Articles | Volume 23, issue 17
https://doi.org/10.5194/acp-23-10117-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-10117-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Morphological features and water solubility of iron in aged fine aerosol particles over the Indian Ocean
Sayako Ueda
CORRESPONDING AUTHOR
Graduate School of Environmental Studies, Nagoya University, Nagoya, 464-8601, Japan
Yoko Iwamoto
Graduate School of Integrated Sciences for Life, Hiroshima
University, Higashihiroshima, 739-8521, Japan
Fumikazu Taketani
Japan Agency for Marine-Earth Science and Technology, Yokohama,
236-0001, Japan
Mingxu Liu
Graduate School of Environmental Studies, Nagoya University, Nagoya, 464-8601, Japan
Hitoshi Matsui
Graduate School of Environmental Studies, Nagoya University, Nagoya, 464-8601, Japan
Related authors
No articles found.
Xiaohua Pan, Mian Chin, Ralph A. Kahn, Hitoshi Matsui, Toshihiko Takemura, Meiyun Lin, Yuanyu Xie, Dongchul Kim, and Maria Val Martin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2603, https://doi.org/10.5194/egusphere-2025-2603, 2025
Short summary
Short summary
Wildfire smoke can travel thousands of kilometers, affecting air quality far from the fire itself. This study looks at how two key factors – how much smoke is emitted & how high it rises – affect how smoke spreads. Using data from a major 2008 Siberian wildfire, four computer models were tested. Results show that models often inject smoke too low & remove it too quickly, missing high-altitude smoke seen by satellites. Better estimates of smoke height are crucial to improve air quality forecasts.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, P. Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankararaman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Johann Engelbrecht, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbigniew Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gómez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal L. Weagle, and Xi Zhao
Atmos. Chem. Phys., 25, 4665–4702, https://doi.org/10.5194/acp-25-4665-2025, https://doi.org/10.5194/acp-25-4665-2025, 2025
Short summary
Short summary
Aerosol particles are an important part of the Earth system, but their concentrations are spatially and temporally heterogeneous, as well as being variable in size and composition. Here, we present a new compilation of PM2.5 and PM10 aerosol observations, focusing on the spatial variability across different observational stations, including composition, and demonstrate a method for comparing the data sets to model output.
Yugo Kanaya, Roberto Sommariva, Alfonso Saiz-Lopez, Andrea Mazzeo, Theodore K. Koenig, Kaori Kawana, James E. Johnson, Aurélie Colomb, Pierre Tulet, Suzie Molloy, Ian E. Galbally, Rainer Volkamer, Anoop Mahajan, John W. Halfacre, Paul B. Shepson, Julia Schmale, Hélène Angot, Byron Blomquist, Matthew D. Shupe, Detlev Helmig, Junsu Gil, Meehye Lee, Sean C. Coburn, Ivan Ortega, Gao Chen, James Lee, Kenneth C. Aikin, David D. Parrish, John S. Holloway, Thomas B. Ryerson, Ilana B. Pollack, Eric J. Williams, Brian M. Lerner, Andrew J. Weinheimer, Teresa Campos, Frank M. Flocke, J. Ryan Spackman, Ilann Bourgeois, Jeff Peischl, Chelsea R. Thompson, Ralf M. Staebler, Amir A. Aliabadi, Wanmin Gong, Roeland Van Malderen, Anne M. Thompson, Ryan M. Stauffer, Debra E. Kollonige, Juan Carlos Gómez Martin, Masatomo Fujiwara, Katie Read, Matthew Rowlinson, Keiichi Sato, Junichi Kurokawa, Yoko Iwamoto, Fumikazu Taketani, Hisahiro Takashima, Monica Navarro Comas, Marios Panagi, and Martin G. Schultz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-566, https://doi.org/10.5194/essd-2024-566, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
The first comprehensive dataset of tropospheric ozone over oceans/polar regions is presented, including 77 ship/buoy and 48 aircraft campaign observations (1977–2022, 0–5000 m altitude), supplemented by ozonesonde and surface data. Air masses isolated from land for 72+ hours are systematically selected as essentially oceanic. Among the 11 global regions, they show daytime decreases of 10–16% in the tropics, while near-zero depletions are rare, unlike in the Arctic, implying different mechanisms.
