Articles | Volume 23, issue 19
https://doi.org/10.5194/acp-23-12707-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-12707-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Production of ice-nucleating particles (INPs) by fast-growing phytoplankton
Department of Oceanography, Texas A & M University, O & M
Building, College Station, Texas 77843, USA
Sarah D. Brooks
CORRESPONDING AUTHOR
Department of Atmospheric Sciences, Texas A & M University, O & M Building, College Station, Texas 77843, USA
Elise K. Wilbourn
Department of Oceanography, Texas A & M University, O & M
Building, College Station, Texas 77843, USA
Jessica Mirrielees
Department of Atmospheric Sciences, Texas A & M University, O & M Building, College Station, Texas 77843, USA
Alyssa N. Alsante
Department of Oceanography, Texas A & M University, O & M
Building, College Station, Texas 77843, USA
Gerardo Gold-Bouchot
Department of Oceanography, Texas A & M University, O & M
Building, College Station, Texas 77843, USA
Andrew Whitesell
Department of Oceanography, Texas A & M University, O & M
Building, College Station, Texas 77843, USA
Department of Civil and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
Kiana McFadden
Department of Atmospheric Sciences, Texas A & M University, O & M Building, College Station, Texas 77843, USA
Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, USA
Related authors
No articles found.
Benjamin Heutte, Nora Bergner, Hélène Angot, Jakob B. Pernov, Lubna Dada, Jessica A. Mirrielees, Ivo Beck, Andrea Baccarini, Matthew Boyer, Jessie M. Creamean, Kaspar R. Daellenbach, Imad El Haddad, Markus M. Frey, Silvia Henning, Tiia Laurila, Vaios Moschos, Tuukka Petäjä, Kerri A. Pratt, Lauriane L. J. Quéléver, Matthew D. Shupe, Paul Zieger, Tuija Jokinen, and Julia Schmale
Atmos. Chem. Phys., 25, 2207–2241, https://doi.org/10.5194/acp-25-2207-2025, https://doi.org/10.5194/acp-25-2207-2025, 2025
Short summary
Short summary
Limited aerosol measurements in the central Arctic hinder our understanding of aerosol–climate interactions in the region. Our year-long observations of aerosol physicochemical properties during the MOSAiC expedition reveal strong seasonal variations in aerosol chemical composition, where the short-term variability is heavily affected by storms in the Arctic. Local wind-generated particles are shown to be an important source of cloud seeds, especially in autumn.
Paul J. DeMott, Jessica A. Mirrielees, Sarah Suda Petters, Daniel J. Cziczo, Markus D. Petters, Heinz G. Bingemer, Thomas C. J. Hill, Karl Froyd, Sarvesh Garimella, A. Gannet Hallar, Ezra J. T. Levin, Ian B. McCubbin, Anne E. Perring, Christopher N. Rapp, Thea Schiebel, Jann Schrod, Kaitlyn J. Suski, Daniel Weber, Martin J. Wolf, Maria Zawadowicz, Jake Zenker, Ottmar Möhler, and Sarah D. Brooks
Atmos. Meas. Tech., 18, 639–672, https://doi.org/10.5194/amt-18-639-2025, https://doi.org/10.5194/amt-18-639-2025, 2025
Short summary
Short summary
The Fifth International Ice Nucleation Workshop Phase 3 (FIN-03) compared the ambient atmospheric performance of ice-nucleating particle (INP) measuring systems and explored general methods for discerning atmospheric INP compositions. Mirroring laboratory results, INP concentrations agreed within 5–10 factors. Measurements of total aerosol properties and investigations of INP compositions supported a dominant role of soil and plant organic aerosol elements as INPs during the study.
Bo Chen, Seth A. Thompson, Brianna H. Matthews, Milind Sharma, Ron Li, Christopher J. Nowotarski, Anita D. Rapp, and Sarah D. Brooks
EGUsphere, https://doi.org/10.5194/egusphere-2024-3363, https://doi.org/10.5194/egusphere-2024-3363, 2024
Short summary
Short summary
This study presents a new method combining ground-based measurements and lidar to track how aerosols are distributed at different heights in the atmosphere. By correcting for humidity, which causes aerosols to grow and intensify the lidar signal, the method provides more accurate aerosol vertical profiles. Our results show that aerosol profiles can vary significantly over short distances. This technique can help improve understanding of aerosol-cloud interactions.
Guangyu Li, Elise K. Wilbourn, Zezhen Cheng, Jörg Wieder, Allison Fagerson, Jan Henneberger, Ghislain Motos, Rita Traversi, Sarah D. Brooks, Mauro Mazzola, Swarup China, Athanasios Nenes, Ulrike Lohmann, Naruki Hiranuma, and Zamin A. Kanji
Atmos. Chem. Phys., 23, 10489–10516, https://doi.org/10.5194/acp-23-10489-2023, https://doi.org/10.5194/acp-23-10489-2023, 2023
Short summary
Short summary
In this work, we present results from an Arctic field campaign (NASCENT) in Ny-Ålesund, Svalbard, on the abundance, variability, physicochemical properties, and potential sources of ice-nucleating particles (INPs) relevant for mixed-phase cloud formation. This work improves the data coverage of Arctic INPs and aerosol properties, allowing for the validation of models predicting cloud microphysical and radiative properties of mixed-phase clouds in the rapidly warming Arctic.
Qianjie Chen, Jessica A. Mirrielees, Sham Thanekar, Nicole A. Loeb, Rachel M. Kirpes, Lucia M. Upchurch, Anna J. Barget, Nurun Nahar Lata, Angela R. W. Raso, Stephen M. McNamara, Swarup China, Patricia K. Quinn, Andrew P. Ault, Aaron Kennedy, Paul B. Shepson, Jose D. Fuentes, and Kerri A. Pratt
Atmos. Chem. Phys., 22, 15263–15285, https://doi.org/10.5194/acp-22-15263-2022, https://doi.org/10.5194/acp-22-15263-2022, 2022
Short summary
Short summary
During a spring field campaign in the coastal Arctic, ultrafine particles were enhanced during high wind speeds, and coarse-mode particles were reduced during blowing snow. Calculated periods blowing snow were overpredicted compared to observations. Sea spray aerosols produced by sea ice leads affected the composition of aerosols and snowpack. An improved understanding of aerosol emissions from leads and blowing snow is critical for predicting the future climate of the rapidly warming Arctic.
Cited articles
Aller, J. Y., Kuznetsova, M. R., Jahns, C. J., and Kemp, P. F.: The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols, J. Aerosol Sci., 36, 801–812,
https://doi.org/10.1016/j.jaerosci.2004.10.012, 2005.
Aller, J. Y., Radway, J. C., Kilthau, W. P., Bothe, D. W., Wilson, T. W.,
Vaillancourt, R. D., Quinn, P. K., Coffman, D. J., Murray, B. J., and Knopf,
D. A.: Size-resolved characterization of the polysaccharidic and
proteinaceous components of sea spray aerosol, Atmos. Environ., 154,
331–347, https://doi.org/10.1016/j.atmosenv.2017.01.053, 2017.
Alpert, P. A., Aller, J. Y., and Knopf, D. A.: Ice nucleation from aqueous NaCl droplets with and without marine diatoms, Atmos. Chem. Phys., 11, 5539–5555, https://doi.org/10.5194/acp-11-5539-2011, 2011a.
Alpert, P. A., Aller, J. Y., and Knopf, D. A.: Initiation of the ice phase
by marine biogenic surfaces in supersaturated gas and supercooled aqueous
phases, Phys. Chem. Chem. Phys., 13, 19882–19894,
https://doi.org/10.1039/c1cp21844a, 2011b.
