Articles | Volume 23, issue 3
https://doi.org/10.5194/acp-23-2235-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-2235-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Insoluble lipid film mediates transfer of soluble saccharides from the sea to the atmosphere: the role of hydrogen bonding
Minglan Xu
Environment Research Institute, Shandong University, Binhai Road 72,
Qingdao 266237, China
Narcisse Tsona Tchinda
Environment Research Institute, Shandong University, Binhai Road 72,
Qingdao 266237, China
Jianlong Li
Environment Research Institute, Shandong University, Binhai Road 72,
Qingdao 266237, China
Environment Research Institute, Shandong University, Binhai Road 72,
Qingdao 266237, China
Related authors
No articles found.
Jie Hu, Jianlong Li, Narcisse Tsona Tchinda, Christian George, Feng Xu, Min Hu, and Lin Du
EGUsphere, https://doi.org/10.5194/egusphere-2025-4207, https://doi.org/10.5194/egusphere-2025-4207, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Phytoplankton blooms dynamically enrich dissolved organic carbon (DOC) in sea spray aerosol by 10-30 times, with proteins and saccharides transferring at different bloom stages. The sea-to-air transfer of DOC is driven by the synergy of biological and the interaction between DOC and bubble rupture. This synergistically-driven DOC flux affects aerosol properties and climate, highlighting the ocean-atmosphere link in organic carbon cycling.
Narcisse Tsona Tchinda, Xiaofan Lv, Stanley Numbonui Tasheh, Julius Numbonui Ghogomu, and Lin Du
Atmos. Chem. Phys., 25, 8575–8590, https://doi.org/10.5194/acp-25-8575-2025, https://doi.org/10.5194/acp-25-8575-2025, 2025
Short summary
Short summary
This study examines the transformation of organosulfates through reaction with HO• radicals. The results show that the nature of substituents on the carbon chain can effectively affect the decomposition rate of organosulfates, and ozone is unveiled as a complementary oxidant in the intermediate steps of this decomposition. The primary products from these reactions include carbonyl compounds and inorganic sulfate, which highlights the role of organosulfates in altering aerosol chemical composition.
Haibiao Chen, Caiqing Yan, Liubin Huang, Lin Du, Yang Yue, Xinfeng Wang, Qingcai Chen, Mingjie Xie, Junwen Liu, Fengwen Wang, Shuhong Fang, Qiaoyun Yang, Hongya Niu, Mei Zheng, Yan Wu, and Likun Xue
Atmos. Chem. Phys., 25, 3647–3667, https://doi.org/10.5194/acp-25-3647-2025, https://doi.org/10.5194/acp-25-3647-2025, 2025
Short summary
Short summary
A comprehensive understanding of the optical properties of brown carbon (BrC) is essential to accurately assess its climatic effects. Based on multi-site spectroscopic measurements, this study demonstrated the significant spatial heterogeneity in the optical and structural properties of water-soluble organic carbon (WSOC) in different regions of China and revealed factors affecting WSOC light absorption and the relationship between fluorophores and light absorption of WSOC.
Jian Wang, Lei Xue, Qianyao Ma, Feng Xu, Gaobin Xu, Shibo Yan, Jiawei Zhang, Jianlong Li, Honghai Zhang, Guiling Zhang, and Zhaohui Chen
Atmos. Chem. Phys., 24, 8721–8736, https://doi.org/10.5194/acp-24-8721-2024, https://doi.org/10.5194/acp-24-8721-2024, 2024
Short summary
Short summary
This study investigated the distribution and sources of non-methane hydrocarbons (NMHCs) in the lower atmosphere over the marginal seas of China. NMHCs, a subset of volatile organic compounds (VOCs), play a crucial role in atmospheric chemistry. Derived from systematic atmospheric sampling in coastal cities and marginal sea regions, this study offers valuable insights into the interaction between land and sea in shaping offshore atmospheric NMHCs.
Yaru Song, Jianlong Li, Narcisse Tsona Tchinda, Kun Li, and Lin Du
Atmos. Chem. Phys., 24, 5847–5862, https://doi.org/10.5194/acp-24-5847-2024, https://doi.org/10.5194/acp-24-5847-2024, 2024
Short summary
Short summary
Aromatic acids can be transferred from seawater to the atmosphere through bubble bursting. The air–sea transfer efficiency of aromatic acids was evaluated by simulating SSA generation with a plunging jet. As a whole, the transfer capacity of aromatic acids may depend on their functional groups and on the bridging effect of cations, as well as their concentration in seawater, as these factors influence the global emission flux of aromatic acids via SSA.
