Articles | Volume 23, issue 18
https://doi.org/10.5194/acp-23-10643-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-10643-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reaction dynamics of P(4S) + O2(X3Σ−g) → O(3P) + PO(X2Π) on a global CHIPR potential energy surface of PO2(X2A1): implications for atmospheric modelling
Guangan Chen
School of Energy and Power Engineering, Shandong University, 250061, Jinan, China
School of Energy and Power Engineering, Shandong University, 250061, Jinan, China
Optics and Thermal Radiation Research Center, Institute of Frontier
and Interdisciplinary Science, Shandong University, 266237, Qingdao, China
Ximing Li
School of Energy and Power Engineering, Shandong University, 250061, Jinan, China
Linhua Liu
CORRESPONDING AUTHOR
School of Energy and Power Engineering, Shandong University, 250061, Jinan, China
Optics and Thermal Radiation Research Center, Institute of Frontier
and Interdisciplinary Science, Shandong University, 266237, Qingdao, China
School of Energy Science and Engineering, Harbin Institute of
Technology, 150001, Harbin, China
Related subject area
Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Mesosphere | Science Focus: Chemistry (chemical composition and reactions)
Global and regional chemical influence of sprites: reconciling modelling results and measurements
Technical Note: Nighttime OH and HO2 chemical equilibria in the mesosphere – lower thermosphere
Boundary of nighttime ozone chemical equilibrium in the mesopause region: long-term evolution determined using 20-year satellite observations
Exceptional middle latitude electron precipitation detected by balloon observations: implications for atmospheric composition
Model simulations of chemical effects of sprites in relation with observed HO2 enhancements over sprite-producing thunderstorms
The response of mesospheric H2O and CO to solar irradiance variability in models and observations
Statistical response of middle atmosphere composition to solar proton events in WACCM-D simulations: the importance of lower ionospheric chemistry
Photochemistry on the bottom side of the mesospheric Na layer
Model results of OH airglow considering four different wavelength regions to derive night-time atomic oxygen and atomic hydrogen in the mesopause region
A new model of meteoric calcium in the mesosphere and lower thermosphere
Technical note: Evaluation of the simultaneous measurements of mesospheric OH, HO2, and O3 under a photochemical equilibrium assumption – a statistical approach
NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002–2010
HEPPA-II model–measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008–2009
Atmospheric lifetimes, infrared absorption spectra, radiative forcings and global warming potentials of NF3 and CF3CF2Cl (CFC-115)
A semi-empirical model for mesospheric and stratospheric NOy produced by energetic particle precipitation
Middle atmospheric changes caused by the January and March 2012 solar proton events
Implications of the O + OH reaction in hydroxyl nightglow modeling
Northern Hemisphere atmospheric influence of the solar proton events and ground level enhancement in January 2005
Do vibrationally excited OH molecules affect middle and upper atmospheric chemistry?
Implementation and testing of a simple data assimilation algorithm in the regional air pollution forecast model, DEOM
Francisco J. Pérez-Invernón, Francisco J. Gordillo-Vázquez, Alejandro Malagón-Romero, and Patrick Jöckel
Atmos. Chem. Phys., 24, 3577–3592, https://doi.org/10.5194/acp-24-3577-2024, https://doi.org/10.5194/acp-24-3577-2024, 2024
Short summary
Short summary
Sprites are electrical discharges that occur in the upper atmosphere. Recent modelling and observational data suggest that they may have a measurable impact on atmospheric chemistry. We incorporate both the occurrence rate of sprites and their production of chemical species into a chemistry–climate model. While our results indicate that sprites have a minimal global influence on atmospheric chemistry, they underscore their noteworthy importance at a regional scale.
Mikhail Yu. Kulikov, Mikhail V. Belikovich, Alexey G. Chubarov, Svetlana O. Dementyeva, and Alexander M. Feigin
EGUsphere, https://doi.org/10.5194/egusphere-2024-614, https://doi.org/10.5194/egusphere-2024-614, 2024
Short summary
Short summary
The assumptions of chemical equilibrium of trace gases are widely used for retrieval of poorly measured characteristics of the mesosphere – lower thermosphere from rocket and satellite data and for study the HOx – Ox chemistry and airglows. In this work, we analyze the fundamental aspects of chemical equilibrium of some trace gases and discuses their possible applications.
Mikhail Yu. Kulikov, Mikhail V. Belikovich, Aleksey G. Chubarov, Svetlana O. Dementyeva, and Alexander M. Feigin
Atmos. Chem. Phys., 23, 14593–14608, https://doi.org/10.5194/acp-23-14593-2023, https://doi.org/10.5194/acp-23-14593-2023, 2023
Short summary
Short summary
In this work, the recently developed analytical criterion for determining the boundary of nighttime ozone chemical equilibrium (NOCE) in the mesopause region (80–90 km) is used (i) to study the connection of this boundary with O and H spatiotemporal variability based on 3D modeling of chemical transport and (ii) to retrieve and analyze the spatiotemporal evolution of the NOCE boundary in 2002–2021 from the SABER/TIMED data set.
