Figure 2. Anthropogenic emissions by sector and year. The species include (a) SO2, (b) NOx , (c) CO, (d) AVOCs, (e) NH3, (f) PM10,
(g) PM2.5, (h) BC, and (i) OC. Emissions are divided into five sectors: power, industry, transportation, residential, and agriculture.

than that of any other sector (Fig. 3b). Similarly, a 20 %
and 25 % increase were found for transportation CO and
BC emissions (Fig. 3c and h), respectively. Therefore, the
rapid development of transportation in economically devel-
oped Jiangsu has expanded its contribution to air pollutant
emissions for those species, particularly after the emissions
from large power and industrial plants have been effectively
curbed. However, the implementation of China V emis-
sion standard (equal to Euro V; https://publications.jrc.ec.
europa.eu/repository/handle/JRC102115, last access: 10 Oc-
tober 2022) for motor vehicles since 2018 has effectively
slowed down the growth of transportation NOx emissions:
the annual growth rate was estimated to decrease from 12 %
for 2015–2017 to 5 % in 2018–2019. Meanwhile, a down-
ward trend was also found for transportation AVOC emis-
sions from 2018 (Fig. 3d). These results show that emis-
sion controls for transportation could be crucial for limiting
the key precursors of ozone production (Geng et al., 2021;
Q. Zhang et al., 2019).

The residential sector was the most important source of
OC, contributing on average 68 % to total emissions within
2015–2019 (Fig. 2i), and was the second most important
source of PM10 (18 %, Fig. 2f) and PM2.5 (24 %, Fig. 2g). It
dominated the abatement of OC emissions, attributed to the
reduced bulk coal and straw burning (Fig. 3i). The agricul-
tural sector dominated NH3 emissions (91 %, Fig. 2e), and
the small decline resulted mainly from the reduced use of
nitrogen fertilizer (13 %) from 2015 to 2019 (Fig. 3e).

It is worth noting that the PM2.5 and OC emissions de-
creased faster than BC (Fig. 2g–i). As mentioned above, the
reduction in primary PM2.5 resulted mainly from the im-
proved energy efficiencies and emission controls in industry
and promotion of clean stoves and replacement of solid fu-
els with natural gas and electricity in residential sources. For
OC, in particular, the reduced use of household biofuel and
the prohibition of open biomass burning led to considerable
emission abatement (18 % from 2015 to 2019). However, the
lack of specific APCDs and increasing heavy-duty diesel ve-
hicles partly offset the benefit of emission controls for other
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Figure 3. Changes in emissions by sector and year. The species include (a) SO2, (b) NOx , (c) CO, (d) AVOCs, (e) NH3, (f) PM10, (g) PM2.5,
(h) BC, and (i) OC. The 2015 emissions are subtracted from the emission data for each year to represent the additional emissions compared
to 2015 levels.

sources, resulting relatively small reduction in BC emissions
(6 %). Besides the air quality issue, the slower decline of BC
than OC raised the regional climate challenge, as the former
has a warming impact, while the latter has a cooling one.

3.1.2 City-level emissions and spatial distribution

Figure 4 and Table S5 in the Supplement show the average
annual emissions of SO2, NOx , AVOCs, NH3, and PM2.5 for
the 5 years by city. In further discussions, we classified the 13
cities in Jiangsu as the southern cities (Nanjing, Zhenjiang,
Changzhou, Wuxi, and Suzhou), central cities (Yangzhou,
Taizhou, and Nantong), and northern cities (Xuzhou, Suqian,
Lianyungang, Huaian, and Yancheng) (their distributions are
shown in Fig. S1). Clearly larger emissions of most species
were found in southern Jiangsu cities, with more developed
industrial economy and transportation (Fig. 4a–e; see the de-
tailed emission data by year in Table S5). The SO2 emis-
sions per unit area were calculated as 7.7, 3.3, and 2.4 t km−2

for the southern, central, and northern cities, respectively.
The analogous numbers were 23.0, 11.7, and 8.1 t km−2 for
NOx ; 22.5, 13.2, and 8.1 t km−2 for AVOCs; and 7.3, 5.2,
and 2.9 t km−2 for PM2.5, respectively. As shown in Fig. S3

in the Supplement, the regions along the Yangtze River are
of largest densities of power and industrial plants. In con-
trast, higher NH3 emissions were found for the central and
northern cities with abundant agricultural activities (Fig. 4e).
Figure S4 in the Supplement illustrates the spatial distribu-
tions of emissions for selected species for 2019, at a horizon-
tal resolution of 3 km. Besides industrial sources, the spatial
patterns of NOx , BC, CO, and AVOCs were also influenced
by the road net, suggesting the role of heavy traffic on emis-
sions. Particulate matter emissions were mainly distributed
in urban industrial regions, while OC was more found in the
broader central and northern areas, attributed partly to the
contribution from residential biofuel use.