Alsante, A. N., Thornton, D. C. O., and Brooks, S. D.: Ice nucleation
catalyzed by the photosynthesis enzyme RuBisCO and other abundant
biomolecules, Commun. Earth Environ., 4, 51, https://doi.org/10.1038/s43247-023-00707-7, 2023.
Andreae, M. O. and Rosenfeld, D.: Aerosol-cloud-precipitation interactions.
Part 1. The nature and sources of cloud-active aerosols, Earth Sci. Rev.,
89, 13–41, https://doi.org/10.1016/j.earscirev.2008.03.001, 2008.
Arar, E. J. and Collins, G. B.: Method 445.0. In vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence, U.S. Environmental Protection Agency, Cincinnati, Ohio, EPA/600/R-15/006, 1997.
Arrigo, K. R.: Marine microorganisms and global nutrient cycles, Nature,
437, 349–355, https://doi.org/10.1038/nature04158, 2005.
Bar-On, Y. M. and Milo, R.: The global mass and average rate of rubisco,
P. Natl. Acad. Sci. USA, 116, 4738–4743, https://doi.org/10.1073/pnas.1816654116, 2019.
Bates, T. S., Quinn, P. K., Frossard, A. A., Russell, L. M., Hakala, J.,
Petaja, T., Kulmala, M., Covert, D. S., Cappa, C. D., Li, S. M., Hayden, K.
L., Nuaaman, I., McLaren, R., Massoli, P., Canagaratna, M. R., Onasch, T.
B., Sueper, D., Worsnop, D. R., and Keene, W. C.: Measurements of ocean
derived aerosol off the coast of California, J. Geophys. Res.-Atmos.,
117, D00V15, https://doi.org/10.1029/2012jd017588, 2012.
Bates, T. S., Quinn, P. K., Coffman, D. J., Johnson, J. E., Upchurch, L.,
Saliba, G., Lewis, S., Graff, J., Russell, L. M., and Behrenfeld, M. J.:
Variability in marine plankton ecosystems are not observed in freshly
emitted sea spray aerosol over the North Atlantic Ocean, Geophys.
Res. Lett., 47, e2019GL085938, https://doi.org/10.1029/2019gl085938, 2020.
Beall, C. M., Hill, T. C. J., DeMott, P. J., Köneman, T., Pikridas, M., Drewnick, F., Harder, H., Pöhlker, C., Lelieveld, J., Weber, B., Iakovides, M., Prokeš, R., Sciare, J., Andreae, M. O., Stokes, M. D., and Prather, K. A.: Ice-nucleating particles near two major dust source regions, Atmos. Chem. Phys., 22, 12607–12627, https://doi.org/10.5194/acp-22-12607-2022, 2022.
Beardall, J., Allen, D., Bragg, J., Finkel, Z. V., Flynn, K. J., Quigg, A.,
Rees, T. A. V., Richardson, A., and Raven, J. A.: Allometry and
stoichiometry of unicellular, colonial and multicellular phytoplankton, New
Phytol., 181, 295–309, https://doi.org/10.1111/j.1469-8137.2008.02660.x, 2009.
Behrenfeld, M. J., Moore, R. H., Hostetler, C. A., Graff, J., Gaube, P.,
Russell, L. M., Chen, G., Doney, S. C., Giovannoni, S., Liu, H. Y., Proctor,
C., Bolalios, L. M., Baetge, N., Davie-Martin, C., Westberry, T. K., Bates,
T. S., Bell, T. G., Bidle, K. D., Boss, E. S., Brooks, S. D., Cairns, B.,
Carlson, C., Halsey, K., Harvey, E. L., Hu, C. M., Karp-Boss, L., Kleb, M.,
Menden-Deuer, S., Morison, F., Quinn, P. K., Scarino, A. J., Anderson, B.,
Chowdhary, J., Crosbie, E., Ferrare, R., Haire, J. W., Hu, Y. X., Janz, S.,
Redemann, J., Saltzman, E., Shook, M., Siegel, D. A., Wisthaler, A.,
Martine, M. Y., and Ziemba, L.: The North Atlantic Aerosol and Marine
Ecosystem Study (NAAMES): Science Motive and Mission Overview, Front. Mar.
Sci., 6, 122, https://doi.org/10.3389/fmars.2019.00122, 2019.
Behrenfeld, M. J., Brooks, S. D., Gaube, P., and Mojica, K. D. A.:
Editorial: Unraveling Mechanisms Underlying Annual Plankton Blooms in the
North Atlantic and Their Implications for Biogenic Aerosol Properties and
Cloud Formation, Front. Mar. Sci., 8, 764035,
https://doi.org/10.3389/fmars.2021.764035, 2021.
Berges, J. A., Franklin, D. J., and Harrison, P. J.: Evolution of an
artificial seawater medium: Improvements in enriched seawater, artificial
water over the last two decades, J. Phycol, 37, 1138–1145,
https://doi.org/10.1046/j.1529-8817.2001.01052.x, 2001.
Berman-Frank, I., Rosenberg, G., Levitan, O., Haramaty, L., and Mari, X.:
Coupling between autocatalytic cell death and transparent exopolymeric
particle production in the marine cyanobacterium Trichodesmium, Environ. Microbiol., 9, 1415–1422, https://doi.org/10.1111/j.1462-2920.2007.01257.x, 2007.
Bolaños, L. M., Choi, C. J., Worden, A. Z., Baetge, N., Carlson, C. A.,
and Giovannoni, S.: Seasonality of the Microbial Community Composition in
the North Atlantic, Front. Mar. Sci., 8, 624164,
https://doi.org/10.3389/fmars.2021.624164, 2021.
Bouchard, J. N. and Purdie, D. A.: Effect of elevated temperature, darkness,
and hydrogen peroxide treatment on oxidative stress and cell death in the
bloom forming toxic cyanobacterium Microcystis aeruginosa, J. Phycol., 47, 1316–1325, https://doi.org/10.1111/j.1529-8817.2011.01074.x, 2011.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh,
S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and Aerosols, in:
Climate Change 2013: The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor,
M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.
M., Cambridge University Press, Cambridge, United Kingdom and New York, NY,
USA, 571–658, https://doi.org/10.1017/CBO9781107415324.016, 2014.
Bratbak, G., Egge, J. K., and Heldal, M.: Viral mortality of the marine alga
Emiliania huxleyi (Haptophyceae) and termination of algal blooms, Mar. Ecol. Prog. Ser., 93, 39–48, https://doi.org/10.3354/meps093039, 1993.
Brooks, S. D. and Thornton, D. C. O.: Marine Aerosols and Clouds, Annu. Rev.
Mar. Sci., 10, 289–313, https://doi.org/10.1146/annurev-marine-121916-063148, 2018.
Cascajo-Castresana, M., David, R. O., Iriarte-Alonso, M. A., Bittner, A. M., and Marcolli, C.: Protein aggregates nucleate ice: the example of apoferritin, Atmos. Chem. Phys., 20, 3291–3315, https://doi.org/10.5194/acp-20-3291-2020, 2020.
Coble, P. G.: Characterization of marine and terrestrial DOM in seawater
using excitation emission matrix spectroscopy, Mar. Chem., 51, 325–346,
https://doi.org/10.1016/0304-4203(95)00062-3, 1996.
Coble, P. G.: Marine optical biogeochemistry: The chemistry of ocean color,
Chem. Rev., 107, 402–418, https://doi.org/10.1021/cr050350+, 2007.
Cochran, R. E., Ryder, O. S., Grassian, V. H., and Prather, K. A.: Sea Spray
Aerosol: The Chemical Link between the Oceans, Atmosphere, and Climate,
Accounts Chem. Res., 50, 599–604, https://doi.org/10.1021/acs.accounts.6b00603, 2017.