Irina Mironova, Miriam Sinnhuber, Galina Bazilevskaya, Mark Clilverd, Bernd Funke, Vladimir Makhmutov, Eugene Rozanov, Michelle L. Santee, Timofei Sukhodolov, and Thomas Ulich
Atmos. Chem. Phys., 22, 6703–6716, https://doi.org/10.5194/acp-22-6703-2022, https://doi.org/10.5194/acp-22-6703-2022, 2022
Short summary
Short summary
From balloon measurements, we detected unprecedented, extremely powerful, electron precipitation over the middle latitudes. The robustness of this event is confirmed by satellite observations of electron fluxes and chemical composition, as well as by ground-based observations of the radio signal propagation. The applied chemistry–climate model shows the almost complete destruction of ozone in the mesosphere over the region where high-energy electrons were observed.
Holger Winkler, Takayoshi Yamada, Yasuko Kasai, Uwe Berger, and Justus Notholt
Atmos. Chem. Phys., 21, 7579–7596, https://doi.org/10.5194/acp-21-7579-2021, https://doi.org/10.5194/acp-21-7579-2021, 2021
Short summary
Short summary
Sprites are electrical discharges above thunderstorms. We performed model simulations of the chemical processes in sprites to compare them with measurements of chemical perturbations above sprite-producing thunderstorms.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Ales Kuchar, William Ball, Pavle Arsenovic, Ellis Remsberg, Patrick Jöckel, Markus Kunze, David A. Plummer, Andrea Stenke, Daniel Marsh, Doug Kinnison, and Thomas Peter
Atmos. Chem. Phys., 21, 201–216, https://doi.org/10.5194/acp-21-201-2021, https://doi.org/10.5194/acp-21-201-2021, 2021
Short summary
Short summary
The solar signal in the mesospheric H2O and CO was extracted from the CCMI-1 model simulations and satellite observations using multiple linear regression (MLR) analysis. MLR analysis shows a pronounced and statistically robust solar signal in both H2O and CO. The model results show a general agreement with observations reproducing a negative/positive solar signal in H2O/CO. The pattern of the solar signal varies among the considered models, reflecting some differences in the model setup.
Niilo Kalakoski, Pekka T. Verronen, Annika Seppälä, Monika E. Szeląg, Antti Kero, and Daniel R. Marsh
Atmos. Chem. Phys., 20, 8923–8938, https://doi.org/10.5194/acp-20-8923-2020, https://doi.org/10.5194/acp-20-8923-2020, 2020
Short summary
Short summary
Effects of solar proton events (SPEs) on middle atmosphere chemistry were studied using the WACCM-D chemistry–climate model, including an improved representation of lower ionosphere ion chemistry. This study includes 66 events in the years 1989–2012 and uses a statistical approach to determine the impact of the improved chemistry scheme. The differences shown highlight the importance of ion chemistry in models used to study energetic particle precipitation.
Tao Yuan, Wuhu Feng, John M. C. Plane, and Daniel R. Marsh
Atmos. Chem. Phys., 19, 3769–3777, https://doi.org/10.5194/acp-19-3769-2019, https://doi.org/10.5194/acp-19-3769-2019, 2019
Short summary
Short summary
The Na layer in the upper atmosphere is very sensitive to solar radiation and varies considerably during sunrise and sunset. In this paper, we use the lidar observations and an advanced model to investigate this process. We found that the variation is mostly due to the changes in several photochemical reactions involving Na compounds, especially NaHCO3. We also reveal that the Fe layer in the same region changes more quickly than the Na layer due to a faster reaction rate of FeOH to sunlight.
Tilo Fytterer, Christian von Savigny, Martin Mlynczak, and Miriam Sinnhuber
Atmos. Chem. Phys., 19, 1835–1851, https://doi.org/10.5194/acp-19-1835-2019, https://doi.org/10.5194/acp-19-1835-2019, 2019
Short summary
Short summary
A model was developed to derive night-time atomic oxygen (O(3P)) and atomic hydrogen (H) from satellite observations in the altitude region between 75 km and 100 km. Comparisons between the
best-fit modeland the measurements suggest that chemical reactions involving O2 and O(3P) might occur differently than is usually assumed in literature. This considerably affects the derived abundances of O(3P) and H, which in turn might influence air temperature and winds of the whole atmosphere.
John M. C. Plane, Wuhu Feng, Juan Carlos Gómez Martín, Michael Gerding, and Shikha Raizada
Atmos. Chem. Phys., 18, 14799–14811, https://doi.org/10.5194/acp-18-14799-2018, https://doi.org/10.5194/acp-18-14799-2018, 2018
Short summary
Short summary
Meteoric ablation creates layers of metal atoms in the atmosphere around 90 km. Although Ca and Na have similar elemental abundances in most minerals found in the solar system, surprisingly the Ca abundance in the atmosphere is less than 1 % that of Na. This study uses a detailed chemistry model of Ca, largely based on laboratory kinetics measurements, in a whole-atmosphere model to show that the depletion is caused by inefficient ablation of Ca and the formation of stable molecular reservoirs.