According to Table S5, faster declines in annual SO2,
NOx , and PM2.5 emissions for southern cities (59 %, 23 %,
and 24 % from 2015 to 2019, respectively) could be found
than for northern cities (53 %, 18 %, and 8 %, respectively).
In contrast, AVOC emissions were estimated to increase by
10 % in southern cities and decrease by 27 % in northern
cities. The fractions of southern cities to the total provincial
emissions decreased from 2015 to 2019 except for AVOCs
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Figure 4. The city-level emissions and spatial distribution include (a) SO2, (b) NOx , (c) AVOCs, (d) PM2.5, and (e) NH3. Panel (f) shows
the proportions of emission by different regions for 2015 and 2019. The blue line indicates the Yangtze River. The map data provided by
Resource and Environment Data Cloud Platform are freely available for academic use (http://www.resdc.cn/data.aspx?DATAID=201, last
access: 10 October 2022), © Institute of Geographic Sciences & Natural Resources Research, Chinese Academy of Sciences.

and NH3, indicating more benefits of stringent measures for
emission controls for relatively developed regions (Fig. 4f).

Figure 5 illustrates the changes in the spatial distribution
of major pollutant emissions from 2015 to 2019 in Jiangsu.
It can be found that the areas with large emission reduction
for SO2, NOx , and PM2.5 were consistent with the locations
of super-emitters of corresponding species (Fig. 5a–c). Fac-
ing bigger challenges in air quality improvement, the eco-
nomically developed region of southern Jiangsu has made
more efforts on the emission controls of large-scale power
and industrial enterprises and achieved greater emission re-
duction than the less developed northern Jiangsu. A different
pattern in the spatial variation of emissions was found for
AVOCs (Fig. 5d). There was a big development of industrial
parks for chemical engineering along the riverside of Yangtze

River in the cities of Suzhou, Nantong, and Wuxi in south-
ern Jiangsu. The elevated solvent use and output of chemi-
cal products of those large-scale enterprises resulted in the
growth of AVOC emissions. In northern Jiangsu, in contrast,
small-scale chemical plants have been gradually closed, and
the emissions were thus effectively reduced. There is a great
need for substantial improvement of emission controls for
the key regions and sectors for further abatement of AVOC
emissions.

3.1.3 Enhanced contribution of biogenic sources to total
NMVOCs

Table 1 summarizes AVOC and BVOC emissions by month
and year. Different from AVOCs that decreased slowly but
continuously from 2015 to 2019, a clear growth of annual
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Figure 5. Difference in the spatial distribution of major pollutant emissions between 2015 and 2019 for (a) SO2, (b) NOx , (c) PM2.5, and
(d) AVOCs. The black circles represent the locations of top 10 emitters for corresponding species in each panel. The blue line indicates the
Yangtze River.

BVOC emissions was estimated between 2015 and 2017, fol-
lowed by a slight reduction till 2019. The peak annual BVOC
emissions reached 213 Gg in 2017. The interannual variation
of BVOCs was mainly associated with that of temperature
and shortwave radiation (Y. Wang et al., 2020). Influenced
by meteorological conditions and vegetation growing, BVOC
emissions were most abundant in July, less in April and Oc-
tober, and almost zero in January. Within the province, there
was a general increasing gradient from southeast to north-
west in BVOC emissions (Fig. S5 in the Supplement). The
rapid development of industrial economy in southern Jiangsu
has led to the expansion of urban centers and less vegetation
cover, which limited the BVOC emissions.

We calculated the ratio of BVOC to AVOC emissions by
month and year (Table 1). Dependent on the trends of both
BVOC and AVOC emissions, the annual ratio increased from
11.1× 10−2 in 2015 to 15.8× 10−2 in 2017 and stayed above
15× 10−2 afterwards. There is also a clear seasonal differ-
ence in the ratio, with the averages for the 5 years estimated
to be 0× 10−2, 8× 10−2, 52× 10−2, and 3× 10−2 for Jan-
uary, April, July, and October, respectively. Since 2016, the
ratio of BVOC to AVOC emissions exceeded 50× 10−2 in
July, indicating that the O3 pollution in summer could be in-
creasingly influenced by BVOCs. Regarding the spatial pat-
tern, larger ratios were commonly found in northern Jiangsu,
with a modest growth for recent years (Fig. 6). Moreover,
greater growth of the ratio was found in parts of south-
ern Jiangsu, where AVOC emissions were rapidly declin-

ing (e.g., Nanjing and Zhenjiang). This evolution indicated
that biogenic sources became more influential in O3 produc-
tion, even for some regions with developed industrial econ-
omy, along with controls of anthropogenic emissions. Due
to the relatively high level of ambient NO2 from anthro-
pogenic emissions, a broad area of Jiangsu was identified
with a mixed or VOC-limited regime in terms of O3 for-
mation (Jin and Holloway, 2015), indicating the impacts of
NMVOCs (including BVOCs) on the ambient O3 concen-
tration. In the future, the BVOC emissions may further in-
crease with the elevated temperature, improved afforestation
and vegetation protection, and they will probably play a more
important role in summer O3 pollution once the controls of
AVOC emissions are pushed forward (Ren et al., 2017; Gao
et al., 2022a).

3.2 The comparisons between different emission
inventories

3.2.1 Assessment of emission amounts

We compared our provincial-level emission inventory with
previous studies on emissions in Jiangsu in terms of the to-
tal and sectoral emissions through examinations of activity
data, emission factor, removal efficiency, and other parame-
ters. The influence of data and methods on emission estima-
tion was then revealed.
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Table 1. Annual emissions of BVOCs and AVOCs and the ratios of BVOCs to AVOCs.