Collier, K. N. and Brooks, S. D.: Role of organic hydrocarbons in
atmospheric ice formation via contact freezing, J. Phys. Chem. A, 120,
10169–10180, https://doi.org/10.1021/acs.jpca.6b11890, 2016.
Croft, B., Martin, R. V., Moore, R. H., Ziemba, L. D., Crosbie, E. C., Liu, H., Russell, L. M., Saliba, G., Wisthaler, A., Müller, M., Schiller, A., Galí, M., Chang, R. Y.-W., McDuffie, E. E., Bilsback, K. R., and Pierce, J. R.: Factors controlling marine aerosol size distributions and their climate effects over the northwest Atlantic Ocean region, Atmos. Chem. Phys., 21, 1889–1916, https://doi.org/10.5194/acp-21-1889-2021, 2021.
Cunliffe, M., Engel, A., Frka, S., Gasparovic, B., Guitart, C., Murrell, J.
C., Salter, M., Stolle, C., Upstill-Goddard, R., and Wurl, O.: Sea surface
microlayers: A unified physicochemical and biological perspective of the
air-ocean interface, Prog. Oceanogr., 109, 104–116, https://doi.org/10.1016/j.pocean.2012.08.004, 2013.
Daily, M. I., Tarn, M. D., Whale, T. F., and Murray, B. J.: An evaluation of the heat test for the ice-nucleating ability of minerals and biological material, Atmos. Meas. Tech., 15, 2635–2665, https://doi.org/10.5194/amt-15-2635-2022, 2022.
Della Penna, A. and Gaube, P.: Overview of (sub)mesoscale ocean dynamics for
the NAAMES field program, Front. Mar. Sci., 6, 384,
https://doi.org/10.3389/fmars.2019.00384, 2019.
DeMott, P. J., Prenni, A. J., Liu, X., Kreidenweis, S. M., Petters, M. D.,
Twohy, C. H., Richardson, M. S., Eidhammer, T., and Rogers, D. C.:
Predicting global atmospheric ice nuclei distributions and their impacts on
climate, P. Natl. Acad. Sci. USA, 107, 11217–11222, https://doi.org/10.1073/pnas.0910818107, 2010.
DeMott, P. J., Hill, T. C. J., McCluskey, C. S., Prather, K. A., Collins, D.
B., Sullivan, R. C., Ruppel, M. J., Mason, R. H., Irish, V. E., Lee, T.,
Hwang, C. Y., Rhee, T. S., Snider, J. R., McMeeking, G. R., Dhaniyala, S.,
Lewis, E. R., Wentzell, J. J. B., Abbatt, J., Lee, C., Sultana, C. M., Ault,
A. P., Axson, J. L., Martinez, M. D., Venero, I., Santos-Figueroa, G.,
Stokes, M. D., Deane, G. B., Mayol-Bracero, O. L., Grassian, V. H., Bertram,
T. H., Bertram, A. K., Moffett, B. F., and Franc, G. D.: Sea spray aerosol
as a unique source of ice nucleating particles, P. Natl. Acad. Sci.
USA, 113, 5797–5803, https://doi.org/10.1073/pnas.1514034112, 2016.
Dreischmeier, K., Budke, C., Wiehemeier, L., Kottke, T., and Koop, T.: Boreal pollen contain ice-nucleating as well as ice-binding “antifreeze” polysaccharides, Sci. Rep., 7, 41890, https://doi.org/10.1038/srep41890, 2017.
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F.:
Colorimetric method for determination of sugars and related substances,
Anal. Chem., 28, 350–356, 1956.
Dyhrman, S. T., Jenkins, B. D., Rynearson, T. A., Saito, M. A., Mercier, M.
L., Alexander, H., Whitney, L. P., Drzewianowski, A., Bulygin, V. V.,
Bertrand, E. M., Wu, Z. J., Benitez-Nelson, C., and Heithoff, A.: The
transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response, Plos One, 7, e33768, https://doi.org/10.1371/journal.pone.0033768, 2012.
Edwards, K. F., Thomas, M. K., Klausmeier, C. A., and Litchman, E.:
Allometric scaling and taxonomic variation in nutrient utilization traits
and maximum growth rate of phytoplankton, Limnol. Oceanogr., 57,
554–566, https://doi.org/10.4319/lo.2012.57.2.0554, 2012.
Ellis, R. J.: Most abundant protein in the world, Trends Biochem.
Sci., 4, 241–244, https://doi.org/10.1016/0968-0004(79)90212-3, 1979.
Elser, J. J., Sterner, R. W., Gorokhova, E., Fagan, W. F., Markow, T. A.,
Cotner, J. B., Harrison, J. F., Hobbie, S. E., Odell, G. M., and Weider, L.
J.: Biological stoichiometry from genes to ecosystems, Ecol. Lett., 3,
540–550, https://doi.org/10.1046/j.1461-0248.2000.00185.x, 2000.
Emerson, S. R. and Hedges, J. I.: Chemical oceanography and the marine carbon
cycle, Cambridge University Press, New York, NY, https://doi.org/10.1017/CBO9780511793202, 2008.
Engel, A.: Determination of marine gel particles, in: Practical
Guidelines for the Analysis of Seawater, edited by: Wurl, O., CRC Press,
Taylor & Francis Group, Boca Raton, Florida, USA, 125–142,
https://doi.org/10.1080/17451000903514220, 2009.
Engel, A., Borchard, C., Loginova, A., Meyer, J., Hauss, H., and Kiko, R.: Effects of varied nitrate and phosphate supply on polysaccharidic and proteinaceous gel particle production during tropical phytoplankton bloom experiments, Biogeosciences, 12, 5647–5665, https://doi.org/10.5194/bg-12-5647-2015, 2015.
Flynn, K. J., Raven, J. A., Rees, T. A. V., Finkel, Z., Quigg, A., and
Beardall, J.: Is the growth rate hypothesis applicable to microalgae?,
J. Phycol., 46, 1–12, https://doi.org/10.1111/j.1529-8817.2009.00756.x, 2010.
Fornea, A. P., Brooks, S. D., Dooley, J. B., and Saha, A.: Heterogeneous
freezing of ice on atmospheric aerosols containing ash, soot, and soil, J.
Geophys. Res.-Atmos., 114, D13201, https://doi.org/10.1029/2009jd011958, 2009.
Franklin, D. J., Airs, R. L., Fernandes, M., Bell, T. G., Bongaerts, R. J.,
Berges, J. A., and Malin, G.: Identification of senescence and death in
Emiliania huxleyi and Thalassiosira pseudonana: Cell staining, chlorophyll alterations, and
dimethylsulfoniopropionate (DMSP) metabolism, Limnol. Oceanogr., 57,
305–317, https://doi.org/10.4319/lo.2012.57.1.0305, 2012.
Fuentes, E., Coe, H., Green, D., de Leeuw, G., and McFiggans, G.: Laboratory-generated primary marine aerosol via bubble-bursting and atomization, Atmos. Meas. Tech., 3, 141–162, https://doi.org/10.5194/amt-3-141-2010, 2010a.
Fuentes, E., Coe, H., Green, D., de Leeuw, G., and McFiggans, G.: On the impacts of phytoplankton-derived organic matter on the properties of the primary marine aerosol – Part 1: Source fluxes, Atmos. Chem. Phys., 10, 9295–9317, https://doi.org/10.5194/acp-10-9295-2010, 2010b.