Xiaowen Chen, Lin Du, Zhaomin Yang, Shan Zhang, Narcisse Tsona Tchinda, Jianlong Li, and Kun Li
EGUsphere, https://doi.org/10.5194/egusphere-2023-2960, https://doi.org/10.5194/egusphere-2023-2960, 2024
Preprint archived
Short summary
Short summary
In this study, the interactions between α-pinene and marine emission dimethyl sulfide (DMS) are investigated. It is found that the yield of secondary organic aerosol initially increases and then decreases with the increasing DMS/α-pinene ratio. This trend can be explained by OH regeneration, acid-catalyzed reactions, and the change in OH reactivity, etc. These findings can improve our understanding of atmospheric processes in coastal areas.
Lin Du, Xiaofan Lv, Makroni Lily, Kun Li, and Narcisse Tsona Tchinda
Atmos. Chem. Phys., 24, 1841–1853, https://doi.org/10.5194/acp-24-1841-2024, https://doi.org/10.5194/acp-24-1841-2024, 2024
Short summary
Short summary
This study explores the pH effect on the reaction of dissolved SO2 with selected organic peroxides. Results show that the formation of organic and/or inorganic sulfate from these peroxides strongly depends on their electronic structures, and these processes are likely to alter the chemical composition of dissolved organic matter in different ways. The rate constants of these reactions exhibit positive pH and temperature dependencies within pH 1–10 and 240–340 K ranges.
Shan Zhang, Lin Du, Zhaomin Yang, Narcisse Tsona Tchinda, Jianlong Li, and Kun Li
Atmos. Chem. Phys., 23, 10809–10822, https://doi.org/10.5194/acp-23-10809-2023, https://doi.org/10.5194/acp-23-10809-2023, 2023
Short summary
Short summary
In this study, we have investigated the distinct impacts of humidity on the ozonolysis of two structurally different monoterpenes (limonene and Δ3-carene). We found that the molecular structure of precursors can largely influence the SOA formation under high RH by impacting the multi-generation reactions. Our results could advance knowledge on the roles of water content in aerosol formation and inform ongoing research on particle environmental effects and applications in models.
Zhaomin Yang, Kun Li, Narcisse T. Tsona, Xin Luo, and Lin Du
Atmos. Chem. Phys., 23, 417–430, https://doi.org/10.5194/acp-23-417-2023, https://doi.org/10.5194/acp-23-417-2023, 2023
Short summary
Short summary
SO2 significantly promotes particle formation during cyclooctene ozonolysis. Carboxylic acids and their dimers were major products in particles formed in the absence of SO2. SO2 can induce production of organosulfates with stronger particle formation ability than their precursors, leading to the enhancement in particle formation. Formation mechanisms and structures of organosulfates were proposed, which is helpful for better understanding how SO2 perturbs the formation and fate of particles.
Narcisse Tsona Tchinda, Lin Du, Ling Liu, and Xiuhui Zhang
Atmos. Chem. Phys., 22, 1951–1963, https://doi.org/10.5194/acp-22-1951-2022, https://doi.org/10.5194/acp-22-1951-2022, 2022
Short summary
Short summary
This study explores the effect of pyruvic acid (PA) both in the SO3 hydrolysis and in sulfuric-acid-based aerosol formation. Results show that in dry and polluted areas, PA-catalyzed SO3 hydrolysis is about 2 orders of magnitude more efficient at forming sulfuric acid than the water-catalyzed reaction. Moreover, PA can effectively enhance the ternary SA-PA-NH3 particle formation rate by up to 4.7×102 relative to the binary SA-NH3 particle formation rate at cold temperatures.
Zhaomin Yang, Li Xu, Narcisse T. Tsona, Jianlong Li, Xin Luo, and Lin Du
Atmos. Chem. Phys., 21, 7963–7981, https://doi.org/10.5194/acp-21-7963-2021, https://doi.org/10.5194/acp-21-7963-2021, 2021
Short summary
Short summary
The promotion effects of SO2 and NH3 on particle and organosulfur compound formation from 1,2,4-trimethylbenzene (TMB) photooxidation were observed for the first time. The enhanced organosulfur compounds included hitherto unidentified aromatic sulfonates and organosulfates (OSs). OSs were produced via acid-driven heterogeneous chemistry of hydroperoxides. The production of organosulfur compounds might provide a new pathway for the fate of TMB in regions with considerable SO2 emissions.