Year January April July October Annual

BVOCs (Gg) 2015 0.0020 8.1 38.0 3.9 150.0
2016 0.0017 8.5 51.4 2.8 188.1
2017 0.0023 9.4 58.7 2.8 212.7
2018 0.0020 9.1 55.5 3.5 204.3
2019 0.0017 6.9 53.4 4.1 193.2

AVOCs (Gg) 2015 131.3 102.8 101.8 104.0 1348.3
2016 131.2 102.3 101.3 103.6 1346.4
2017 123.4 97.0 96.0 98.2 1342.9
2018 131.6 102.5 101.6 103.8 1306.0
2019 127.7 99.4 98.4 100.6 1271.1

BVOC /AVOC (×10−2) 2015 0.0 7.9 37.3 3.8 11.1
2016 0.0 8.3 50.7 2.7 14.0
2017 0.0 9.7 61.2 2.9 15.8
2018 0.0 8.9 54.6 3.4 15.6
2019 0.0 6.9 54.3 4.1 15.2

Figure 6. The ratios of BVOC to AVOC emissions in July: (a) 2015, (b) 2017, and (c) 2019.

Table 2 compares our emission estimates, by year and
species, with available global (EDGAR; Crippa et al., 2020),
continental (REAS; Kurokawa and Ohara, 2020), national
(MEIC), and regional emission inventories (Li et al., 2018;
Sun et al., 2018; X. M. Zhang et al., 2017; Simayi et al.,
2019; An et al., 2021; Gao et al., 2022b; J. Yang et al., 2021);
official emission statistics of Jiangsu Province (http://sthjt.

jiangsu.gov.cn/col/col83555/index.html, last access: 10 Oc-
tober 2022); and an emission estimate with the “top-down”
approach, i.e., constrained by satellite observation and in-
verse chemistry transport modeling (Yang et al., 2019). In
particular, we stressed the differences in emissions by sector
among our study, MEIC, and An et al. (2021) for 2017 as an
example (Fig. 8).
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The annual SO2 emissions in our provincial inventory
were close to those in REAS (Kurokawa and Ohara, 2020),
MEIC, J. Yang et al. (2021), and official statistics for most
years but much smaller than those reported by EDGAR, Sun
et al. (2018) and Li et al. (2018). The emissions in this work
were 32 % higher than the MEIC for 2017, with the biggest
difference (62 % higher in this work) for the power sector
(Fig. 8). It results mainly from the discrepancies in the pene-
tration and SO2 removal efficiency of flue gas desulfurization
(FGD) systems applied in the two emission inventories. For
example, Q. Zhang et al. (2019) assumed that the penetration
rate of FGD in the coal-fired power sector reached 99.6 % in
2017, with the removal efficiency estimated to be 95 %. Ac-
cording to our unit-based investigation, the removal efficien-
cies in the power sector were typically less than 92 %, owing
to the aging devices, low flue gas temperature, and other rea-
sons. The main differences between this work and the YRD
emission inventory by An et al. (2021) existed in the indus-
trial sector, attributed partly to insufficient consideration of
the comprehensive emission control regulations of coal-fired
boilers in Jiangsu in the past few years in An et al. (2021).

The estimates of NOx emissions from MEIC, EDGAR,
and Sun et al. (2018) were 14 %–38 % higher than ours,
while the official statistics were much lower than ours, at-
tributed mainly to the absence of emissions from traffic
sources in the statistics. The major difference between MEIC
and our provincial inventory existed in the power and in-
dustrial sector, and the total emissions in the former were
56 % larger than the latter (Fig. 8). For example, the emis-
sion factors for coal-fired power plants in this study were
derived from CEMSs (0.03–2.8 g kg−1 coal) and were much
smaller than those applied in MEIC and another research
(2.88–8.12 g kg−1 coal; Y. Zhang et al., 2021). Similarly, the
smaller emission factors for industrial boilers derived based
on on-site investigations were commonly smaller than pre-
vious studies, leading to an estimation of 45 % smaller than
MEIC for industrial sector in 2017. Correspondingly, some
modeling and satellite studies suggested that the NOx emis-
sions in previous studies were overestimated partly due to
less consideration of improvement in NOx control measures
for coal burning sources (Zhao et al., 2018; Sha et al., 2019).
Constrained by satellite observation, the top-down estima-
tion by Yang et al. (2019) was 10 % and 22 % smaller than
our provincial emission estimation and MEIC for 2016.

As mentioned in Sect. 2.1.2, AVOC emissions for cer-
tain industrial sources in this study were estimated with a
procedure-based approach, which took the removal efficien-
cies of different technologies into account (L. Zhang et al.,
2021). Therefore, the annual AVOC emissions in the provin-
cial inventory were commonly much smaller than others.
Without sufficient the local information, for example, Simayi
et al. (2019) applied the national average removal efficiencies
of AVOCs in furniture manufacturing, automotive manufac-
turing, and textile dyeing industries at 18 %, 28 %, and 30 %,
clearly lower than 21 %, 42 %, and 43 % in our inventory, re-

spectively. As a result, the AVOC emissions from industrial
source in the former were 45 % higher than the latter.