Gantt, B. and Meskhidze, N.: The physical and chemical characteristics of marine primary organic aerosol: a review, Atmos. Chem. Phys., 13, 3979–3996, https://doi.org/10.5194/acp-13-3979-2013, 2013.
Geider, R. J. and La Roche, J.: Redfield revisited: variability of C : N : P
in marine microalgae and its biochemical basis, Eur. J. Phycol., 37, 1–17,
https://doi.org/10.1017/s0967026201003456, 2002.
Geider, R. J., MacIntyre, H. L., and Kana, T. M.: Dynamic model of
phytoplankton growth and acclimation: Responses of the balanced growth rate
and the chlorophyll a : carbon ratio to light, nutrient-limitation and
temperature, Mar. Ecol. Prog. Ser., 148, 187–200,
https://doi.org/10.3354/meps148187, 1997.
Geider, R. J., MacIntyre, H. L., and Kana, T. M.: A dynamic regulatory model
of phytoplanktonic acclimation to light, nutrients, and temperature, Limnol.
Oceanogr., 43, 679–694, https://doi.org/10.4319/lo.1998.43.4.0679, 1998.
Genty, B., Briantais, J. M., and Baker, N. R.: The relationship between the
quantum yield of photosynthetic electron-transport and quenching of
chlorophyll fluorescence, Biochim. Biophys. Acta, 990, 87–92,
https://doi.org/10.1016/s0304-4165(89)80016-9, 1989.
Graff, J. R. and Behrenfeld, M. J.: Photoacclimation responses in subarctic
Atlantic phytoplankton following a natural mixing-restratification event,
Front. Mar. Sci., 5, 209, https://doi.org/10.3389/fmars.2018.00209, 2018.
Graff, J. R., Milligan, A. J., and Behrenfeld, M. J.: The measurement of
phytoplankton biomass using flow-cytometric sorting and elemental analysis
of carbon, Limnol. Oceanogr.-Meth., 10, 910–920,
https://doi.org/10.4319/lom.2012.10.910, 2012.
Graff, J. R., Westberry, T. K., Milligan, A. J., Brown, M. B., Dall'Olmo,
G., van Dongen-Vogels, V., Reifel, K. M., and Behrenfeld, M. J.: Analytical
phytoplankton carbon measurements spanning diverse ecosystems, Deep-Sea Res.
Pt. I, 102, 16–25, https://doi.org/10.1016/j.dsr.2015.04.006, 2015.
Guillard, R. R. L. and Hargraves, P. E.: Stichochrysis immobilis is a diatom, not a Chyrsophyte, Phycologia, 32, 234–236, https://doi.org/10.2216/i0031-8884-32-3-234.1, 1993.
Guillard, R. R. L. and Sieracki, M. S.: Counting cells in cultures with the
light microscope, in: Algal Culturing Techniques, edited by: Andersen, R. A.,
Elsevier Academic Press, Burlington, MA, USA, 239–252, ISBN 9780120884261, 2005.
Hansell, D. A.: Recalcitrant Dissolved Organic Carbon Fractions, in: Annual
Review of Marine Science, vol. 5, edited by: Carlson, C. A. and Giovannoni,
S. J., Annual Review of Marine Science, Annual Reviews, Palo Alto, 421–445, https://doi.org/10.1146/annurev-marine-120710-100757, 2013.
Harrison, P. J., Waters, R. E., and Taylor, F. J. R.: A broad-spectrum
artificial seawater medium for coastal and open ocean phytoplankton, J.
Phycol., 16, 28–35, https://doi.org/10.1111/j.1529-8817.1980.tb00724.x, 1980.
Hartmann, S., Ling, M., Dreyer, L. S. A., Zipori, A., Finster, K., Grawe,
S., Jensen, L., Borck, S., Reicher, N., Drace, T., Niedermeier, D., Jones,
N., Hoffmann, S. V., Wex, H., Rudich, Y., Boesen, T., and Santl-Temkiv, T.:
Structure and protein-protein interactions of ice nucleation proteins drive
their activity, Front. Microbiol., 13, 872306,
https://doi.org/10.3389/fmicb.2022.872306, 2022.
Hasenecz, E. S., Jayarathne, T., Pendergraft, M. A., Santander, M. V.,
Mayer, K. J., Sauer, J., Lee, C., Gibson, W. S., Kruse, S. M., Malfatti, F.,
Prather, K. A., and Stone, E. A.: Marine bacteria affect saccharide
enrichment in sea spray aerosol during a phytoplankton bloom, ACS Earth
Space Chem., 4, 1638–1649, https://doi.org/10.1021/acsearthspacechem.0c00167, 2020.
Hill, T. C. J., Malfatti, F., McCluskey, C. S., Schill, G. P., Santander, M.
V., Moore, K. A., Rauker, A. M., Perkins, R. J., Celussi, M., Levin, E. J.
T., Suski, K. J., Cornwell, G. C., Lee, C. S. P., Del Negro, P.,
Kreidenweis, S. M., Prather, K. A., and DeMott, P. J.: Resolving the
controls over the production and emission of ice-nucleating particles in sea
spray, Environ. Sci.-Atmos., 3, 970–990, https://doi.org/10.1039/d2ea00154c, 2023.
Ho, T. Y., Quigg, A., Finkel, Z. V., Milligan, A. J., Wyman, K., Falkowski,
P. G., and Morel, F. M. M.: The elemental composition of some marine
phytoplankton, J. Phycol., 39, 1145–1159, https://doi.org/10.1111/j.0022-3646.2003.03-090.x, 2003.
Hoose, C. and Möhler, O.: Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments, Atmos. Chem. Phys., 12, 9817–9854, https://doi.org/10.5194/acp-12-9817-2012, 2012.
Hoppe, H. G.: Significance of exoenzymatic activities in the ecology of
brackish water – measurements by means of methylumbelliferyl substrates,
Mar. Ecol. Prog. Ser., 11, 299–308, https://doi.org/10.3354/meps011299, 1983.
Hudson, J. G. and Noble, S.: Cumulus cloud and drizzle microphysics
relationships with complete CCN spectra, J. Geophys. Res.-Atmos., 126, e2021JD034966, https://doi.org/10.1029/2021jd034966, 2021.
Inomura, K., Omta, A. W., Talmy, D., Bragg, J., Deutsch, C., and Follows, M.
J.: A mechanistic model of macromolecular allocation, elemental
stoichiometry, and growth rate in phytoplankton, Front. Microbiol., 11, 86,
https://doi.org/10.3389/fmicb.2020.00086, 2020.
Irish, V. E., Elizondo, P., Chen, J., Chou, C., Charette, J., Lizotte, M., Ladino, L. A., Wilson, T. W., Gosselin, M., Murray, B. J., Polishchuk, E., Abbatt, J. P. D., Miller, L. A., and Bertram, A. K.: Ice-nucleating particles in Canadian Arctic sea-surface microlayer and bulk seawater, Atmos. Chem. Phys., 17, 10583–10595, https://doi.org/10.5194/acp-17-10583-2017, 2017.
Isanta-Navarro, J., Prater, C., Peoples, L. M., Loladze, I., Phan, T.,
Jeyasingh, P. D., Church, M. J., Kuang, Y., and Elser, J. J.: Revisiting the
growth rate hypothesis: Towards a holistic stoichiometric understanding of
growth, Ecol. Lett., 25, 2324–2339, https://doi.org/10.1111/ele.14096, 2022.
Jeffrey, S. W. and Humphrey, G. F.: New spectrophotometric equations for
determining chlorophylls a, b, c1 and c2 in higher-plants, algae and natural phytoplankton, Biochem. Physiol. Pfl., 167, 191–194,
https://doi.org/10.1016/s0015-3796(17)30778-3, 1975.