Cited articles
Bertram, T. H., Cochran, R. E., Grassian, V. H., and Stone, E. A.: Sea
spray aerosol chemical composition: Elemental and molecular mimics for
laboratory studies of heterogeneous and multiphase reactions, Chem. Soc.
Rev., 47, 2374–2400, https://doi.org/10.1039/c7cs00008a, 2018.
Blackshaw, K. J., Varmecky, M. G., and Patterson, J. D.: Interfacial
structure and partitioning of nitrate ions in reverse micelles, J. Phys.
Chem. A, 123, 336–342, https://doi.org/10.1021/acs.jpca.8b09751, 2019.
Brooks, S. D. and Thornton, D. C. O.: Marine aerosols and clouds, Annu. Rev.
Mar. Sci., 10, 289–313, https://doi.org/10.1146/annurev-marine-121916-063148, 2018.
Burrows, S. M., Ogunro, O., Frossard, A. A., Russell, L. M., Rasch, P. J., and Elliott, S. M.: A physically based framework for modeling the organic fractionation of sea spray aerosol from bubble film Langmuir equilibria, Atmos. Chem. Phys., 14, 13601–13629, https://doi.org/10.5194/acp-14-13601-2014, 2014.
Burrows, S. M., Gobrogge, E., Fu, L., Link, K., Elliott, S. M., Wang, H. F.,
and Walker, R.: OCEANFILMS-2: Representing coadsorption of saccharides in
marine films and potential impacts on modeled marine aerosol chemistry,
Geophys. Res. Lett., 43, 8306–8313, https://doi.org/10.1002/2016gl069070, 2016.
Burrows, S. M., Easter, R. C., Liu, X., Ma, P.-L., Wang, H., Elliott, S. M., Singh, B., Zhang, K., and Rasch, P. J.: OCEANFILMS (Organic Compounds from Ecosystems to Aerosols: Natural Films and Interfaces via Langmuir Molecular Surfactants) sea spray organic aerosol emissions – implementation in a global climate model and impacts on clouds, Atmos. Chem. Phys., 22, 5223–5251, https://doi.org/10.5194/acp-22-5223-2022, 2022.
Carter-Fenk, K. A. and Allen, H. C.: Collapse mechanisms of nascent and aged
sea spray aerosol proxy films, Atmosphere, 9, 503,
https://doi.org/10.3390/atmos9120503, 2018.
Christiansen, S., Salter, M. E., Gorokhova, E., Nguyen, Q. T., and Bilde,
M.: Sea spray aerosol formation: Laboratory results on the role of air
entrainment, water temperature and phytoplankton biomass, Environ. Sci.
Technol., 53, 13107–13116, https://doi.org/10.1021/acs.est.9b04078, 2019.
Clark, G. A., Henderson, J. M., Heffern, C., Akgun, B., Majewski, J., and
Lee, K. Y. C.: Synergistic interactions of sugars/polyols and monovalent
salts with phospholipids depend upon sugar/polyol complexity and anion
identity, Langmuir, 31, 12688–12698, https://doi.org/10.1021/acs.langmuir.5b02815, 2015.
Cochran, R. E., Laskina, O., Jayarathne, T., Laskin, A., Laskin, J., Lin,
P., Sultana, C., Lee, C., Moore, K. A., Cappa, C. D., Bertram, T. H.,
Prather, K. A., Grassian, V. H., and Stone, E. A.: Analysis of organic
anionic surfactants in fine and coarse fractions of freshly emitted sea
spray aerosol, Environ. Sci. Technol., 50, 2477–2486,
https://doi.org/10.1021/acs.est.5b04053, 2016.
Cochran, R. E., Laskina, O., Trueblood, J. V., Estillore, A. D., Morris, H.