NH3 emissions in the provincial emission inventory were
commonly smaller than others. In particular, the estimate was
less than half of that by An et al. (2021) for 2017 (Fig. 8).
The big difference resulted mainly from the methodologies.
As indicated by our previous study (Zhao et al., 2020), the
method characterizing agricultural processes usually pro-
vided smaller emission estimates than those using the con-
stant emission factors. The former detected the emission vari-
ation by season and region and supported air quality model-
ing with better agreement with ground and satellite observa-
tion. Compared with Infrared Atmospheric Sounding Inter-
ferometer (IASI) observations, for example, application of
the emission inventory characterizing agricultural processes
in CMAQ reduced the monthly NMEs of vertical column
density of NH3 from 44 %–84 % to 38 %–60 % in different
seasons for the YRD region (Zhao et al., 2020).

For PM emissions, our estimates were larger than MEIC,
Gao et al. (2022b), An et al. (2021), and official emission
statistics but smaller than EDGAR, REAS, and J. Yang et
al. (2021a). The discrepancies resulted mainly from the in-
consistent penetration rates and removal efficiencies of dust
collectors determined at a national level and from on-site sur-
veys at a provincial level. Taking cement as an example, all
the plants were assumed to be installed with dust collectors,
and the national average removal efficiency was determined
at 99.3 % in MEIC (Q. Zhang et al., 2019), clearly larger than
that in Jiangsu from plant-by-plant surveys (93 %). The PM10
and PM2.5 emissions from the industrial sector in this study
were 197 and 113 Gg higher than MEIC for 2017 (Fig. 8).

3.2.2 Assessment of interannual variability

Figure 7 compares the interannual trends of SO2 and NOx
emissions estimated in this study with those in available
global (EDGAR) and national emission inventories (MEIC),
as well as those of annual averages of ambient concentrations
for corresponding species collected from the state-operated
observation sites in Jiangsu. Different from other inventories,
the global emission inventory EDGAR could not reflect the
rapid decline of SO2 and NOx emissions of Jiangsu for re-
cent years. This is probably due to the lack of information
on the gradually enhanced penetration and removal efficien-
cies of APCD use in power and industrial sectors in EDGAR.
Therefore, we mainly compared the interannual variability of
emissions in our provincial inventory and MEIC.

Both MEIC and our provincial inventory show the con-
tinuous declines in SO2 and NOx emissions for Jiangsu
from 2015 to 2019, which could be partly confirmed by the
ground observation. In general, quite similar trends were
found for the two inventories, suggesting similar estima-
tions in the interannual variation of total emissions at the
national and provincial scales. However, there are some dis-
crepancies between the two. Compared to MEIC, as shown
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Table 2. Air pollutant emissions in Jiangsu and comparison with previous studies.

Data source Annual air pollutant emissions (Gg yr−1)

SO2 NOx AVOCs NH3 CO PM10 PM2.5

2014 Li et al. (2018) 1002 1315 1560 544 12 667 1761 779

2015 This study 627 1411 1348 468 7735 711 491
Official emission statisticsa 835 1068 655
MEIC 626 1646 2143 544 9059 595 444
REAS 649 1343 2063 611 10 980 827 622
EDGAR 957 1693 2178 488 7157 814 573
Sun et al. (2018) 1230 1700 2000 13 780
X. M. Zhang et al. (2017) 703
J. Yang et al. (2021) 613 1285 1911 354 7711 781 617

2016 This study 580 1391 1346 452 7397 687 475
Official emission statistics 579 634 798
MEIC 468 1586 2128 532 8191 516 388
EDGAR 905 1641 2126 453 6902 771 536
Simayi et al. (2019) 2024
Yang et al. (2019)b 1245

2017 This study 416 1331 1343 434 7305 676 468
Official emission statistics 384 500 626
MEIC 315 1538 2132 528 7731 492 367
EDGAR 876 1614 2116 432 6636 744 513
An et al. (2021) 619 1165 2056 1093 17 309 1440 404

2018 This study 374 1198 1306 430 7252 670 462
Official emission statistics 316 497 526
MEIC 336 1456 1999 484 6513 365 272
EDGAR 892 1653 2147 414 6813 751 517
Gao et al. (2022b) 210 830 3000 530 9950 310 260

2019 This study 296 1122 1271 422 7163 565 411
Official emission statistics 226 333 242
MEIC 311 1414 1983 455 6380 351 263

a The data were taken from Department of Ecology and Environment of Jiangsu Province
(http://sthjt.jiangsu.gov.cn/col/col83555/index.html, last access: 10 October 2022). b An estimate with the “top-down” methodology,
in which the emissions were constrained with satellite observation and inverse modeling.