Mikhail Y. Kulikov, Anton A. Nechaev, Mikhail V. Belikovich, Tatiana S. Ermakova, and Alexander M. Feigin
Atmos. Chem. Phys., 18, 7453–7471, https://doi.org/10.5194/acp-18-7453-2018, https://doi.org/10.5194/acp-18-7453-2018, 2018
Miriam Sinnhuber, Uwe Berger, Bernd Funke, Holger Nieder, Thomas Reddmann, Gabriele Stiller, Stefan Versick, Thomas von Clarmann, and Jan Maik Wissing
Atmos. Chem. Phys., 18, 1115–1147, https://doi.org/10.5194/acp-18-1115-2018, https://doi.org/10.5194/acp-18-1115-2018, 2018
Short summary
Short summary
Results from global models are used to analyze the impact of energetic particle precipitation on the middle atmosphere (10–80 km). Model results agree well with observations, and show strong enhancements of NOy, long-lasting ozone loss, and a net heating in the uppermost stratosphere (~35–45 km) during polar winter which changes sign in spring. Energetic particle precipitation therefore has the potential to impact atmospheric dynamics, starting from a warmer winter-time upper stratosphere.
Bernd Funke, William Ball, Stefan Bender, Angela Gardini, V. Lynn Harvey, Alyn Lambert, Manuel López-Puertas, Daniel R. Marsh, Katharina Meraner, Holger Nieder, Sanna-Mari Päivärinta, Kristell Pérot, Cora E. Randall, Thomas Reddmann, Eugene Rozanov, Hauke Schmidt, Annika Seppälä, Miriam Sinnhuber, Timofei Sukhodolov, Gabriele P. Stiller, Natalia D. Tsvetkova, Pekka T. Verronen, Stefan Versick, Thomas von Clarmann, Kaley A. Walker, and Vladimir Yushkov
Atmos. Chem. Phys., 17, 3573–3604, https://doi.org/10.5194/acp-17-3573-2017, https://doi.org/10.5194/acp-17-3573-2017, 2017
Short summary
Short summary
Simulations from eight atmospheric models have been compared to tracer and temperature observations from seven satellite instruments in order to evaluate the energetic particle indirect effect (EPP IE) during the perturbed northern hemispheric (NH) winter 2008/2009. Models are capable to reproduce the EPP IE in dynamically and geomagnetically quiescent NH winter conditions. The results emphasize the need for model improvements in the dynamical representation of elevated stratopause events.
Anna Totterdill, Tamás Kovács, Wuhu Feng, Sandip Dhomse, Christopher J. Smith, Juan Carlos Gómez-Martín, Martyn P. Chipperfield, Piers M. Forster, and John M. C. Plane
Atmos. Chem. Phys., 16, 11451–11463, https://doi.org/10.5194/acp-16-11451-2016, https://doi.org/10.5194/acp-16-11451-2016, 2016
Short summary
Short summary
In this study we have experimentally determined the infrared absorption cross sections of NF3 and CFC-115, calculated the radiative forcing and efficiency using two radiative transfer models and identified the effect of clouds and stratospheric adjustment. We have also determined their atmospheric lifetimes using the Whole Atmosphere Community Climate Model.
Bernd Funke, Manuel López-Puertas, Gabriele P. Stiller, Stefan Versick, and Thomas von Clarmann
Atmos. Chem. Phys., 16, 8667–8693, https://doi.org/10.5194/acp-16-8667-2016, https://doi.org/10.5194/acp-16-8667-2016, 2016
Short summary
Short summary
We present a semi-empirical model for the reconstruction of polar winter descent of reactive nitrogen (NOy) produced by energetic particle precipitation (EPP) into the stratosphere. It can be used to prescribe NOy in chemistry climate models with an upper lid below the EPP source region. We also found a significant reduction of the EPP-generated NOy during the last 30 years, likely affecting the long-term NOy trend by counteracting the expected increase caused by growing N2O emission.