S., Jayarathne, T., Sultana, C. M., Lee, C., Lin, P., Laskin, J., Laskin,
A., Dowling, J. A., Qin, Z., Cappa, C. D., Bertram, T. H., Tivanski, A. V.,
Stone, E. A., Prather, K. A., and Grassian, V. H.: Molecular diversity of
sea spray aerosol particles: Impact of ocean biology on particle composition
and hygroscopicity, Chem, 2, 655–667, https://doi.org/10.1016/j.chempr.2017.03.007, 2017.
Cravigan, L. T., Mallet, M. D., Vaattovaara, P., Harvey, M. J., Law, C. S., Modini, R. L., Russell, L. M., Stelcer, E., Cohen, D. D., Olsen, G., Safi, K., Burrell, T. J., and Ristovski, Z.: Sea spray aerosol organic enrichment, water uptake and surface tension effects, Atmos. Chem. Phys., 20, 7955–7977, https://doi.org/10.5194/acp-20-7955-2020, 2020.
Crowe, J. H., Whittam, M. A., Chapman, D., and Crowe, L. M.: Interactions of
phospholipid monolayers with carbohydrates, Biochim. Biophys. Acta, 769,
151–159, https://doi.org/10.1016/0005-2736(84)90018-x, 1984.
Cunliffe, M., Engel, A., Frka, S., Gašparović, B., Guitart, C.,
Murrell, J. C., Salter, M., Stolle, C., Upstill-Goddard, R., and Wurl, O.:
Sea surface microlayers: A unified physicochemical and biological
perspective of the air–ocean interface, Prog. Oceanogr., 109, 104–116,
https://doi.org/10.1016/j.pocean.2012.08.004, 2013.
Deane, G. B. and Stokes, M. D.: Scale dependence of bubble creation
mechanisms in breaking waves, Nature, 418, 839–844, https://doi.org/10.1038/nature00967,
2002.
de Vasquez, M. G. V., Rogers, M. M., Carter-Fenk, K. A., and Allen, H. C.:
Discerning poly- and monosaccharide enrichment mechanisms: Alginate and
glucuronate adsorption to a stearic acid sea surface microlayer, ACS Earth
Space Chem., 6, 1581–1595, https://doi.org/10.1021/acsearthspacechem.2c00066, 2022.
Elliott, S., Burrows, S. M., Deal, C., Liu, X., Long, M., Ogunro, O.,
Russell, L. M., and Wingenter, O.: Prospects for simulating macromolecular
surfactant chemistry at the ocean-atmosphere boundary, Environ. Res. Lett.,
9, 064012, https://doi.org/10.1088/1748-9326/9/6/064012, 2014.
Estillore, A. D., Morris, H. S., Or, V. W., Lee, H. D., Alves, M. R.,
Marciano, M. A., Laskina, O., Qin, Z., Tivanski, A. V., and Grassian, V. H.:
Linking hygroscopicity and the surface microstructure of model inorganic
salts, simple and complex carbohydrates, and authentic sea spray aerosol
particles, Phys. Chem. Chem. Phys., 19, 21101–21111, https://doi.org/10.1039/c7cp04051b,
2017.
Facchini, M. C., Rinaldi, M., Decesari, S., Carbone, C., Finessi, E.,
Mircea, M., Fuzzi, S., Ceburnis, D., Flanagan, R., Nilsson, E. D., de Leeuw,
G., Martino, M., Woeltjen, J., and O'Dowd, C. D.: Primary submicron marine
aerosol dominated by insoluble organic colloids and aggregates, Geophys.
Res. Lett., 35, L17814, https://doi.org/10.1029/2008gl034210, 2008.
Frossard, A. A., Russell, L. M., Burrows, S. M., Elliott, S. M., Bates, T.
S., and Quinn, P. K.: Sources and composition of submicron organic mass in
marine aerosol particles, J. Geophys. Res.-Atmos., 119, 12977–13003,
https://doi.org/10.1002/2014jd021913, 2014.
Fuentes, E., Coe, H., Green, D., de Leeuw, G., and McFiggans, G.: Laboratory-generated primary marine aerosol via bubble-bursting and atomization, Atmos. Meas. Tech., 3, 141–162, https://doi.org/10.5194/amt-3-141-2010, 2010.
Gericke, A. and Huhnerfuss, H.: In-situ investigation of saturated
long-chain fatty-acids at the air-water interface by external Infrared
reflection-absorption spectrometry, J. Phys. Chem., 97, 12899–12908,
https://doi.org/10.1021/j100151a044, 1993.