Figure 7. Comparison of interannual trends with MEIC, EDGAR, and ground-based observations: (a) SO2 and (b) NOx (NO2).
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Figure 8. Comparison of Jiangsu emissions for 2017 with MEIC and An et al. (2021). The air pollutants from left to right are SO2, NOx ,
VOCs, NH3, and PM2.5, respectively.

in Fig. 7a, a slower decline in SO2 emissions between 2015
and 2017 was estimated by our provincial inventory but a
faster one between 2017 and 2019. In other words, MEIC
describes a more optimistic emission abatement for earlier
years. The ultra-low-emission retrofit in the power sector
started in 2015 in Jiangsu, which was expected to signifi-
cantly reduce the emissions of coal-fired plants to the level
of gas-fired ones. Through investigations and examinations
of information on APCD operations for individual sources,
we cautiously speculated that the benefit of the retrofit might
not be as large as expected at the initial stage. This could
be partly supported by the correspondence between online
monitoring of SO2 emissions for individual power plants and
satellite-derived SO2 columns around them when the ultra-
low-emission retrofit was required (Karplus et al., 2018).
From 2017 to 2019, we were more optimistic on the emission
reduction, attributed partly to the larger benefit of emission
controls for non-electric industries. A similar case with less
of a discrepancy was also found for NOx emission (Fig. 7b).

3.3 Analysis of driving force of emission change from
2015 to 2019

The actual reductions of annual SO2, NOx , AVOC, NH3,
and PM2.5 emissions were estimated to be 331, 289, 77, 46,
and 80 Gg from 2015 to 2019, respectively, in our provin-
cial emission inventory. We analyzed the emission abatement
and its driving forces for two periods, 2015–2017 and 2017–
2019, to represent the different influences of individual mea-
sures on emissions for NAPAPCP and TYAPFAP. As shown
in Fig. S6 in the Supplement, the actual emission reductions
of SO2 and NH3 during 2015–2017 (211 and 34 Gg respec-
tively) exceeded those during 2017–2019 (120 and 12 Gg,
respectively). As the retrofit of ultra-low-emission technolo-
gies for the power sector and the modification of large-scale
intensive management of livestock farming in Jiangsu were
basically completed between 2015 and 2017, the reductions
of annual NOx , AVOC, and PM2.5 emissions during 2017–
2019 were much larger (209, 72, and 57 Gg, respectively)
than those during 2015–2017 (80, 5, and 23 Gg, respec-

tively), implying bigger benefits of TYAPFAP for emission
controls of those species.

Figure 9 summarizes the effect of individual measures on
net emission reduction for the two periods. There were some
common measures for SO2, NOx , and PM2.5 emission con-
trols; thus, they are further discussed together below. Dur-
ing 2015–2017, the ultra-low-emission retrofit of coal-fired
power plants was identified to be the most important driving
factor for the reductions of SO2 and NOx emissions, respon-
sible for 38 % and 43 % of the abatement for the two species,
respectively. By the end of 2017, more than 95 % of the coal-
fired power plants in Jiangsu were equipped with FGD and
selective catalytic reduction/non-catalytic reduction (SCR/S-
NCR), and 91 % of coal-fired power generation capacity met
the ultra-low-emission standards (35, 50, and 10 mg m−3 for
SO2, NOx , and PM concentration in the flue gas, respec-
tively; Q. Zhang et al., 2019). Through the information cross-
check and incorporation based on different emission source
databases as mentioned in Sect. 2.1.3, the average removal
efficiencies of SO2 and NOx in the coal-fired power plants
were estimated to increase from 89 % and 50 % in 2015 to
94 % and 63 % in 2017, respectively.

The extensive management of coal-fired boilers was the
second most important driver for SO2 and NOx reduction and
the most important driver for PM2.5, contributing to 24 %,
20 %, and 37 % of the emission reductions for corresponding
species, respectively. The main actions included the elimi-
nation of 100 MW of coal-fired power generation capacity
and the enhanced penetration of SO2 and particulate con-
trol devices on large coal-fired industrial boilers since the
improved enforcement of the latest emission standard (GB
13271-2014).

The upgrade and renovation of non-electrical industry con-
tributed 18 %, 15 %, and 28 % to the emission reductions
for SO2, NOx , and PM2.5, respectively. Till 2017, more
than 80 % of steel-sintering machines and cement kilns were
equipped with FGD and SCR/SNCR systems. The average
removal efficiency in the steel and cement production in-
creased from 48 % and 43 % in 2015 to 60 % and 57 % in
2017 for SO2, and from 45 % and 38 % in 2015 to 54 % and
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Figure 9. Contributions of individual measures to emission reductions in SO2, NOx , VOCs, and PM2.5 for 2015–2017 (the left column) and
2017–2019 (the right column).

40 % in 2017 for NOx , respectively (as shown in Fig. S7 in
the Supplement).

Phasing out outdated capacities in key industries including
crude steel (8× 106 t), cement (9× 106 t), flat glass (3 mil-
lion weight boxes), and other energy-inefficient production
capacity contributed 11 %, 6 %, and 11 % to the emission re-
ductions of corresponding species, respectively. Given their
relatively small proportions to total emissions, the contribu-
tions of other emission reduction measures were less than
10 %, such as promoting clean energy, phasing out small and
polluting factories, and the construction of port shore power.