C. H. Jackman, C. E. Randall, V. L. Harvey, S. Wang, E. L. Fleming, M. López-Puertas, B. Funke, and P. F. Bernath
Atmos. Chem. Phys., 14, 1025–1038, https://doi.org/10.5194/acp-14-1025-2014, https://doi.org/10.5194/acp-14-1025-2014, 2014
P. J. S. B. Caridade, J.-Z. J. Horta, and A. J. C. Varandas
Atmos. Chem. Phys., 13, 1–13, https://doi.org/10.5194/acp-13-1-2013, https://doi.org/10.5194/acp-13-1-2013, 2013
C. H. Jackman, D. R. Marsh, F. M. Vitt, R. G. Roble, C. E. Randall, P. F. Bernath, B. Funke, M. López-Puertas, S. Versick, G. P. Stiller, A. J. Tylka, and E. L. Fleming
Atmos. Chem. Phys., 11, 6153–6166, https://doi.org/10.5194/acp-11-6153-2011, https://doi.org/10.5194/acp-11-6153-2011, 2011
T. von Clarmann, F. Hase, B. Funke, M. López-Puertas, J. Orphal, M. Sinnhuber, G. P. Stiller, and H. Winkler
Atmos. Chem. Phys., 10, 9953–9964, https://doi.org/10.5194/acp-10-9953-2010, https://doi.org/10.5194/acp-10-9953-2010, 2010
J. Frydendall, J. Brandt, and J. H. Christensen
Atmos. Chem. Phys., 9, 5475–5488, https://doi.org/10.5194/acp-9-5475-2009, https://doi.org/10.5194/acp-9-5475-2009, 2009
Cited articles
Barrow, R. F. and Yee, K. K.: The X3Σ− ground states of the
group VI–VI molecules, O2, SO … Te2, Acta. Phys. Hung., 35,
239–246, https://doi.org/10.1007/BF03159760, 1974.
Bauschlicher, C. W.: Heats of formation for POn and POnH (n=1–3), J. Phys. Chem. A, 103, 11126–11129, https://doi.org/10.1021/jp992409k, 1999.
Cai, Z., Hirsch, G., and Buenker, R. J.: Ab initio study of the electronic
spectrum of the PO2 radical, Chem. Phys. Lett., 255, 350–356,
https://doi.org/10.1016/0009-2614(96)00395-8, 1996.
Caridade, P. J. S. B., Horta, J.-Z. J., and Varandas, A. J. C.: Implications
of the O + OH reaction in hydroxyl nightglow modeling, Atmos. Chem. Phys., 13, 1–13, https://doi.org/10.5194/acp-13-1-2013, 2013.
Carpenter, B. K.: Dynamic behavior of organic reactive intermediates, Angew.
Chem. Int. Edit., 37, 3340–3350,
https://doi.org/10.1002/(SICI)1521-3773(19981231)37:24<3340::AID-ANIE3340>3.0.CO;2-1, 1998.
Carrillo-Sánchez, J. D., Bones, D. L., Douglas, K. M., Flynn, G. J.,
Wirick, S., Fegley Jr, B., Araki, T., Kaulich, B., and Plane, J. M. C.: Injection of meteoric phosphorus into planetary atmospheres, Planet. Space
Sci., 187, 104926, https://doi.org/10.1016/j.pss.2020.104926, 2020.
Chen, G., Qin, Z., Li, J., and Liu, L.: A global CHIPR potential energy
surface of PH2(X2B1) via extrapolation to the complete basis
set limit and the dynamics of P(2D) + H2(X1Σ + g) → PH(X3Σ−) + H(2S), Phys. Chem. Chem. Phys., 24, 19371–19381, https://doi.org/10.1039/D2CP02690B, 2022.
Clyne, M. A. A. and Ono, Y.: Kinetic studies of ground-state phosphorus atoms, J. Chem. Soc. Farad. T. 2, 78, 1149–1164, https://doi.org/10.1039/F29827801149, 1982.
Conway, E. K., Gordon, I. E., Tennyson, J., Polyansky, O. L., Yurchenko, S. N., and Chance, K.: A semi-empirical potential energy surface and line list
for H O extending into the near-ultraviolet, Atmos. Chem. Phys., 20, 10015–10027, https://doi.org/10.5194/acp-20-10015-2020, 2020.
Cordes, H., and Witschel, W.: Einige aussagen zur oxydation des phosphors, Z. Phys. Chem., 46, 35-48, https://doi.org/10.1524/zpch.1965.46.1_2.035, 1965.
Davies, P. B. and Thrush, B. A.: The reactions of atomic oxygen with phosphorus and with phosphine, P. Roy. Soc. A, 302, 243–252,
https://doi.org/10.1098/rspa.1968.0007, 1968.
De Beck, E., Kamiñski, T., Patel, N. A., Young, K. H., Gottlieb, C. A.,
Menten, K. M., and Decin, L.: PO and PN in the wind of the oxygen-rich AGB
star IK Tauri, Astron. Astrophys., 558, A132, https://doi.org/10.1051/0004-6361/201321349, 2013.
Douglas, K. M., Blitz, M. A., Mangan, T. P., and Plane, J. M.: Experimental
study of the removal of ground- and excited-state phosphorus atoms by
atmospherically relevant species, J. Phys. Chem. A, 123, 9469–9478,
https://doi.org/10.1021/acs.jpca.9b07855, 2019.
Douglas, K. M., Blitz, M. A., Mangan, T. P., Western, C. M., and Plane, J.