Kanji, Z. A., Ladino, L. A., Wex, H., Boose, Y., Burkert-Kohn, M., Cziczo,
D. J., and Kramer, M.: Overview of Ice Nucleating Particles, in: Ice
Formation and Evolution in Clouds and Precipitation: Measurement and
Modeling Challenges, edited by: Baumgardner, D., McFarquhar, G. M., and
Heymsfield, A. J., Meteorological Monographs, Amer. Meteorological Society,
Boston, https://doi.org/10.1175/amsmonographs-d-16-0006.1, 2017.
Klausmeier, C. A., Litchman, E., Daufresne, T., and Levin, S. A.: Optimal
nitrogen-to-phosphorus stoichiometry of phytoplankton, Nature, 429, 171–174,
https://doi.org/10.1038/nature02454, 2004.
Knopf, D. A., Alpert, P. A., Wang, B., and Aller, J. Y.: Stimulation of ice
nucleation by marine diatoms, Nat. Geosci., 4, 88–90,
https://doi.org/10.1038/ngeo1037, 2011.
Kothawala, D. N., Murphy, K. R., Stedmon, C. A., Weyhenmeyer, G. A., and
Tranvik, L. J.: Inner filter correction of dissolved organic matter
fluorescence, Limnol. Oceanogr.-Meth., 11, 616–630,
https://doi.org/10.4319/lom.2013.11.616, 2013.
Kranzler, C. F., Krause, J. W., Brzezinski, M. A., Edwards, B. R., Biggs, W.
P., Maniscalco, M., McCrow, J. P., Van Mooy, B. A. S., Bidle, K. D., Allen,
A. E., and Thamatrakoln, K.: Silicon limitation facilitates virus infection
and mortality of marine diatoms, Nat. Microbiol., 4, 1790–1797,
https://doi.org/10.1038/s41564-019-0502-x, 2019.
Kujawinski, E. B.: The impact of microbial metabolism on marine dissolved
organic matter, Annu. Rev. Mar. Sci., 3, 567–599,
https://doi.org/10.1146/annurev-marine-120308-081003, 2011.
Lang-Yona, N., Flores, J. M., Haviv, R., Alberti, A., Poulain, J., Belser, C., Trainic, M., Gat, D., Ruscheweyh, H. J., Wincker, P., Sunagawa, S., Rudich, Y., Koren, I., and Vardi, A.: Terrestrial and marine influence on atmospheric bacterial diversity over the north Atlantic and Pacific Oceans, Commun. Earth Environ., 3, 121, https://doi.org/10.1038/s43247-022-00441-6, 2022.
Lawaetz, A. J. and Stedmon, C. A.: Fluorescence intensity calibration using
the Raman scatter peak of water, Appl. Spectrosc., 63, 936–940,
https://doi.org/10.1366/000370209788964548, 2009.
Lee, C., Sultana, C. M., Collins, D. B., Santander, M. V., Axson, J. L., Malfatti, F., Cornwell, G. C., Grandquist, J. R., Deane, G. B., Stokes, M. D., Azam, F., Grassian, V. H., and Prather, K. A.: Advancing model systems for fundamental laboratory studies of sea spray aerosol using the microbial loop, J. Phys. Chem. A, 119, 8860–8870, https://doi.org/10.1021/acs.jpca.5b03488, 2015.
Lewis, S. L., Russell, L. M., Saliba, G., Quinn, P. K., Bates, T. S.,
Carlson, C. A., Baetge, N., Aluwihare, L. I., Boss, E., Frossard, A. A.,
Bell, T. G., and Behrenfeld, M. J.: Characterization of Sea Surface
Microlayer and Marine Aerosol Organic Composition Using STXM-NEXAFS
Microscopy and FTIR Spectroscopy, ACS Earth Space Chem., 6, 1899–1913, https://doi.org/10.1021/acsearthspacechem.2c00119, 2022.
Liefer, J. D., Garg, A., Fyfe, M. H., Irwin, A. J., Benner, I., Brown, C.
M., Follows, M. J., Omta, A. W., and Finkel, Z. V.: The macromolecular basis
of phytoplankton C : N : P under nitrogen starvation, Front. Microbiol., 10, 763, https://doi.org/10.3389/fmicb.2019.00763, 2019.
Lin, S. J., Litaker, R. W., and Sunda, W. G.: Phosphorus physiological
ecology and molecular mechanisms in marine phytoplankton, J. Phycol., 52,
10–36, https://doi.org/10.1111/jpy.12365, 2016.
Logan, B. E., Grossart, H. P., and Simon, M.: Direct observation of
phytoplankton, TEP and aggregates on polycarbonate filters using brightfield
microscopy, J. Plankton Res., 16, 1811–1815,
https://doi.org/10.1093/plankt/16.12.1811, 1994.
Lohmann, U., Lüönd, F., and Mahrt, F.: An Introduction to Clouds:
From the Microscale to Climate, Cambridge University Press, Cambridge,
United Kingdom, 391 pp., https://doi.org/10.1017/CBO9781139087513, 2016.
Long, R. A. and Azam, F.: Abundant protein-containing particles in the sea,
Aquat. Microb. Ecol., 10, 213–221, https://doi.org/10.3354/ame010213, 1996.
Lukas, M., Schwidetzky, R., Eufemio, R. J., Bonn, M., and Meister, K.:
Toward understanding bacterial ice nucleation, J. Phys. Chem. B, 126,
1861–1867, https://doi.org/10.1021/acs.jpcb.1c09342, 2022.
Maki, L. R., Galyan, E. L., Chang-Chien, M.-M., and Caldwell, D. R.: Ice nucleation induced by Pseudomonas syringae, Appl. Microbiol., 28, 456–459, https://doi.org/10.1128/aem.28.3.456-459.1974, 1974.
Mansour, K., Decesari, S., Facchini, M. C., Belosi, F., Paglione, M.,
Sandrini, S., Bellacicco, M., Marullo, S., Santoleri, R., Ovadnevaite, J.,
Ceburnis, D., O'Dowd, C., Roberts, G., Sanchez, K., and Rinaldi, M.: Linking
marine biological activity to aerosol chemical composition and
cloud-relevant properties over the North Atlantic Ocean, J. Geophys. Res.-Atmos., 125, e2019JD032246, https://doi.org/10.1029/2019jd032246, 2020.
Marx, M. C., Wood, M., and Jarvis, S. C.: A microplate fluorimetric assay
for the study of enzyme diversity in soils, Soil Biol. Biochem., 33,
1633–1640, https://doi.org/10.1016/s0038-0717(01)00079-7, 2001.
Maxwell, K. and Johnson, G. N.: Chlorophyll fluorescence – a practical
guide, J. Exp. Bot., 51, 659–668, https://doi.org/10.1093/jexbot/51.345.659, 2000.
Mayol, E., Arrieta, J. M., Jimenez, M. A., Martinez-Asensio, A.,
Garcias-Bonet, N., Dachs, J., Gonzalez-Gaya, B., Royer, S. J.,
Benitez-Barrios, V. M., Fraile-Nuez, E., and Duarte, C. M.: Long-range
transport of airborne microbes over the global tropical and subtropical
ocean, Nat. Commun., 8, 201, https://doi.org/10.1038/s41467-017-00110-9, 2017.
McCluskey, C. S., Hill, T. C. J., Malfatti, F., Sultana, C. M., Lee, C.,
Santander, M. V., Beall, C. M., Moore, K. A., Cornwell, G. C., Collins, D.
B., Prather, K. A., Jayarathne, T., Stone, E. A., Azam, F., Kreidenweis, S.