The driving forces of emission abatement have been
changing for the three species since the implementation of
TYAPFAP. The potential for further reduction of SO2 and
NOx emissions was narrowed through the end-of-pipe treat-
ment in the power sector, and the ultra-emission retrofit on
the sector was of very limited influence on the emissions dur-
ing 2017–2019. Measures on the non-electric sector brought
greater benefits for emission reduction. Extensive manage-
ment of coal-fired boilers and upgrade and renovation of non-
electrical industry remained the most important driving fac-
tors for the reduction of SO2, NOx , and PM2.5 emissions
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(33 %, 20 %, and 26 % for the former and 28 %, 29 %, and
33 % for the latter, respectively). After 2017, small coal boil-
ers (≤ 30 MW) were continuously shut down, and remain-
ing larger ones (≥ 60 MW) were all retrofitted with ultra-
low-emission technology. Through the ultra-low-emission
retrofit, the average removal efficiencies of NOx in the steel
and cement production increased from 54 % and 40 % in
2017 to 70 % and 61 % in 2019, respectively.

Regarding AVOCs, the emission reduction resulted mainly
from the implementation of controls on the key sectors,
which accounted for 63 % and 34 % of the reduced emissions
for 2015–2017 and 2017–2019, respectively. Besides, the ap-
plication of LDAR was the second most important measure
for 2015–2017, with the contribution to emission reduction
reaching 23 %. The results also showed that AVOC emission
reductions from all the concerned measures in 2017–2019
(152 Gg) were higher than those in 2015–2017 (116 Gg). Al-
though more abatement in total AVOC emissions was found
for 2017–2019 (Fig. S6), the contributions of the two above-
mentioned measures reduced clearly in the period. Some
other measures were identified to be important drivers of
emission reduction, including control of mobile sources (e.g.,
implementation of the China V emission standard for on-road
vehicles) and replacement with low-VOC paints. In our re-
cent studies, we evaluated the average removal efficiency of
AVOCs in the industrial sector to be less than 30 % (L. Zhang
et al., 2021), and organic solvents with a low-VOC content
accounted for less than 30 % of total solvent use (Wu et
al., 2022). Therefore, there is still great potential for further
reduction of AVOC emissions through improvement on the
end-of-pipe emission controls and use of cleaner solvents.

In summary, expanding the end-of-pipe treatment (e.g., the
ultra-low-emission retrofit) from power to non-electricity in-
dustry and phasing out the outdated industrial capacities have
driven the declines of emissions for most species. Along with
the limited potential for current measures, more substantial
improvement of energy and industrial structures could be the
option for further emission reduction in the future.

3.4 Effectiveness of emission controls for the changing
air quality

3.4.1 Simulation of the O3 and PM2.5 concentrations

The CMAQ model performance was evaluated with available
ground observation. The observed concentrations of PM2.5
(hourly) and O3 (the maximum daily 8 h average, MDA8)
were compared with the simulations using the provincial
emission inventory and MEIC for the 4 selected months
for 2015–2019, as summarized in Tables S6 and S7 in the
Supplement. Overall, the simulation with the provincial in-
ventory shows acceptable agreement with the observations,
with the annual means of NMB and NME ranging −21 %
to 2 % and 43 % to 52 % for PM2.5 and −26 % to −14 %
and 30 % to 41 % for O3. The analogous numbers for MEIC

were −23 % to −5 % and 47 % to 53 % for PM2.5 and
−26 % to −6 % and 33 % to 46 % for O3, respectively. Most
of the NMBs and NMEs were within the proposed crite-
ria (−30 %≤NMB≤ 30 % and NME≤ 50 %; Emery et al.,
2017). Better performance was achieved using the provincial
inventory, implying the benefit of applying refined emission
data for high-resolution air quality simulation.

Besides O3 and PM2.5, better model performances were
also found for SO2 and NO2 with the provincial emission
inventory than MEIC, as shown in Table S8 in the Supple-
ment. For 2017, the monthly NMB and NME ranged −38 %
to −24 % and 43 % to 53 % for SO2 and 22 % to 40 % and
38 % to 61 % for NO2. The analogous numbers for MEIC
were 35 % to 68 % and 84 % to 114 % for SO2 and 50 % to
133 % and 65 % to 138 % for NO2, respectively (unpublished
data provided by MEIC development team, Tsinghua Univer-
sity).

Figure 10 compares the observed and simulated (with the
provincial inventory) interannual trends in PM2.5 and MDA8
O3 concentrations from 2015 to 2019 (see the simulated
spatiotemporal evolution in Figs. S8 and S9 in the Supple-
ment). Satisfying correlations between observed and simu-
lated concentrations were found for both PM2.5 and MDA8
O3, with the squares of correlation coefficients (R2) esti-
mated to be 0.81 and 0.86 within the research period, re-
spectively. The good agreement suggests the simulation with
high-resolution emission inventory was able to capture the
interannual changes in air quality well at the provincial scale.