M. C.: Kinetic study of the reactions PO + O2 and PO2 + O3 and spectroscopy of the PO radical, J. Phys. Chem. A, 124, 7911–7926, https://doi.org/10.1021/acs.jpca.0c06106, 2020.
Drowart, J., Myers, C. E., Szwarc, R., Vander Auwera-Mahieu, A., and Uy, O.
M.: Determination by the mass spectrometric Knudsen cell method of the
atomization energies of the molecules PO and PO2, J. Chem. Soc. Farad.
T. 2, 68, 1749–1757, https://doi.org/10.1039/F29726801749, 1972.
Dunning, T. H., Peterson, K. A., and Wilson, A. K.: Gaussian basis sets for
use in correlated molecular calculations. X. The atoms aluminum through argon revisited, J. Chem. Phys., 114, 9244–9253, https://doi.org/10.1063/1.1367373, 2001.
Eckert, F., Pulay, P., and Werner, H. J.: Ab initio geometry optimization
for large molecules, J. Comput. Chem., 18, 1473–1483,
https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1473::AID-JCC5>3.0.CO;2-G, 1997.
Francisco, J. S.: Coupled cluster study of the energetic and spectroscopic
properties of OPOx (x=O, +1, −1), J. Chem. Phys., 117, 3190–3195,
https://doi.org/10.1063/1.1494063, 2002.
Gettelman, A., Mills, M. J., Kinnison, D. E., Garcia, R. R., Smith, A. K., Marsh, D. R., Tilmes, S., Vitt, F., Bardeen, C. G., McInerny, J., Liu, H.-L., Solomon, S. C., Polvani, L. M., Emmons, L. K., Lamarque, J.-F., Richter, J. H., Glanville, A. S., Bacmeister, J. T., Phillips, A. S., Neale, R. B., Simpson, I. R., DuVivier, A. K., Hodzic, A., and Randel, W. J.: The whole atmosphere community climate model version 6 (WACCM6). J. Geophys. Res.-Atmos., 124, 12380–12403, https://doi.org/10.1029/2019JD030943, 2019.
Gomes, A. C. R., Rocha, C. M. R., Jasper, A. W., and Galvão, B. R. L.:
Formation of phosphorus monoxide through the P(4S) + O2(3Σ) → O(3P) + PO(2Π) reaction, J. Mol. Model., 28, 259, https://doi.org/10.1007/s00894-022-05242-4, 2022.
Graff, M. M. and Wagner, A. F.: Theoretical studies of fine-structure
effects and long-range forces: Potential-energy surfaces and reactivity of
O(3P) + OH(2Π), J. Chem. Phys., 92, 2423–2439,
https://doi.org/10.1063/1.457986, 1990.
Hamilton, P. A.: The laser induced fluorescence spectrum and radiative lifetime of PO2, J. Chem. Phys., 86, 33–41, https://doi.org/10.1063/1.452624, 1987.
Henshaw, T. L., MacDonald, M. A., Stedman, D. H., and Coombe, R. D.: The
P(4Su) + N3(2Πg) reaction: chemical generation of a new metastable state of PN, J. Phys. Chem., 91, 2838–2842,
https://doi.org/10.1021/j100295a037, 1987.
Huber, K. P. and Herzberg, G.: Molecular spectra and molecular structure,
IV. Constants of Diatomic Molecules, Springer, New York, ISBN 978-1-4757-0963-6, https://doi.org/10.1007/978-1-4757-0961-2, 1979.
Husain, D. and Norris, P. E.: Reactions of phosphorus atoms, P(34S ), studied by attenuation of atomic resonance radiation in
the vacuum ultraviolet, J. Chem. Soc. Farad. T. 2, 73, 1107–1115,
https://doi.org/10.1039/F29777301107, 1977.
Husain, D. and Slater, N. K.: Time-resolved resonance fluorescence studies
of ground state phosphorus atoms, P[3p3(4S ], J.
Chem. Soc. Farad. T. 2, 74, 1627–1643, https://doi.org/10.1039/F29787401627, 1978.
Jarrett-Sprague, S. A. and Hillier, I. H.: Ab initio calculations of the
structure and infrared spectrum of As2O and As4O, Chem. Phys., 148, 325–332, https://doi.org/10.1016/0301-0104(90)89028-O, 1990.
Kabbadj, Y. and Liévin, J.: Ab initio study of the electronic structure
of the PO2 radical, Phys. Scr., 40, 259–269, https://doi.org/10.1088/0031-8949/40/3/002, 1989.
Kawaguchi, K., Saito, S., Hirota, E., and Ohashi, N.: Far-infrared laser
magnetic resonance detection and microwave spectroscopy of the PO2
radical, J. Chem. Phys., 82, 4893–4902, https://doi.org/10.1063/1.448661, 1985.
Knowles, P. J. and Werner, H.: An efficient second-order MC SCF method for
long configuration expansions, Chem. Phys. Lett., 115, 259–267,
https://doi.org/10.1016/0009-2614(85)80025-7, 1985.