Takeshi Kinase, Fumikazu Taketani, Masayuki Takigawa, Chunmao Zhu, Yongwon Kim, Petr Mordovskoi, and Yugo Kanaya
Atmos. Chem. Phys., 25, 143–156, https://doi.org/10.5194/acp-25-143-2025, https://doi.org/10.5194/acp-25-143-2025, 2025
Short summary
Short summary
Boreal forest wildfires in interior Alaska represent an important black carbon (BC) source for the Arctic and surrounding regions. We observed BC and carbon monoxide (CO) concentrations in the Poker Flat Research Range since 2016 and found a positive correlation between the observed BC / ∆CO ratio and fire radiative power (FRP) observed in Alaska and Canada. Our finding suggests the BC emission factor and/or inventory could be potentially improved by using FRP.
Mingxu Liu, Hitoshi Matsui, Douglas S. Hamilton, Sagar D. Rathod, Kara D. Lamb, and Natalie M. Mahowald
Atmos. Chem. Phys., 24, 13115–13127, https://doi.org/10.5194/acp-24-13115-2024, https://doi.org/10.5194/acp-24-13115-2024, 2024
Short summary
Short summary
Atmospheric aerosol deposition provides bioavailable iron to promote marine primary production, yet the estimates of its fluxes remain highly uncertain. This study, by performing global aerosol simulations, demonstrates that iron-containing particle size upon emission is a critical factor in regulating soluble iron input to open oceans. Further observational constraints on this are needed to reduce modeling uncertainties.
Kaori Kawana, Fumikazu Taketani, Kazuhiko Matsumoto, Yutaka Tobo, Yoko Iwamoto, Takuma Miyakawa, Akinori Ito, and Yugo Kanaya
Atmos. Chem. Phys., 24, 1777–1799, https://doi.org/10.5194/acp-24-1777-2024, https://doi.org/10.5194/acp-24-1777-2024, 2024
Short summary
Short summary
Based on comprehensive shipborne observations, we found strong links between sea-surface biological materials and the formation of atmospheric fluorescent bioaerosols, cloud condensation nuclei, and ice-nucleating particles over the Arctic Ocean and Bering Sea during autumn 2019. Taking the wind-speed effect into account, we propose equations to approximate the links for this cruise, which can be used as a guide for modeling as well as for systematic comparisons with other observations.
Huisheng Bian, Mian Chin, Peter R. Colarco, Eric C. Apel, Donald R. Blake, Karl Froyd, Rebecca S. Hornbrook, Jose Jimenez, Pedro Campuzano Jost, Michael Lawler, Mingxu Liu, Marianne Tronstad Lund, Hitoshi Matsui, Benjamin A. Nault, Joyce E. Penner, Andrew W. Rollins, Gregory Schill, Ragnhild B. Skeie, Hailong Wang, Lu Xu, Kai Zhang, and Jialei Zhu
Atmos. Chem. Phys., 24, 1717–1741, https://doi.org/10.5194/acp-24-1717-2024, https://doi.org/10.5194/acp-24-1717-2024, 2024
Short summary
Short summary
This work studies sulfur in the remote troposphere at global and seasonal scales using aircraft measurements and multi-model simulations. The goal is to understand the sulfur cycle over remote oceans, spread of model simulations, and observation–model discrepancies. Such an understanding and comparison with real observations are crucial to narrow down the uncertainties in model sulfur simulations and improve understanding of the sulfur cycle in atmospheric air quality, climate, and ecosystems.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankarararman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Hannele Hakola, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbiginiw Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-1, https://doi.org/10.5194/essd-2024-1, 2024
Preprint withdrawn
Short summary
Short summary
Aerosol particles can interact with incoming solar radiation and outgoing long wave radiation, change cloud properties, affect photochemistry, impact surface air quality, and when deposited impact surface albedo of snow and ice, and modulate carbon dioxide uptake by the land and ocean. Here we present a new compilation of aerosol observations including composition, a methodology for comparing the datasets to model output, and show the implications of these results using one model.