Hasenecz, E. S., Kaluarachchi, C. P., Lee, H. D., Tivanski, A. V., and
Stone, E. A.: Saccharide transfer to sea spray aerosol enhanced by surface
activity, calcium, and protein interactions, ACS Earth Space Chem., 3,
2539–2548, https://doi.org/10.1021/acsearthspacechem.9b00197, 2019.
Hasenecz, E. S., Jayarathne, T., Pendergraft, M. A., Santander, M. V.,
Mayer, K. J., Sauer, J., Lee, C., Gibson, W. S., Kruse, S. M., Malfatti, F.,
Prather, K. A., and Stone, E. A.: Marine bacteria affect saccharide
enrichment in sea spray aerosol during a phytoplankton bloom, ACS Earth
Space Chem., 4, 1638–1649, https://doi.org/10.1021/acsearthspacechem.0c00167, 2020.
Hawkins, L. N. and Russell, L.: Polysaccharides, proteins, and phytoplankton
fragments: Four chemically distinct types of marine primary organic aerosol
classified by single particle spectromicroscopy, Adv. Meteorol., 2010,
612132, https://doi.org/10.1155/2010/612132, 2010.
Hultin, K. A. H., Nilsson, E. D., Krejci, R., Martensson, E. M., Ehn, M.,
Hagstrom, A., and de Leeuw, G.: In situ laboratory sea spray production
during the Marine Aerosol Production 2006 cruise on the northeastern
Atlantic Ocean, J. Geophys. Res.-Atmos., 115, D06201, https://doi.org/10.1029/2009jd012522,
2010.
Johann, R., Vollhardt, D., and Mohwald, H.: Study of the pH dependence of
head group bonding in arachidic acid monolayers by polarization modulation
infrared reflection absorption spectroscopy, Colloid. Surface. A, 182, 311–320, https://doi.org/10.1016/s0927-7757(00)00812-8, 2001.
Kapla, J., Engstrom, O., Stevensson, B., Wohlert, J., Widmalm, G., and
Maliniak, A.: Molecular dynamics simulations and NMR spectroscopy studies of
trehalose-lipid bilayer systems, Phys. Chem. Chem. Phys., 17, 22438–22447,
https://doi.org/10.1039/c5cp02472b, 2015.
King, S. M., Butcher, A. C., Rosenoern, T., Coz, E., Lieke, K. I., de Leeuw,
G., Nilsson, E. D., and Bilde, M.: Investigating primary marine aerosol
properties: CCN activity of sea salt and mixed inorganic-organic particles,
Environ. Sci. Technol., 46, 10405–10412, https://doi.org/10.1021/es300574u, 2012.
Lambruschini, C., Relini, A., Ridi, A., Cordone, L., and Gliozzi, A.:
Trehalose interacts with phospholipid polar heads in Langmuir monolayers,
Langmuir, 16, 5467–5470, https://doi.org/10.1021/la991641e, 2000.
Lee, C., Dommer, A. C., Schiffer, J. M., Amaro, R. E., Grassian, V. H., and
Prather, K. A.: Cation-driven lipopolysaccharide morphological changes
impact heterogeneous reactions of nitric acid with sea spray aerosol
particles, J. Phys. Chem. Lett., 12, 5023–5029, https://doi.org/10.1021/acs.jpclett.1c00810,
2021.
Lee, H. D., Wigley, S., Lee, C., Or, V. W., Hasenecz, E. S., Stone, E. A.,
Grassian, V. H., Prather, K. A., and Tivanski, A. V.: Physicochemical mixing
state of sea spray aerosols: Morphologies exhibit size dependence, ACS Earth
Space Chem., 4, 1604–1611, https://doi.org/10.1021/acsearthspacechem.0c00153, 2020.
Lee, K. Y. C.: Collapse mechanisms of Langmuir monolayers, Annu. Rev. Phys.
Chem., 59, 771–791, https://doi.org/10.1146/annurev.physchem.58.032806.104619, 2008.
Li, S., Jiang, X., Roveretto, M., George, C., Liu, L., Jiang, W., Zhang, Q., Wang, W., Ge, M., and Du, L.: Photochemical aging of atmospherically reactive organic compounds involving brown carbon at the air–aqueous interface, Atmos. Chem. Phys., 19, 9887–9902, https://doi.org/10.5194/acp-19-9887-2019, 2019.
