Articles | Volume 23, issue 18
https://doi.org/10.5194/acp-23-10643-2023
https://doi.org/10.5194/acp-23-10643-2023
Research article
 | 
26 Sep 2023
Research article |  | 26 Sep 2023

Reaction dynamics of P(4S) + O2(X3Σg)  →  O(3P) + PO(X2Π) on a global CHIPR potential energy surface of PO2(X2A1): implications for atmospheric modelling

Guangan Chen, Zhi Qin, Ximing Li, and Linhua Liu

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Mesosphere | Science Focus: Chemistry (chemical composition and reactions)
Global and regional chemical influence of sprites: reconciling modelling results and measurements
Francisco J. Pérez-Invernón, Francisco J. Gordillo-Vázquez, Alejandro Malagón-Romero, and Patrick Jöckel
Atmos. Chem. Phys., 24, 3577–3592, https://doi.org/10.5194/acp-24-3577-2024,https://doi.org/10.5194/acp-24-3577-2024, 2024
Short summary
Technical Note: Nighttime OH and HO2 chemical equilibria in the mesosphere – lower thermosphere
Mikhail Yu. Kulikov, Mikhail V. Belikovich, Alexey G. Chubarov, Svetlana O. Dementyeva, and Alexander M. Feigin
EGUsphere, https://doi.org/10.5194/egusphere-2024-614,https://doi.org/10.5194/egusphere-2024-614, 2024
Short summary
Boundary of nighttime ozone chemical equilibrium in the mesopause region: long-term evolution determined using 20-year satellite observations
Mikhail Yu. Kulikov, Mikhail V. Belikovich, Aleksey G. Chubarov, Svetlana O. Dementyeva, and Alexander M. Feigin
Atmos. Chem. Phys., 23, 14593–14608, https://doi.org/10.5194/acp-23-14593-2023,https://doi.org/10.5194/acp-23-14593-2023, 2023
Short summary
Exceptional middle latitude electron precipitation detected by balloon observations: implications for atmospheric composition
Irina Mironova, Miriam Sinnhuber, Galina Bazilevskaya, Mark Clilverd, Bernd Funke, Vladimir Makhmutov, Eugene Rozanov, Michelle L. Santee, Timofei Sukhodolov, and Thomas Ulich
Atmos. Chem. Phys., 22, 6703–6716, https://doi.org/10.5194/acp-22-6703-2022,https://doi.org/10.5194/acp-22-6703-2022, 2022
Short summary
Model simulations of chemical effects of sprites in relation with observed HO2 enhancements over sprite-producing thunderstorms
Holger Winkler, Takayoshi Yamada, Yasuko Kasai, Uwe Berger, and Justus Notholt
Atmos. Chem. Phys., 21, 7579–7596, https://doi.org/10.5194/acp-21-7579-2021,https://doi.org/10.5194/acp-21-7579-2021, 2021
Short summary

Cited articles

Barrow, R. F. and Yee, K. K.: The X3Σ ground states of the group VI–VI molecules, O2, SO … Te2, Acta. Phys. Hung., 35, 239–246, https://doi.org/10.1007/BF03159760, 1974. 
Bauschlicher, C. W.: Heats of formation for POn and POnH (n=1–3), J. Phys. Chem. A, 103, 11126–11129, https://doi.org/10.1021/jp992409k, 1999. 
Cai, Z., Hirsch, G., and Buenker, R. J.: Ab initio study of the electronic spectrum of the PO2 radical, Chem. Phys. Lett., 255, 350–356, https://doi.org/10.1016/0009-2614(96)00395-8, 1996. 
Caridade, P. J. S. B., Horta, J.-Z. J., and Varandas, A. J. C.: Implications of the O + OH reaction in hydroxyl nightglow modeling, Atmos. Chem. Phys., 13, 1–13, https://doi.org/10.5194/acp-13-1-2013, 2013. 
Carpenter, B. K.: Dynamic behavior of organic reactive intermediates, Angew. Chem. Int. Edit., 37, 3340–3350, https://doi.org/10.1002/(SICI)1521-3773(19981231)37:24<3340::AID-ANIE3340>3.0.CO;2-1, 1998. 
Download
Short summary
We provided an accurate potential energy surface of PO2(X2A1), which can be used for the molecular simulations of the reactive or non-reactive collisions and photodissociation of PO2 in atmospheres. It can also be a reliable component for constructing other larger molecular systems containing PO2. The reaction probability, integral cross sections, and rate constants for P(4S) + O2(X3Σ) → O(3P) + PO((X2Π) are calculated, which might be useful for modelling the P chemistry in atmospheres.
Altmetrics
Final-revised paper
Preprint