M., and DeMott, P. J.: A dynamic link between ice nucleating particles
released in nascent sea spray aerosol and oceanic biological activity during
two mesocosm experiments, J. Atmos. Sci., 74, 151–166,
https://doi.org/10.1175/jas-d-16-0087.1, 2017.
McCluskey, C. S., Hill, T. C. J., Sultana, C. M., Laskina, O., Trueblood,
J., Santander, M. V., Beall, C. M., Michaud, J. M., Kreidenweis, S. M.,
Prather, K. A., Grassian, V., and DeMott, P. J.: A mesocosm double feature:
insights into the chemical makeup of marine ice nucleating particles, J.
Atmos. Sci., 75, 2405–2423, https://doi.org/10.1175/jas-d-17-0155.1, 2018.
McFarquhar, G. M., Bretherton, C. S., Marchand, R., Protat, A., DeMott, P. J., Alexander, S. P., Roberts, G. C., Twohy, C. H., Toohey, D., Siems, S., Huang, Y., Wood, R., Rauber, R. M., Lasher-Trapp, S., Jensen, J., Stith, J. L., Mace, J., Um, J., Jarvinen, E., Schnaiter, M., Gettelman, A., Sanchez, K. J., McCluskey, C. S., Russell, L. M., McCoy, I. L., Atlas, R. L., Bardeen, C. G., Moore, K. A., Hill, T. C. J., Humphries, R. S., Keywood, M. D., Ristovski, Z., Cravigan, L., Schofield, R., Fairall, C., Mallet, M. D., Kreidenweis, S. M., Rainwater, B., D'Alessandro, J., Wang, Y., Wu, W., Saliba, G., Levin, E. J. T., Ding, S. S., Lang, F., Truong, S. C. H., Wolff, C., Haggerty, J., Harvey, M. J., Klekociuk, A. R., and McDonald, A.: Observations of Clouds, Aerosols, Precipitation, and Surface Radiation over the Southern Ocean: An Overview of CAPRICORN, MARCUS, MICRE, and SOCRATES, B. Am. Meteorol. Soc., 102, E894–E928, https://doi.org/10.1175/bams-d-20-0132.1, 2021.
Møller, E. F.: Production of dissolved organic carbon by sloppy feeding
in the copepods Acartia tonsa, Centropages typicus, and Temora longicornis, Limnol. Oceanogr., 52, 79–84,
https://doi.org/10.4319/lo.2007.52.1.0079, 2007.
Møller, E. F., Thor, P., and Nielsen, T. G.: Production of DOC by
Calanus finmarchicus, C. glacialis and C. hyperboreus through sloppy feeding and leakage from fecal pellets, Mar. Ecol. Prog. Ser., 262, 185–191, https://doi.org/10.3354/meps262185, 2003.
Moore, C. M., Suggett, D. J., Hickman, A. E., Kim, Y. N., Tweddle, J. F.,
Sharples, J., Geider, R. J., and Holligan, P. M.: Phytoplankton
photoacclimation and photoadaptation in response to environmental gradients
in a shelf sea, Limnol. Oceanogr., 51, 936–949,
https://doi.org/10.4319/lo.2006.51.2.0936, 2006.
Morison, F., Harvey, E., Franze, G., and Menden-Deuer, S.: Storm-induced
predator-prey decoupling promotes springtime accumulation of North Atlantic
phytoplankton, Front. Mar. Sci., 6, 608,
https://doi.org/10.3389/fmars.2019.00608, 2019.
O'Dowd, C., Ceburnis, D., Ovadnevaite, J., Bialek, J., Stengel, D. B.,
Zacharias, M., Nitschke, U., Connan, S., Rinaldi, M., Fuzzi, S., Decesari,
S., Facchini, M. C., Marullo, S., Santoleri, R., Dell'Anno, A., Corinaldesi,
C., Tangherlini, M., and Danovaro, R.: Connecting marine productivity to
sea-spray via nanoscale biological processes: Phytoplankton dance or death
disco?, Sci. Rep., 5, 14883, https://doi.org/10.1038/srep14883, 2015.
O'Dowd, C. D., Facchini, M. C., Cavalli, F., Ceburnis, D., Mircea, M.,
Decesari, S., Fuzzi, S., Yoon, Y. J., and Putaud, J. P.: Biogenically driven
organic contribution to marine aerosol, Nature, 431, 676–680,
https://doi.org/10.1038/nature02959, 2004.
Palmer, T.: Short-term tests validate long-term estimates of climate change,
Nature, 582, 185–186, https://doi.org/10.1038/d41586-020-01484-5, 2020.
Parsons, T. R., Maita, Y., and Lalli, C. M.: A Manual of Chemical and
Biological Methods for Seawater Analysis, Pergamon Press, Oxford, United
Kingdom, 172 pp., ISBN 0-08-030287-4, 1984.
Passow, U.: Transparent exopolymer particles (TEP) in aquatic environments,
Prog. Oceanogr., 55, 287–333, https://doi.org/10.1016/s0079-6611(02)00138-6, 2002.
Passow, U. and Alldredge, A. L.: A dye-binding assay for the
spectrophotometric measurement of transparent exopolymer particles (TEP),
Limnol. Oceanogr., 40, 1326–1335, https://doi.org/10.4319/lo.1995.40.7.1326,
1995.
Perkins, R. J., de Vasquez, M. G. V., Beasley, E. E., Hill, T. C. J., Stone,
E. A., Allen, H. C., and DeMott, P. J.: Relating Structure and Ice
Nucleation of Mixed Surfactant Systems Relevant to Sea Spray Aerosol,
J. Phys. Chem. A, 124, 8806–8821, https://doi.org/10.1021/acs.jpca.0c05849, 2020.
Prather, K. A., Bertram, T. H., Grassian, V. H., Deane, G. B., Stokes, M.
D., DeMott, P. J., Aluwihare, L. I., Palenik, B. P., Azam, F., Seinfeld, J.
H., Moffet, R. C., Molina, M. J., Cappa, C. D., Geiger, F. M., Roberts, G.
C., Russell, L. M., Ault, A. P., Baltrusaitis, J., Collins, D. B., Corrigan,
C. E., Cuadra-Rodriguez, L. A., Ebben, C. J., Forestieri, S. D., Guasco, T.
L., Hersey, S. P., Kim, M. J., Lambert, W. F., Modini, R. L., Mui, W.,
Pedler, B. E., Ruppel, M. J., Ryder, O. S., Schoepp, N. G., Sullivan, R. C.,
and Zhao, D. F.: Bringing the ocean into the laboratory to probe the
chemical complexity of sea spray aerosol, P. Natl. Acad. Sci. USA,
110, 7550–7555, https://doi.org/10.1073/pnas.1300262110, 2013.
Quigg, A., Finkel, Z. V., Irwin, A. J., Rosenthal, Y., Ho, T. Y.,
Reinfelder, J. R., Schofield, O., Morel, F. M. M., and Falkowski, P. G.: The
evolutionary inheritance of elemental stoichiometry in marine phytoplankton,
Nature, 425, 291–294, https://doi.org/10.1038/nature01953, 2003.
Quinn, P. K., Bates, T. S., Schulz, K. S., Coffman, D. J., Frossard, A. A.,
Russell, L. M., Keene, W. C., and Kieber, D. J.: Contribution of sea surface
carbon pool to organic matter enrichment in sea spray aerosol, Nat, Geosci.,
7, 228–232, https://doi.org/10.1038/ngeo2092, 2014.