Link, K. A., Spurzem, G. N., Tuladhar, A., Chase, Z., Wang, Z. M., Wang, H.
F., and Walker, R. A.: Cooperative adsorption of trehalose to DPPC
monolayers at the water-air interface studied with vibrational sum frequency
generation, J. Phys. Chem. B, 123, 8931–8938, https://doi.org/10.1021/acs.jpcb.9b07770,
2019a.
Link, K. A., Spurzem, G. N., Tuladhar, A., Chase, Z., Wang, Z. M., Wang, H.
F., and Walker, R. A.: Organic enrichment at aqueous interfaces: Cooperative
adsorption of glucuronic acid to DPPC monolayers studied with vibrational
sum frequency generation, J. Phys. Chem. A, 123, 5621–5632,
https://doi.org/10.1021/acs.jpca.9b02255, 2019b.
Liu, L. R., Du, L., Xu, L., Li, J. L., and Tsona, N. T.: Molecular size of
surfactants affects their degree of enrichment in the sea spray aerosol
formation, Environ. Res., 206, 112555, https://doi.org/10.1016/j.envres.2021.112555, 2022.
Luzardo, M. D., Amalfa, F., Nunez, A. M., Diaz, S., de Lopez, A. C. B., and
Disalvo, E. A.: Effect of trehalose and sucrose on the hydration and dipole
potential of lipid bilayers, Biophys. J., 78, 2452–2458,
https://doi.org/10.1016/s0006-3495(00)76789-0, 2000.
Lv, C., Tsona, N. T., and Du, L.: Sea spray aerosol formation: Results on
the role of different parameters and organic concentrations from bubble
bursting experiments, Chemosphere, 252, 126456,
https://doi.org/10.1016/j.chemosphere.2020.126456, 2020.
Modini, R. L., Russell, L. M., Deane, G. B., and Stokes, M. D.: Effect of
soluble surfactant on bubble persistence and bubble-produced aerosol
particles, J. Geophys. Res.-Atmos., 118, 1388–1400, https://doi.org/10.1002/jgrd.50186,
2013.
Muro, M., Itoh, Y., and Hasegawa, T.: A conformation and orientation model
of the carboxylic group of fatty acids dependent on chain length in a
Langmuir monolayer film studied by polarization-modulation infrared
reflection absorption spectroscopy, J. Phys. Chem. B, 114, 11496–11501,
https://doi.org/10.1021/jp105862q, 2010.
O'Dowd, C. D., Facchini, M. C., Cavalli, F., Ceburnis, D., Mircea, M.,
Decesari, S., Fuzzi, S., Yoon, Y. J., and Putaud, J. P.: Biogenically driven
organic contribution to marine aerosol, Nature, 431, 676–680,
https://doi.org/10.1038/nature02959, 2004.
Pakulski, J. D. and Benner, R.: An improved method for the hydrolysis and
MBTH analysis of dissolved and particulate carbohydrates in seawater, Mar.
Chem., 40, 143–160, https://doi.org/10.1016/0304-4203(92)90020-B, 1992.
Park, J., Dall'Osto, M., Park, K., Kim, J. H., Park, J., Park, K. T., Hwang,
C. Y., Jang, G. I., Gim, Y., Kang, S., Park, S., Jin, Y. K., Yum, S. S.,
Simo, R., and Yoon, Y. J.: Arctic primary aerosol production strongly
influenced by riverine organic matter, Environ. Sci. Technol., 53,
8621–8630, https://doi.org/10.1021/acs.est.9b03399, 2019.
Partanen, A.-I., Dunne, E. M., Bergman, T., Laakso, A., Kokkola, H., Ovadnevaite, J., Sogacheva, L., Baisnée, D., Sciare, J., Manders, A., O'Dowd, C., de Leeuw, G., and Korhonen, H.: Global modelling of direct and indirect effects of sea spray aerosol using a source function encapsulating wave state, Atmos. Chem. Phys., 14, 11731–11752, https://doi.org/10.5194/acp-14-11731-2014, 2014.
Pavinatto, F. J., Caseli, L., Pavinatto, A., dos Santos, D. S., Nobre, T.
M., Zaniquelli, M. E. D., Silva, H. S., Miranda, P. B., and de Oliveira, O.