Knowles, P. J. and Werner, H.: An efficient method for the evaluation of
coupling coefficients in configuration interaction calculations, Chem. Phys.
Lett., 145, 514–522, https://doi.org/10.1016/0009-2614(88)87412-8, 1988.
Laidler, K. J.: A glossary of terms used in chemical kinetics, including
reaction dynamics (IUPAC Recommendations 1996), Pure Appl. Chem., 68,
149–192, https://doi.org/10.1351/pac199668010149, 1996.
Lawson, M. A., Hoffman, K. J., and Davies, P. B.: Infrared diode laser
spectroscopy of the υ3 fundamental band of the PO2 free radical, J. Mol. Spectrosc., 269, 61–76, https://doi.org/10.1016/j.jms.2011.04.019,
2011.
Lefloch, B., Vastel, C., Viti, S., Jiménez-Serra, I., Codella, C.,
Podio, L., Ceccarelli, C., Mendoza, E., Lépine, J. R. D., and Bachiller,
R.: Phosphorus-bearing molecules in solar-type star-forming regions: first
PO detection, Mon. Not. Roy. Astron. Soc., 462, 3937–3944,
https://doi.org/10.1093/mnras/stw1918, 2016.
Lei, J., Teslja, A., Nizamov, B., and Dagdigian, P. J.: Free-jet electronic
spectroscopy of the PO2 radical, J. Phys. Chem. A, 105, 7828–7833,
https://doi.org/10.1021/jp011778p, 2001.
Li, J., Caridade, P. J. S. B., and Varandas, A. J. C.: Quasiclassical
trajectory study of the atmospheric reaction N(2D) + NO(X2Π) → O(1D) + N2(X1Σ + g), J. Phys. Chem. A, 118, 1277–1286, https://doi.org/10.1021/jp408487y, 2014.
Li, X., Qin, Z., Li, J., and Liu, L.: An accurate NH2(X2A′′) CHIPR potential energy surface via extrapolation to the complete basis set limit and dynamics of the N(2D) + H2(X1Σ + g) reaction, Phys. Chem. Chem. Phys., 24, 26564–26574, https://doi.org/10.1039/D2CP01961B, 2022.
Li, X., Qin, Z., Chen, G., and Liu, L.: Reaction dynamics of C(3P) + Si2(X3Σ−g) → Si(3P) + SiC(X3Π) on a global CHIPR potential energy surface of the ground state
Si2C(X1A1), Mon. Not. Roy. Astron. Soc., 522, 3049–3057,
https://doi.org/10.1093/mnras/stad1109, 2023.
Liang, J., Cui, F., Wang, R., Huang, W., and Cui, Z.: A general analytical
expression for the three-dimensional Franck-Condon integral and simulation
of the photodetachment spectrum of the PO anion, J. Mol. Spectrosc., 286, 12–20, https://doi.org/10.1016/j.jms.2013.02.009, 2013.
Liu, H., Shi, D., Sun, J., Zhu, Z., and Zhang, S.: Accurate calculations on
the 22 electronic states and 54 spin-orbit states of the O2 molecule:
Potential energy curves, spectroscopic parameters and spin-orbit coupling,
Spectrochim. Acta A, 124, 216–229, https://doi.org/10.1016/j.saa.2014.01.003, 2014.
Liu, H., Shi, D., Sun, J., and Zhu, Z.: Accurate potential energy curves and
spectroscopic properties of the 27 Λ−S states and 73 Ω states of the PO radical, Mol. Phys., 115, 714–730,
https://doi.org/10.1080/00268976.2017.1280193, 2017.
Lodders, K.: Solar system abundances and condensation temperatures of the
elements, Astrophys. J., 591, 1220, https://doi.org/10.1086/375492, 2003.
Lohr, L. L.: A theoretical study of the gaseous oxides PO2 and PO, their anions, and their role in the combustion of phosphorus and phosphine, J. Phys. Chem., 88, 5569–5574, https://doi.org/10.1021/j150667a022, 1984.
Maciá, E.: The role of phosphorus in chemical evolution, Chem. Soc. Rev., 34, 691–701, https://doi.org/10.1039/B416855K, 2005.
Maciá, E., Hernández, M. V., and Oro, J.: Primary sources of phosphorus and phosphates in chemical evolution, Origins Life Evol. B., 27,
459–480, https://doi.org/10.1023/A:1006523226472, 1997.
Martin, J. M. L. and Uzan, O.: Basis set convergence in second-row compounds. The importance of core polarization functions, Chem. Phys. Lett., 282, 16–24, https://doi.org/10.1016/S0009-2614(97)01128-7, 1998.
Murrell, J. N., Carter, S., Farantos, S., Huxley, P., and Varandas, A. J. C.: Molecular potential energy functions, John Wiley, New York, ISBN 9780471905400, 1984.