Quinn, P. K., Bates, T. S., Coffman, D. J., Upchurch, L., Johnson, J. E.,
Moore, R., Ziemba, L., Bell, T. G., Saltzman, E. S., Graff, J., and
Behrenfeld, M. J.: Seasonal variations in western North Atlantic remote
marine aerosol properties, J. Geophys. Res.-Atmos., 124, 14240–14261,
https://doi.org/10.1029/2019jd031740, 2019.
Rastelli, E., Corinaldesi, C., Dell'Anno, A., Lo Martire, M., Greco, S.,
Facchini, M. C., Rinaldi, M., O'Dowd, C., Ceburnis, D., and Danovaro, R.:
Transfer of labile organic matter and microbes from the ocean surface to the
marine aerosol: an experimental approach, Sci. Rep., 7, 11475,
https://doi.org/10.1038/s41598-017-10563-z, 2017.
Raven, J. A.: Rubisco: still the most abundant protein of Earth?, New
Phytol., 198, 1–3, https://doi.org/10.1111/nph.12197, 2013.
Redfield, A. C.: The biological control of chemical factors in the
environment, Am. Scientist, 46, 205–221, 1958.
Rinaldi, M., Fuzzi, S., Decesari, S., Marullo, S., Santoleri, R.,
Provenzale, A., von Hardenberg, J., Ceburnis, D., Vaishya, A., O'Dowd, C.
D., and Facchini, M. C.: Is chlorophyll-a the best surrogate for organic
matter enrichment in submicron primary marine aerosol?, J. Geophys. Res.-Atmos., 118, 4964–4973, https://doi.org/10.1002/jgrd.50417, 2013.
Roeters, S. J., Golbek, T. W., Bregnhoj, M., Drace, T., Alamdari, S.,
Roseboom, W., Kramer, G., Santl-Temkiv, T., Finster, K., Pfaendtner, J.,
Woutersen, S., Boesen, T., and Weidner, T.: Ice-nucleating proteins are
activated by low temperatures to control the structure of interfacial water,
Nat. Commun., 12, 1183, https://doi.org/10.1038/s41467-021-21349-3, 2021.
Saliba, G., Chen, C. L., Lewis, S., Russell, L. M., Rivellini, L. H., Lee,
A. K. Y., Quinn, P. K., Bates, T. S., Haentjens, N., Boss, E. S., Karp-Boss,
L., Baetge, N., Carlson, C. A., and Behrenfeld, M. J.: Factors driving the
seasonal and hourly variability of sea-spray aerosol number in the North
Atlantic, P. Natl. Acad. Sci. USA, 116, 20309–20314,
https://doi.org/10.1073/pnas.1907574116, 2019.
Saliba, G., Chen, C. L., Lewis, S., Russell, L. M., Quinn, P. K., Bates, T.
S., Bell, T. G., Lawler, M. J., Saltzman, E. S., Sanchez, K. J., Moore, R.,
Shook, M., Rivellini, L. H., Lee, A., Baetge, N., Carlson, C. A., and
Behrenfeld, M. J.: Seasonal Differences and Variability of Concentrations,
Chemical Composition, and Cloud Condensation Nuclei of Marine Aerosol Over
the North Atlantic, J. Geophys. Res.-Atmos., 125, e2020JD033145,
https://doi.org/10.1029/2020jd033145, 2020.
Sanchez, K. J., Roberts, G. C., Saliba, G., Russell, L. M., Twohy, C., Reeves, J. M., Humphries, R. S., Keywood, M. D., Ward, J. P., and McRobert, I. M.: Measurement report: Cloud processes and the transport of biological emissions affect southern ocean particle and cloud condensation nuclei concentrations, Atmos. Chem. Phys., 21, 3427–3446, https://doi.org/10.5194/acp-21-3427-2021, 2021.
Schneider, T., Kaul, C. M., and Pressel, K. G.: Possible climate transitions
from breakup of stratocumulus decks under greenhouse warming, Nat. Geosci,
12, 163–167, https://doi.org/10.1038/s41561-019-0310-1, 2019.
Schwidetzky, R., Lukas, M., YazdanYar, A., Kunert, A. T., Poschl, U., Domke,
K. F., Frohlich-Nowoisky, J., Bonn, M., Koop, T., Nagata, Y., and Meister,
K.: Specific ion-protein interactions influence bacterial ice nucleation,
Chem. Eur. J., 27, 7402–7407, https://doi.org/10.1002/chem.202004630, 2021.
Sciare, J., Favez, O., Sarda-Esteve, R., Oikonomou, K., Cachier, H., and
Kazan, V.: Long-term observations of carbonaceous aerosols in the Austral
Ocean atmosphere: Evidence of a biogenic marine organic source, J. Geophys. Res.-Atmos., 114, D15302, https://doi.org/10.1029/2009jd011998, 2009.
Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J.,
Dunlea, E. J., Feingold, G., Ghan, S., Guenther, A. B., Kahn, R., Kraucunas,
I., Kreidenweis, S. M., Molina, M. J., Nenes, A., Penner, J. E., Prather, K.
A., Ramanathan, V., Ramaswamy, V., Rasch, P. J., Ravishankara, A. R.,
Rosenfeld, D., Stephens, G., and Wood, R.: Improving our fundamental
understanding of the role of aerosol-cloud interactions in the climate
system, P. Natl. Acad. Sci. USA, 113, 5781–5790,
https://doi.org/10.1073/pnas.1514043113, 2016.
Sellegri, K., O'Dowd, C. D., Yoon, Y. J., Jennings, S. G., and de Leeuw, G.:
Surfactants and submicron sea spray generation, J. Geophys. Res.-Atmos.,
111, D22215, https://doi.org/10.1029/2005jd006658, 2006.
Steinke, I., Hiranuma, N., Funk, R., Höhler, K., Tüllmann, N., Umo, N. S., Weidler, P. G., Möhler, O., and Leisner, T.: Complex plant-derived organic aerosol as ice-nucleating particles – more than the sums of their parts?, Atmos. Chem. Phys., 20, 11387–11397, https://doi.org/10.5194/acp-20-11387-2020, 2020.
Stokes, M. D., Deane, G. B., Prather, K., Bertram, T. H., Ruppel, M. J., Ryder, O. S., Brady, J. M., and Zhao, D.: A Marine Aerosol Reference Tank system as a breaking wave analogue for the production of foam and sea-spray aerosols, Atmos. Meas. Tech., 6, 1085–1094, https://doi.org/10.5194/amt-6-1085-2013, 2013.
Thornton, D.: Production of ice nucleating particles (INPs) by fast growing phytoplankton, Texas Data Repository, V1 [data set], https://doi.org/10.18738/T8/9X2TEN, 2023.
Thornton, D. C. O.: Diatom aggregation in the sea: mechanisms and ecological
implications, Eur. J. Phycol., 37, 149–161,
https://doi.org/10.1017/s0967026202003657, 2002.
Thornton, D. C. O.: Dissolved organic matter (DOM) release by phytoplankton
in the contemporary and future ocean, Eur. J. Phycol., 49, 20–46,
https://doi.org/10.1080/09670262.2013.875596, 2014.
Thornton, D. C. O.: Coomassie Stainable Particles (CSP): Protein Containing
Exopolymer Particles in the Ocean, Front. Mar. Sci., 5, 206,
https://doi.org/10.3389/fmars.2018.00206, 2018.
Thornton, D. C. O. and Chen, J.: Exopolymer production as a function of cell
permeability and death in a diatom (Thalassiosira weissflogii) and a cyanobacterium (Synechococcus elongatus), J. Phycol.,
53, 245–260, https://doi.org/10.1111/jpy.12470, 2017.
Thornton, D. C. O., Brooks, S. D., and Chen, J.: Protein and Carbohydrate
Exopolymer Particles in the Sea Surface Microlayer (SML), Front.