N.: Probing chitosan and phospholipid interactions using Langmuir and
Langmuir-Blodgett films as cell membrane models, Langmuir, 23, 7666–7671,
https://doi.org/10.1021/la700856a, 2007.
Perkins, R. and Vaida, V.: Phenylalanine increases membrane permeability, J.
Am. Chem. Soc., 139, 14388–14391, https://doi.org/10.1021/jacs.7b09219, 2017.
Prather, K. A., Bertram, T. H., Grassian, V. H., Deane, G. B., Stokes, M.
D., DeMott, P. J., Aluwihare, L. I., Palenik, B. P., Azam, F., Seinfeld, J.
H., Moffet, R. C., Molina, M. J., Cappa, C. D., Geiger, F. M., Roberts, G.
C., Russell, L. M., Ault, A. P., Baltrusaitis, J., Collins, D. B., Corrigan,
C. E., Cuadra-Rodriguez, L. A., Ebben, C. J., Forestieri, S. D., Guasco, T.
L., Hersey, S. P., Kim, M. J., Lambert, W. F., Modini, R. L., Mui, W.,
Pedler, B. E., Ruppel, M. J., Ryder, O. S., Schoepp, N. G., Sullivan, R. C.,
and Zhao, D. F.: Bringing the ocean into the laboratory to probe the
chemical complexity of sea spray aerosol, P. Natl. Acad. Sci. USA,
110, 7550–7555, https://doi.org/10.1073/pnas.1300262110, 2013.
Quinn, P. K., Bates, T. S., Schulz, K. S., Coffman, D. J., Frossard, A. A.,
Russell, L. M., Keene, W. C., and Kieber, D. J.: Contribution of sea surface
carbon pool to organic matter enrichment in sea spray aerosol, Nat. Geosci.,
7, 228–232, https://doi.org/10.1038/ngeo2092, 2014.
Quinn, P. K., Collins, D. B., Grassian, V. H., Prather, K. A., and Bates, T.
S.: Chemistry and related properties of freshly emitted sea spray aerosol,
Chem. Rev., 115, 4383–4399, https://doi.org/10.1021/cr500713g, 2015.
Quinn, P. K., Coffman, D. J., Johnson, J. E., Upchurch, L. M., and Bates, T.
S.: Small fraction of marine cloud condensation nuclei made up of sea spray
aerosol, Nat. Geosci., 10, 674–679, https://doi.org/10.1038/ngeo3003, 2017.
Ray, K. K., Lee, H. D., Gutierrez, M. A., Chang, F. J., and Tivanski, A. V.:
Correlating 3D morphology, phase state, and viscoelastic properties of
individual substrate-deposited particles, Anal. Chem., 91, 7621–7630,
https://doi.org/10.1021/acs.analchem.9b00333, 2019.
Ruehl, C. R., Davies, J. F., and Wilson, K. R.: An interfacial mechanism for
cloud droplet formation on organic aerosols, Science, 351, 1447–1450,
https://doi.org/10.1126/science.aad4889, 2016.
Russell, L. M., Hawkins, L. N., Frossard, A. A., Quinn, P. K., and Bates, T.
S.: Carbohydrate-like composition of submicron atmospheric particles and
their production from ocean bubble bursting, P. Natl. Acad. Sci. USA, 107, 6652–6657, https://doi.org/10.1073/pnas.0908905107, 2010.
Schill, S., Burrows, S., Hasenecz, E., Stone, E., and Bertram, T.: The
impact of divalent cations on the enrichment of soluble saccharides in
primary sea spray aerosol, Atmosphere, 9, 476, https://doi.org/10.3390/atmos9120476, 2018.
Schmitt-Kopplin, P., Liger-Belair, G., Koch, B. P., Flerus, R., Kattner, G., Harir, M., Kanawati, B., Lucio, M., Tziotis, D., Hertkorn, N., and Gebefügi, I.: Dissolved organic matter in sea spray: a transfer study from marine surface water to aerosols, Biogeosciences, 9, 1571–1582, https://doi.org/10.5194/bg-9-1571-2012, 2012.