Both observations and the simulation indicated a declin-
ing trend of PM2.5 concentrations, with the annual decreas-
ing rates estimated to be −5.4 and −4.2 µg m−3 yr−1, re-
spectively (Fig. 10a). The decline reflected the benefit of im-
proved implementation of emission control actions as well
as the influence of meteorological condition change. In gen-
eral, higher concentrations were found in winter and lower in
summer. A rebound in PM2.5 level was notably found in win-
ter after 2017, attributed possibly to the unfavorable meteo-
rological conditions that were more likely to exacerbate air
pollution (e.g., the reduced wind speed as shown in Table S2)
for recent years. In contrast to PM2.5, MDA8 O3 was clearly
elevated from 2015 to 2019, with the annual growth rates es-
timated to be 4.6 and 7.3 µg m−3 yr−1, by observation and
simulation (Fig. 10b). Higher concentrations were found in
spring and summer and lower in autumn and winter. Besides
the impact of emission change, the O3 concentrations can
be greatly influenced by the varying meteorological factors
such as the decreased relative humidity and wind speed for
recent years in the YRD region (Gao et al., 2021; Dang et al.,
2021). In addition, the recent declining PM2.5 concentration
in eastern China reduced the heterogeneous absorption of hy-
droperoxyl radicals (HO2) by aerosols and thereby enhanced
O3 concentration (Li et al., 2019). If such an aerosol effect
was considered in CMAQ modeling, the increasing rate of
annual O3 concentration would possibly be further overesti-
mated. The complex impacts of various factors on air qual-
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Figure 10. The monthly averages of (a) PM2.5 and (b) MDA8
O3 from CMAQ simulation and ground observation for January,
April, July, and October from 2015 to 2019. The slopes of linear
regressions in the panels indicate the annual variation rates for cor-
responding species.

ity triggered the separation of emission and meteorological
contributions to the changing PM2.5 and O3 levels shown in
Sect. 3.4.2.

The common underestimation of O3 should be stressed,
partly resulting from the bias in the estimation of precursor
emissions. In this study, the enhanced penetration and/or re-
moval efficiencies of NOx control devices might not be fully
considered in the emission inventory development, in partic-
ular for the non-electric industry, leading to possible over-
estimation of NOx emissions. Moreover, underestimation of
AVOC emissions could exist, due to incomplete counting of
emission sources, particularly for the uncontrolled fugitive
leakage. As most of Jiangsu was identified as a VOC-limited
region for O3 formation (Y. Wang et al., 2020; Y. Yang et
al., 2021), the overestimation of NOx and underestimation of
AVOCs could result in underestimation in O3 concentration
with air quality modeling. Compared to MEIC, the improved

provincial emission inventory partly corrected the overesti-
mation of NOx emissions and NO2 concentrations (Table S8)
and helped reduce the bias of O3 concentration simulation.
Furthermore, a larger underestimation in O3 was revealed be-
fore 2017 (Fig. 8b), attributed partly to less data support on
the emission sources and thereby less reliability in the emis-
sion inventory, compared with more recent years.

3.4.2 Anthropogenic and meteorological contribution to
O3 and PM2.5 variation

As shown in Fig. 11, in the baseline simulation that ac-
counted for the interannual changes of both anthropogenic
emissions and meteorology, the provincial-level PM2.5 con-
centration (geographical mean) was calculated to decrease
by 4.1 µg m−3 in 2015–2017 and 1.7 µg m−3 in 2017–2019
and MDA8 O3 to increase by 17.0 µg m−3 in 2015–2017 and
3.2 µg m−3 in 2017–2019. Smaller variations were found for
more recent years for both species. With VEMIS and VMET,
the contributions of the two factors were identified and dis-
cussed in the following. It should be noted that the air quality
changes in the baseline did not equal the aggregated contri-
butions in VEMIS and VMET due to non-linearity effects of
the chemistry transport modeling, and the main goal of the
analysis was to compare the relative contributions of the two
factors.

As shown in Fig. 11a, similar patterns of driving factor
contributions to PM2.5 were found during 2015–2017 and
2017–2019. While meteorological conditions consistently
promoted the formation of PM2.5, the continuous abatement
of anthropogenic emissions completely offset the adverse
meteorological effects and contributed to the declines in
PM2.5 concentrations. Although less reduction in PM2.5 con-
centration was found for 2017–2019 due mainly to the wors-
ened meteorology, emission abatement was estimated to play
a greater role in reducing PM2.5 concentration (5.5 µg m−3

in VEMIS) compared to 2015–2017 (4.3 µg m−3), implying
the higher effectiveness of recent emission control actions on
PM2.5 pollution alleviation.

The O3 case is different (Fig. 11b). Both the changing
emissions and meteorology favored MDA8 O3 increase for
2015–2017, consistent with previous studies (Wang et al.,
2019; Dang et al., 2021). The contribution of meteorology
was estimated to be 11.9 µg m−3 (VMET), larger than that of
emissions at 4.9 µg m−3 (VEMIS). As shown in Fig. S6, the
abatement of annual NOx emissions in Jiangsu was estimated
to be 104 Gg, while very limited reduction was achieved in
AVOC emissions. Declining NOx emissions thus elevated O3
formation under the VOC-limited conditions, particularly in
urban areas in Jiangsu.

During 2017–2019, the meteorological condition played
a more important role in the O3 growth (14.3 µg m−3), at-
tributed mainly to the decreased relative humidity and wind
speed for recent years (Table S2). In contrast, the chang-
ing emissions were estimated to restrain the O3 growth by
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Figure 11. The concentration changes during 2015–2017 and
2017–2019 from CMAQ for (a) PM2.5 and (b) O3 (VEMIS and
VMET: meteorological conditions and emissions fixed at 2017
level, respectively).