Mar. Sci., 3, 135, https://doi.org/10.3389/fmars.2016.00135, 2016.
Twohy, C. H., DeMott, P. J., Russell, L. M., Toohey, D. W., Rainwater, B.,
Geiss, R., Sanchez, K. J., Lewis, S., Roberts, G. C., Humphries, R. S.,
McCluskey, C. S., Moore, K. A., Selleck, P. W., Keywood, M. D., Ward, J. P.,
and McRobert, I. M.: Cloud-nucleating particles over the southern ocean in a
changing climate, Earths Future, 9, e2020EF001673,
https://doi.org/10.1029/2020ef001673, 2021.
Vali, G.: Quantitative evaluation of experimental results on heterogeneous
freezing nucleation of supercooled liquids, J. Atmos. Sci., 28, 402–409,
https://doi.org/10.1175/1520-0469(1971)028<0402:Qeoera>2.0.Co;2, 1971.
Vali, G.: Nucleation terminology, B. Am. Meteorol. Soc., 66, 1426–1427,
1985.
Vali, G., DeMott, P. J., Möhler, O., and Whale, T. F.: Technical Note: A proposal for ice nucleation terminology, Atmos. Chem. Phys., 15, 10263–10270, https://doi.org/10.5194/acp-15-10263-2015, 2015.
Van Heukelem, L. and Thomas, C. S.: Computer-assisted high-performance
liquid chromatography method development with applications to the isolation
and analysis of phytoplankton pigments, J. Chromatogr. A, 910, 31–49,
https://doi.org/10.1016/s0378-4347(00)00603-4, 2001.
Van Mooy, B. A., Fredricks, H. F., Pedler, B. E., Dyhrman, S. T., Karl, D.
M., Koblizek, M., Lomas, M. W., Mincer, T. J., Moore, L. R., Moutin, T.,
Rappe, M. S., and Webb, E. A.: Phytoplankton in the ocean use non-phosphorus
lipids in response to phosphorus scarcity, Nature, 458, 69–72,
https://doi.org/10.1038/nature07659, 2009.
Vardi, A., Haramaty, L., Van Mooy, B. A. S., Fredricks, H. F., Kimmance, S.
A., Larsen, A., and Bidle, K. D.: Host-virus dynamics and subcellular
controls of cell fate in a natural coccolithophore population, P. Natl. Acad. Sci. USA, 109, 19327–19332, https://doi.org/10.1073/pnas.1208895109, 2012.
Veldhuis, M. J. W., Kraay, G. W., and Timmermans, K. R.: Cell death in
phytoplankton: correlation between changes in membrane permeability,
photosynthetic activity, pigmentation and growth, Eur. J. Phycol., 36,
167–177, https://doi.org/10.1017/s0967026201003110, 2001.
Wang, X. F., Sultana, C. M., Trueblood, J., Hill, T. C. J., Malfatti, F.,
Lee, C., Laskina, O., Moore, K. A., Beall, C. M., McCluskey, C. S.,
Cornwell, G. C., Zhou, Y. Y., Cox, J. L., Pendergraft, M. A., Santander, M.
V., Bertram, T. H., Cappa, C. D., Azam, F., DeMott, P. J., Grassian, V. H.,
and Prather, K. A.: Microbial control of sea spray aerosol composition: a
tale of two blooms, ACS Cent. Sci., 1, 124–131,
https://doi.org/10.1021/acscentsci.5b00148, 2015.
Welti, A., Bigg, E. K., DeMott, P. J., Gong, X., Hartmann, M., Harvey, M., Henning, S., Herenz, P., Hill, T. C. J., Hornblow, B., Leck, C., Löffler, M., McCluskey, C. S., Rauker, A. M., Schmale, J., Tatzelt, C., van Pinxteren, M., and Stratmann, F.: Ship-based measurements of ice nuclei concentrations over the Arctic, Atlantic, Pacific and Southern oceans, Atmos. Chem. Phys., 20, 15191–15206, https://doi.org/10.5194/acp-20-15191-2020, 2020.
Wex, H., Augustin-Bauditz, S., Boose, Y., Budke, C., Curtius, J., Diehl, K., Dreyer, A., Frank, F., Hartmann, S., Hiranuma, N., Jantsch, E., Kanji, Z. A., Kiselev, A., Koop, T., Möhler, O., Niedermeier, D., Nillius, B., Rösch, M., Rose, D., Schmidt, C., Steinke, I., and Stratmann, F.: Intercomparing different devices for the investigation of ice nucleating particles using Snomax® as test substance, Atmos. Chem. Phys., 15, 1463–1485, https://doi.org/10.5194/acp-15-1463-2015, 2015.
Wilbourn, E. K., Thornton, D. C. O., Ott, C., Graff, J., Quinn, P. K.,
Bates, T. S., Betha, R., Russell, L. M., Behrenfeld, M. J., and Brooks, S.
D.: Ice nucleation by marine aerosols over the North Atlantic Ocean in late
spring, J. Geophys. Res.-Atmos, 125, e2019JD030913,
https://doi.org/10.1029/2019jd030913, 2020.
Wilson, T. W., Ladino, L. A., Alpert, P. A., Breckels, M. N., Brooks, I. M.,
Browse, J., Burrows, S. M., Carslaw, K. S., Huffman, J. A., Judd, C.,
Kilthau, W. P., Mason, R. H., McFiggans, G., Miller, L. A., Najera, J. J.,
Polishchuk, E., Rae, S., Schiller, C. L., Si, M., Temprado, J. V., Whale, T.
F., Wong, J. P. S., Wurl, O., Yakobi-Hancock, J. D., Abbatt, J. P. D.,
Aller, J. Y., Bertram, A. K., Knopf, D. A., and Murray, B. J.: A marine
biogenic source of atmospheric ice-nucleating particles, Nature, 525,
234–238, https://doi.org/10.1038/nature14986, 2015.
Wolf, M. J., Coe, A., Dove, L. A., Zawadowicz, M. A., Dooley, K., Biller, S.
J., Zhang, Y., Chisholm, S. W., and Cziczo, D. J.: Investigating the
heterogeneous ice nucleation of sea spray aerosols using Prochlorococcus as a model source of marine organic matter, Environ. Sci. Technol., 53, 1139–1149, https://doi.org/10.1021/acs.est.8b05150, 2019.
Zack, G. W., Rogers, W. E., and Latt, S. A.: Automatic measurement of sister
chromatid exchange frequency, J. Histochem. Cytochem., 25, 741–753,
https://doi.org/10.1177/25.7.70454, 1977.
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M.,
Ceppi, P., Klein, S. A., and Taylor, K. E.: Causes of higher climate
sensitivity in CMIP6 models, Geophys. Res. Lett., 47, e2019GL085782,
https://doi.org/10.1029/2019gl085782, 2020.
Zhao, X., Liu, X., Burrows, S. M., and Shi, Y.: Effects of marine organic aerosols as sources of immersion-mode ice-nucleating particles on high-latitude mixed-phase clouds, Atmos. Chem. Phys., 21, 2305–2327, https://doi.org/10.5194/acp-21-2305-2021, 2021.
Short summary
A major uncertainty in our understanding of clouds and climate is the sources and properties of the aerosol on which clouds grow. We found that aerosol containing organic matter from fast-growing marine phytoplankton was a source of ice-nucleating particles (INPs). INPs facilitate freezing of ice crystals at warmer temperatures than otherwise possible and therefore change cloud formation and properties. Our results show that ecosystem processes and the properties of sea spray aerosol are linked.
A major uncertainty in our understanding of clouds and climate is the sources and properties of...
Altmetrics
Final-revised paper
Preprint