Unger, I., Saak, C. M., Salter, M., Zieger, P., Patanen, M., and Bjorneholm,
O.: Influence of organic acids on the surface composition of sea spray
aerosol, J. Phys. Chem. A, 124, 422–429, https://doi.org/10.1021/acs.jpca.9b09710, 2020.
van Pinxteren, M., Muller, C., Iinuma, Y., Stolle, C., and Herrmann, H.:
Chemical characterization of dissolved organic compounds from coastal sea
surface micro layers (Baltic Sea, Germany), Environ. Sci. Technol., 46,
10455–10462, https://doi.org/10.1021/es204492b, 2012.
van Pinxteren, M., Fomba, K. W., Triesch, N., Stolle, C., Wurl, O., Bahlmann, E., Gong, X., Voigtländer, J., Wex, H., Robinson, T.-B., Barthel, S., Zeppenfeld, S., Hoffmann, E. H., Roveretto, M., Li, C., Grosselin, B., Daële, V., Senf, F., van Pinxteren, D., Manzi, M., Zabalegui, N., Frka, S., Gašparović, B., Pereira, R., Li, T., Wen, L., Li, J., Zhu, C., Chen, H., Chen, J., Fiedler, B., von Tümpling, W., Read, K. A., Punjabi, S., Lewis, A. C., Hopkins, J. R., Carpenter, L. J., Peeken, I., Rixen, T., Schulz-Bull, D., Monge, M. E., Mellouki, A., George, C., Stratmann, F., and Herrmann, H.: Marine organic matter in the remote environment of the Cape Verde islands – an introduction and overview to the MarParCloud campaign, Atmos. Chem. Phys., 20, 6921–6951, https://doi.org/10.5194/acp-20-6921-2020, 2020.
Villarreal, M. A., Diaz, S. B., Disalvo, E. A., and Montich, G. G.:
Molecular dynamics simulation study of the interaction of trehalose with
lipid membranes, Langmuir, 20, 7844–7851, https://doi.org/10.1021/la049485l, 2004.
Wang, X. F., Deane, G. B., Moore, K. A., Ryder, O. S., Stokes, M. D., Beall,
C. M., Collins, D. B., Santander, M. V., Burrows, S. M., Sultana, C. M., and
Prather, K. A.: The role of jet and film drops in controlling the mixing
state of submicron sea spray aerosol particles, P. Natl. Acad. Sci. USA, 114, 6978–6983, https://doi.org/10.1073/pnas.1702420114, 2017.
Wurl, O., Ekau, W., Landing, W. M., and Zappa, C. J.: Sea surface microlayer
in a changing ocean – A perspective, Elementa. Sci. Anthrop., 5, 31,
https://doi.org/10.1525/elementa.228, 2017.
Xu, M. L., Tsona, N. T., Cheng, S. M., Li, J. L., and Du, L.: Unraveling
interfacial properties of organic-coated marine aerosol with lipase
incorporation, Sci. Total Environ., 782, 146893,
https://doi.org/10.1016/j.scitotenv.2021.146893, 2021.
Xu, W., Ovadnevaite, J., Fossum, K. N., Lin, C. S., Huang, R. J., Ceburnis,
D., and O'Dowd, C.: Sea spray as an obscured source for marine cloud nuclei,
Nat. Geosci., 15, 282–286, https://doi.org/10.1038/s41561-022-00917-2, 2022.
You, X., Lee, E., Xu, C., and Baiz, C. R.: Molecular mechanism of cell
membrane protection by sugars: A study of interfacial H-Bond networks, J.
Phys. Chem. Lett., 12, 9602–9607, https://doi.org/10.1021/acs.jpclett.1c02451, 2021.
Zeppenfeld, S., van Pinxteren, M., van Pinxteren, D., Wex, H., Berdalet, E.,
Vaque, D., Dall'Osto, M., and Herrmann, H.: Aerosol marine primary
carbohydrates and atmospheric transformation in the Western Antarctic
Peninsula, ACS Earth Space Chem., 5, 1032–1047,
https://doi.org/10.1021/acsearthspacechem.0c00351, 2021.
Short summary
The promotion of soluble saccharides on sea spray aerosol (SSA) generation and the changes in particle morphology were observed. On the contrary, the coexistence of surface insoluble fatty acid film and soluble saccharides significantly inhibited the production of SSA. This is the first demonstration that hydrogen bonding mediated by surface-insoluble fatty acids contributes to saccharide transfer in seawater, providing a new mechanism for saccharide enrichment in SSA.
The promotion of soluble saccharides on sea spray aerosol (SSA) generation and the changes in...
Altmetrics
Final-revised paper
Preprint