Hamza Ahsan, Hailong Wang, Jingbo Wu, Mingxuan Wu, Steven J. Smith, Susanne Bauer, Harrison Suchyta, Dirk Olivié, Gunnar Myhre, Hitoshi Matsui, Huisheng Bian, Jean-François Lamarque, Ken Carslaw, Larry Horowitz, Leighton Regayre, Mian Chin, Michael Schulz, Ragnhild Bieltvedt Skeie, Toshihiko Takemura, and Vaishali Naik
Atmos. Chem. Phys., 23, 14779–14799, https://doi.org/10.5194/acp-23-14779-2023, https://doi.org/10.5194/acp-23-14779-2023, 2023
Short summary
Short summary
We examine the impact of the assumed effective height of SO2 injection, SO2 and BC emission seasonality, and the assumed fraction of SO2 emissions injected as SO4 on climate and chemistry model results. We find that the SO2 injection height has a large impact on surface SO2 concentrations and, in some models, radiative flux. These assumptions are a
hiddensource of inter-model variability and may be leading to bias in some climate model results.
Phuc Thi Minh Ha, Yugo Kanaya, Fumikazu Taketani, Maria Dolores Andrés Hernández, Benjamin Schreiner, Klaus Pfeilsticker, and Kengo Sudo
Geosci. Model Dev., 16, 927–960, https://doi.org/10.5194/gmd-16-927-2023, https://doi.org/10.5194/gmd-16-927-2023, 2023
Short summary
Short summary
HONO affects tropospheric oxidizing capacity; thus, it is implemented into the chemistry–climate model CHASER. The model substantially underpredicts daytime HONO, while nitrate photolysis on surfaces can supplement the daytime HONO budget. Current HONO chemistry predicts reductions of 20.4 % for global tropospheric NOx, 40–67 % for OH, and 30–45 % for O3 in the summer North Pacific. In contrast, OH and O3 winter levels in China are greatly enhanced.
Tsukasa Dobashi, Yuzo Miyazaki, Eri Tachibana, Kazutaka Takahashi, Sachiko Horii, Fuminori Hashihama, Saori Yasui-Tamura, Yoko Iwamoto, Shu-Kuan Wong, and Koji Hamasaki
Biogeosciences, 20, 439–449, https://doi.org/10.5194/bg-20-439-2023, https://doi.org/10.5194/bg-20-439-2023, 2023
Short summary
Short summary
Water-soluble organic nitrogen (WSON) in marine aerosols is important for biogeochemical cycling of bioelements. Our shipboard measurements suggested that reactive nitrogen produced and exuded by nitrogen-fixing microorganisms in surface seawater likely contributed to the formation of WSON aerosols in the subtropical North Pacific. This study provides new implications for the role of marine microbial activity in the formation of WSON aerosols in the ocean surface.
Qirui Zhong, Nick Schutgens, Guido van der Werf, Twan van Noije, Kostas Tsigaridis, Susanne E. Bauer, Tero Mielonen, Alf Kirkevåg, Øyvind Seland, Harri Kokkola, Ramiro Checa-Garcia, David Neubauer, Zak Kipling, Hitoshi Matsui, Paul Ginoux, Toshihiko Takemura, Philippe Le Sager, Samuel Rémy, Huisheng Bian, Mian Chin, Kai Zhang, Jialei Zhu, Svetlana G. Tsyro, Gabriele Curci, Anna Protonotariou, Ben Johnson, Joyce E. Penner, Nicolas Bellouin, Ragnhild B. Skeie, and Gunnar Myhre
Atmos. Chem. Phys., 22, 11009–11032, https://doi.org/10.5194/acp-22-11009-2022, https://doi.org/10.5194/acp-22-11009-2022, 2022
Short summary
Short summary
Aerosol optical depth (AOD) errors for biomass burning aerosol (BBA) are evaluated in 18 global models against satellite datasets. Notwithstanding biases in satellite products, they allow model evaluations. We observe large and diverse model biases due to errors in BBA. Further interpretations of AOD diversities suggest large biases exist in key processes for BBA which require better constraining. These results can contribute to further model improvement and development.