Pasek, M. A.: Rethinking early Earth phosphorus geochemistry, P. Natl. Acad. Sci. USA, 105, 853–858, https://doi.org/10.1073/pnas.0708205105, 2008.
Peslherbe, G. H., Wang, H., and Hase, W. L.: Monte Carlo sampling for
classical trajectory simulations, John Wiley, New York, ISBN 9780470141649, ISBN 9780471196303, https://doi.org/10.1002/9780470141649.ch6, 1999.
Peverati, R. and Truhlar, D. G.: M11-L: A local density functional that provides improved accuracy for electronic structure calculations in chemistry and physics, J. Phys. Chem. Lett., 3, 117–124, https://doi.org/10.1021/jz201525m, 2012.
Plane, J. M. C., Flynn, G. J., Määttänen, A., Moores, J. E., Poppe, A. R., Carrillo-Sanchez, J. D., and Listowski, C.: Impacts of cosmic
dust on planetary atmospheres and surfaces, Space Sci. Rev., 214, 23, https://doi.org/10.1007/s11214-017-0458-1, 2018.
Plane, J. M. C., Feng, W., and Douglas, K. M.: Phosphorus chemistry in the
Earth's upper atmosphere, J. Geophys. Res.-Space, 126, e2021JA029881J,
https://doi.org/10.1029/2021JA029881, 2021.
Prajapat, L., Jagoda, P., Lodi, L., Gorman, M. N., Yurchenko, S. N., and
Tennyson, J.: ExoMol molecular line lists – XXIII. Spectra of PO and PS,
Mon. Not. Roy. Astron. Soc., 472, 3648–3658, https://doi.org/10.1093/mnras/stx2229, 2017.
Qian, H., Davies, P. B., and Hamilton, P. A.: High-resolution spectroscopic
study of the oxidation of white phosphorus, J. Chem. Soc. Faraday T., 91,
2993–2998, https://doi.org/10.1039/FT9959102993, 1995.
Rivilla, V. M., Drozdovskaya, M. N., Altwegg, K., Caselli, P., Beltrán,
M. T., Fontani, F., Van Der Tak, F., Cesaroni, R., Vasyunin, A., Rubin, M.,
Lique, F., Marinakis, S., Testi, L., and the ROSINA team: ALMA and ROSINA
detections of phosphorus-bearing molecules: the interstellar thread between
star-forming regions and comets, Mon. Not. Roy. Astron. Soc., 492, 1180–1198, https://doi.org/10.1093/mnras/stz3336, 2020.
Rocha, C. M. R. and Varandas, A. J. C.: Accurate CHIPR potential energy surface for the lowest triplet state of C3, J. Phys. Chem. A, 123, 8154–8169, https://doi.org/10.1021/acs.jpca.9b03194, 2019a.
Rocha, C. M. R. and Varandas, A. J. C.: A global CHIPR potential energy
surface for ground-state C3H and exploratory dynamics studies of
reaction C2 + CH → C3 + H, Phys. Chem. Chem. Phys., 21, 24406–24418, https://doi.org/10.1039/C9CP04890A, 2019b.
Rocha, C. M. R. and Varandas, A. J. C.: A general code for fitting global
potential energy surfaces via CHIPR method: Triatomic molecules, Comput. Phys. Commun., 247, 106913, https://doi.org/10.1016/j.cpc.2019.106913, 2020.
Rocha, C. M. R. and Varandas, A. J. C.: A general code for fitting global
potential energy surfaces via CHIPR method: Direct-Fit Diatomic and
tetratomic molecules, Comput. Phys. Commun., 258, 107556, https://doi.org/10.1016/j.cpc.2020.107556, 2021.
Rocha, C. M. R., Linnartz, H., and Varandas, A. J. C.: Reconciling spectroscopy with dynamics in global potential energy surfaces: The case of
the astrophysically relevant SiC2, J. Chem. Phys., 157, 104301,
https://doi.org/10.1063/5.0096364, 2022.
Schmidt, J. A., Johnson, M. S., Hattori, S., Yoshida, N., Nanbu, S., and
Schinke, R.: OCS photolytic isotope effects from first principles: sulfur
and carbon isotopes, temperature dependence and implications for the
stratosphere, Atmos. Chem. Phys., 13, 1511–1520, https://doi.org/10.5194/acp-13-1511-2013, 2013.
Sordo, J. A.: Performance of CCSDT for first row AB/AB− diatomics:
Dissociation energies and electron affinities, J. Chem. Phys., 114,
1974–1980, https://doi.org/10.1063/1.1335617, 2001.
Tenenbaum, E. D., Woolf, N. J., and Ziurys, L. M.: Identification of phosphorus monoxide (X2Πr) in VY Canis Majoris: Detection of
the first PO bond in space, Astrophys. J., 666, L29, https://doi.org/10.1086/521361, 2007.