3.1 µg m−3, implying the effectiveness of continuous emis-
sion controls on O3 pollution alleviation. As shown in
Fig. S6, a much larger reduction in AVOC emissions was
achieved in Jiangsu during 2017–2019 compared to 2015–
2017, and the greater NOx emission reduction might have
led to the shift from VOC-limited to the transitional regime
across the province (W. Wang et al., 2021). The emission
controls thus helped limit the total O3 production. Although
the reduction in precursor emissions was not able to fully off-
set the effect of adverse meteorology condition, its encourag-
ing effectiveness demonstrated the validity of current emis-
sion control measures, and actual O3 decline can be expected
with more stringent control actions to overcome the influence
of meteorological variation.

4 Concluding remarks

In this study, we developed a high-resolution emission in-
ventory of nine air pollutants for Jiangsu 2015–2019, by in-
tegrating the improvements in methodology for different sec-
tors and incorporating the best available facility-level infor-

mation and real-world emission measurements. We evaluated
this provincial-level emission inventory through comparison
with other studies at different spatial scales and air quality
modeling. We further linked the emission changes to various
emission control measures and evaluated the effectiveness of
pollution control efforts for the emission reduction and air
quality improvement.

Our study indicated that the emission controls indeed
played an important role in the prevention and alleviation
of air pollution. Through a series of remarkable actions in
NAPAPCP and TYAPFAP, the annual emissions in Jiangsu
declined to varying degrees for different species from 2015
to 2019, with the largest relative reduction at 53 % for SO2
and smallest at 6 % for AVOCs. Regarding different periods,
larger abatement of SO2 emissions was found between 2015
and 2017 but more substantial reductions of NOx , AVOCs,
and primary PM2.5 between 2017 and 2019. Our estimates in
SO2, AVOC, and NH3 emissions were mostly smaller than
or close to other studies, while those for NOx and primary
PM2.5 were less conclusive. The main reasons for the dis-
crepancies between studies included the modified method-
ologies used in this work (e.g., the procedure-based approach
for AVOCs and the agricultural process characterization for
NH3) and the varied depths of details on emission source in-
vestigation (e.g., the penetration and removal efficiencies of
APCDs). Air quality modeling confirmed the benefit of re-
fined emission data on predicting the ambient levels of PM2.5
and O3, as well as capturing their interannual variations.

For 2015–2017 within NAPAPCP, the ultra-low-emission
retrofit in the power sector was most effective for SO2 and
NOx emission reduction, but the expansion of emission con-
trols to non-electricity sectors, including coal-fired boilers
and key industries, were more important for 2017–2019.
AVOC control was still in its initial stage, and the measures
on key industrial sectors and transportation were demon-
strated to be effective. Along with the gradually reduced
potential for emission reduction through end-of-pipe treat-
ment, adjustment of energy and industrial structures should
be the future path for Jiangsu as well as other regions with de-
veloped industrial economy. Air quality modeling suggested
worsened meteorological conditions from 2015 to 2019 in
terms of PM2.5 and O3 pollution alleviation. The continu-
ous actions on emission reduction, however, have been tak-
ing effect on reducing PM2.5 concentration and restraining
the growth of the MDA8 O3 level.

The analysis justified the big efforts and investments by the
local government for air pollution controls and demonstrated
how the investigations of detailed underlying data could help
improve the precision, integrity, and continuity of emission
inventories. Such demonstrations were more applicable at re-
gional scale (smaller countries and territories) instead of na-
tional scale due to the huge cost and data gap for the latter.
Furthermore, the work showed how the refined emission data
could efficiently support the high-resolution air quality mod-
eling and highlighted the varying and complex responses of
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air quality to different emission control efforts. Therefore,
the study could shed light for other highly polluted regions
in China and worldwide, with diverse stages of regional eco-
nomical development and air pollution controls.

Limitations remain in the current study. Attributed to in-
sufficient data support, there was little improvement on emis-
sion estimation for some sources compared to previous stud-
ies, e.g., on-road transportation and residential sector. Those
sources may play an increasingly important role in emissions
and air quality, along with stringent controls on power and
industrial sectors, and thus need to be better stressed in the
future. The temporal profiles of emissions for most source
categories were not improved due to the difficulty in cap-
turing the real-time variation of activity for individual emit-
ters (e.g., the operation and energy consumption of industrial
plant). It could be a reason for the bias in air quality mod-
eling. Given the limited access to emission source informa-
tion, moreover, the emission data for nearby regions around
Jiangsu were not refined in this work. Such a limitation might
lead to some bias in analyzing the effectiveness of emission
controls on air quality, as regional transport could account
for a considerable fraction of PM2.5 and O3 concentrations.
Should better regional emission data become available, more
analysis needs to be conducted to separate the effectiveness
of local emission controls and efforts from nearby regions.
Due to huge computational tasks through air quality model-
ing, the individual emission control measures were not di-
rectly linked to the ambient concentration, and their effec-
tiveness on air quality improvement cannot be obtained in
detail. Advanced numerical tools, e.g., the adjoint modeling,
are recommended for further in-depth analysis.
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