Articles | Volume 23, issue 18
https://doi.org/10.5194/acp-23-10643-2023
https://doi.org/10.5194/acp-23-10643-2023
Research article
 | 
26 Sep 2023
Research article |  | 26 Sep 2023

Reaction dynamics of P(4S) + O2(X3Σg)  →  O(3P) + PO(X2Π) on a global CHIPR potential energy surface of PO2(X2A1): implications for atmospheric modelling

Guangan Chen, Zhi Qin, Ximing Li, and Linhua Liu

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Mesosphere | Science Focus: Chemistry (chemical composition and reactions)
Exceptional middle latitude electron precipitation detected by balloon observations: implications for atmospheric composition
Irina Mironova, Miriam Sinnhuber, Galina Bazilevskaya, Mark Clilverd, Bernd Funke, Vladimir Makhmutov, Eugene Rozanov, Michelle L. Santee, Timofei Sukhodolov, and Thomas Ulich
Atmos. Chem. Phys., 22, 6703–6716, https://doi.org/10.5194/acp-22-6703-2022,https://doi.org/10.5194/acp-22-6703-2022, 2022
Short summary
Model simulations of chemical effects of sprites in relation with observed HO2 enhancements over sprite-producing thunderstorms
Holger Winkler, Takayoshi Yamada, Yasuko Kasai, Uwe Berger, and Justus Notholt
Atmos. Chem. Phys., 21, 7579–7596, https://doi.org/10.5194/acp-21-7579-2021,https://doi.org/10.5194/acp-21-7579-2021, 2021
Short summary
The response of mesospheric H2O and CO to solar irradiance variability in models and observations
Arseniy Karagodin-Doyennel, Eugene Rozanov, Ales Kuchar, William Ball, Pavle Arsenovic, Ellis Remsberg, Patrick Jöckel, Markus Kunze, David A. Plummer, Andrea Stenke, Daniel Marsh, Doug Kinnison, and Thomas Peter
Atmos. Chem. Phys., 21, 201–216, https://doi.org/10.5194/acp-21-201-2021,https://doi.org/10.5194/acp-21-201-2021, 2021
Short summary
Statistical response of middle atmosphere composition to solar proton events in WACCM-D simulations: the importance of lower ionospheric chemistry
Niilo Kalakoski, Pekka T. Verronen, Annika Seppälä, Monika E. Szeląg, Antti Kero, and Daniel R. Marsh
Atmos. Chem. Phys., 20, 8923–8938, https://doi.org/10.5194/acp-20-8923-2020,https://doi.org/10.5194/acp-20-8923-2020, 2020
Short summary
Photochemistry on the bottom side of the mesospheric Na layer
Tao Yuan, Wuhu Feng, John M. C. Plane, and Daniel R. Marsh
Atmos. Chem. Phys., 19, 3769–3777, https://doi.org/10.5194/acp-19-3769-2019,https://doi.org/10.5194/acp-19-3769-2019, 2019
Short summary

Cited articles

Barrow, R. F. and Yee, K. K.: The X3Σ ground states of the group VI–VI molecules, O2, SO … Te2, Acta. Phys. Hung., 35, 239–246, https://doi.org/10.1007/BF03159760, 1974. 
Bauschlicher, C. W.: Heats of formation for POn and POnH (n=1–3), J. Phys. Chem. A, 103, 11126–11129, https://doi.org/10.1021/jp992409k, 1999. 
Cai, Z., Hirsch, G., and Buenker, R. J.: Ab initio study of the electronic spectrum of the PO2 radical, Chem. Phys. Lett., 255, 350–356, https://doi.org/10.1016/0009-2614(96)00395-8, 1996. 
Caridade, P. J. S. B., Horta, J.-Z. J., and Varandas, A. J. C.: Implications of the O + OH reaction in hydroxyl nightglow modeling, Atmos. Chem. Phys., 13, 1–13, https://doi.org/10.5194/acp-13-1-2013, 2013. 
Carpenter, B. K.: Dynamic behavior of organic reactive intermediates, Angew. Chem. Int. Edit., 37, 3340–3350, https://doi.org/10.1002/(SICI)1521-3773(19981231)37:24<3340::AID-ANIE3340>3.0.CO;2-1, 1998. 
Download
Short summary
We provided an accurate potential energy surface of PO2(X2A1), which can be used for the molecular simulations of the reactive or non-reactive collisions and photodissociation of PO2 in atmospheres. It can also be a reliable component for constructing other larger molecular systems containing PO2. The reaction probability, integral cross sections, and rate constants for P(4S) + O2(X3Σ) → O(3P) + PO((X2Π) are calculated, which might be useful for modelling the P chemistry in atmospheres.
Altmetrics
Final-revised paper
Preprint