Thomas, J. B., Waas, J. R., Harmata, M., and Singleton, D. A.: Control elements in dynamically determined selectivity on a bifurcating surface, J.
Am. Chem. Soc., 130, 14544–14555, https://doi.org/10.1021/ja802577v, 2008.
Todd, Z. R.: Sources of Nitrogen-, Sulfur-, and Phosphorus-containing feedstocks for prebiotic chemistry in the planetary environment, Life, 12,
1268, https://doi.org/10.3390/life12081268, 2022.
Varandas, A. J. C.: A useful triangular plot of triatomic potential energy
surfaces, Chem. Phys. Lett., 138, 455–461, https://doi.org/10.1016/0009-2614(87)80540-7, 1987.
Varandas, A. J. C.: Combined-hyperbolic-inverse-power-representation of
potential energy surfaces: A preliminary assessment for H3 and HO2, J. Chem. Phys., 138, 054120, https://doi.org/10.1063/1.4788912, 2013.
Varandas, A. J. C. and Murrell, J. N.: A many-body expansion of polyatomic
potential energy surfaces: application to Hn systems, Faraday Discuss.
Chem. Soc., 62, 92–109, https://doi.org/10.1039/DC9776200092, 1977.
Verma, R. D. and McCarthy, C. F.: A new spectrum of the PO2 radical, Can. J. Phys., 61, 1149–1159, https://doi.org/10.1139/p83-145, 1983.
Waage, E. V. and Rabinovitch, B. S.: Centrifugal effects in reaction rate
theory, Chem. Rev., 70, 377–387, https://doi.org/10.1021/cr60265a004, 1970.
Werner, H. J. and Knowles, P. J.: An efficient internally contracted
multiconfiguration–reference configuration interaction method, J. Chem. Phys., 89, 5803–5814, https://doi.org/10.1063/1.455556, 1988.
Werner, H. J., Knowles, P. J., Manby, F. R., Black, J. A., Doll, K.,
Heßelmann, A., Kats, D., Köhn, A., Korona, T., Kreplin, D. A., Ma,
Q., Miller, T. F., Mitrushchenkov, A., Peterson, K. A., Polyak, L., Rauhut,
G., and Sibaev, M.: The Molpro quantum chemistry package, J. Chem. Phys., 152, 144107, https://doi.org/10.1063/5.0005081, 2020.
Woon, D. E. and Dunning Jr., T. H.: Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon, J. Chem. Phys., 98, 1358–1371, https://doi.org/10.1063/1.464303, 1993.
Xianyi, Z., Jun, W., Fei, W., and Zhifeng, C.: Ab initio calculations and
Franck-Condon analysis of photoelectron spectra of PO2, J. Mol. Struc.-Theochem., 851, 40–45, https://doi.org/10.1016/j.theochem.2007.10.030, 2008.
Xu, C., de Beer, E., and Neumark, D. M.: Photoelectron spectroscopy of
PO , J. Chem. Phys., 104, 2749–2751, https://doi.org/10.1063/1.470983, 1996.
Zeng, H. and Zhao, J.: Theoretical study of the structure and analytic
potential energy function for the ground state of the PO2 molecule, Chin. Phys. B, 21, 078202, https://doi.org/10.1088/1674-1056/21/7/078202, 2012.
Zhang, D. H. and Zhang, J. Z. H.: Photofragmentation of HF dimer: Quantum
dynamics studies on ab initio potential energy surfaces, J. Chem. Phys., 99,
6624–6633, https://doi.org/10.1063/1.465854, 1993.
Zhang, D. H. and Zhang, J. Z. H.: Quantum reactive scattering with a deep
well: Time-dependent calculation for H + O2 reaction and bound state
characterization for HO2, J. Chem. Phys., 101, 3671–3678,
https://doi.org/10.1063/1.467551, 1994.
Zhao, Y. and Truhlar, D. G.: Exploring the limit of accuracy of the global
hybrid meta density functional for main-group thermochemistry, kinetics, and
noncovalent interactions, J. Chem. Theory Comput., 4, 1849–1868,
https://doi.org/10.1021/ct800246v, 2008.
Ziurys, L. M., Schmidt, D. R., and Bernal, J. J.: New circumstellar sources
of PO and PN: The increasing role of phosphorus chemistry in oxygen-rich
stars, Astrophys. J., 856, 169, https://doi.org/10.3847/1538-4357/aaafc6, 2018.
Short summary
We provided an accurate potential energy surface of PO2(X2A1), which can be used for the molecular simulations of the reactive or non-reactive collisions and photodissociation of PO2 in atmospheres. It can also be a reliable component for constructing other larger molecular systems containing PO2. The reaction probability, integral cross sections, and rate constants for P(4S) + O2(X3Σ−) → O(3P) + PO((X2Π) are calculated, which might be useful for modelling the P chemistry in atmospheres.
We provided an accurate potential energy surface of PO2(X2A1), which can be used for the...
Altmetrics
Final-revised paper
Preprint