Hitoshi Matsui, Tatsuhiro Mori, Sho Ohata, Nobuhiro Moteki, Naga Oshima, Kumiko Goto-Azuma, Makoto Koike, and Yutaka Kondo
Atmos. Chem. Phys., 22, 8989–9009, https://doi.org/10.5194/acp-22-8989-2022, https://doi.org/10.5194/acp-22-8989-2022, 2022
Short summary
Short summary
Using a global aerosol model, we find that the source contributions to radiative effects of black carbon (BC) in the Arctic are quite different from those to mass concentrations and deposition flux of BC in the Arctic. This is because microphysical properties (e.g., mixing state), altitudes, and seasonal variations of BC in the atmosphere differ among emissions sources. These differences need to be considered for accurate simulations of Arctic BC and its source contributions and climate impacts.
Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay Manish Damani, Xinyi Dong, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbigniew Klimont, Thomas Kühn, Joakim Langner, Kathy S. Law, Louis Marelle, Andreas Massling, Dirk Olivié, Tatsuo Onishi, Naga Oshima, Yiran Peng, David A. Plummer, Olga Popovicheva, Luca Pozzoli, Jean-Christophe Raut, Maria Sand, Laura N. Saunders, Julia Schmale, Sangeeta Sharma, Ragnhild Bieltvedt Skeie, Henrik Skov, Fumikazu Taketani, Manu A. Thomas, Rita Traversi, Kostas Tsigaridis, Svetlana Tsyro, Steven Turnock, Vito Vitale, Kaley A. Walker, Minqi Wang, Duncan Watson-Parris, and Tahya Weiss-Gibbons
Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, https://doi.org/10.5194/acp-22-5775-2022, 2022
Short summary
Short summary
Air pollutants, like ozone and soot, play a role in both global warming and air quality. Atmospheric models are often used to provide information to policy makers about current and future conditions under different emissions scenarios. In order to have confidence in those simulations, in this study we compare simulated air pollution from 18 state-of-the-art atmospheric models to measured air pollution in order to assess how well the models perform.
Hisahiro Takashima, Yugo Kanaya, Saki Kato, Martina M. Friedrich, Michel Van Roozendael, Fumikazu Taketani, Takuma Miyakawa, Yuichi Komazaki, Carlos A. Cuevas, Alfonso Saiz-Lopez, and Takashi Sekiya
Atmos. Chem. Phys., 22, 4005–4018, https://doi.org/10.5194/acp-22-4005-2022, https://doi.org/10.5194/acp-22-4005-2022, 2022
Short summary
Short summary
We have undertaken atmospheric iodine monoxide (IO) observations in the global marine boundary layer with a wide latitudinal coverage and sea surface temperature (SST) range. We conclude that atmospheric iodine is abundant over the Western Pacific warm pool, appearing as an iodine fountain, where ozone (O3) minima occur. Our study also found negative correlations between IO and O3 concentrations over IO maxima, which requires reconsideration of the initiation process of halogen activation.
Sho Ohata, Makoto Koike, Atsushi Yoshida, Nobuhiro Moteki, Kouji Adachi, Naga Oshima, Hitoshi Matsui, Oliver Eppers, Heiko Bozem, Marco Zanatta, and Andreas B. Herber
Atmos. Chem. Phys., 21, 15861–15881, https://doi.org/10.5194/acp-21-15861-2021, https://doi.org/10.5194/acp-21-15861-2021, 2021
Short summary
Short summary
Vertical profiles of black carbon (BC) in the Arctic were measured during the PAMARCMiP aircraft-based experiment in spring 2018 and compared with those observed during previous aircraft campaigns in 2008, 2010, and 2015. Their differences were explained primarily by the year-to-year variation of biomass burning activities in northern midlatitudes over Eurasia. Our observations provide a bases to evaluate numerical model simulations that assess the BC radiative effects in the Arctic spring.
Kaori Kawana, Kazuhiko Matsumoto, Fumikazu Taketani, Takuma Miyakawa, and Yugo Kanaya
Atmos. Chem. Phys., 21, 15969–15983, https://doi.org/10.5194/acp-21-15969-2021, https://doi.org/10.5194/acp-21-15969-2021, 2021
Short summary
Short summary
Atmospheric autofluorescent particles observed over the central Pacific Ocean were identified as bioaerosols from comparisons to a DNA-nuclear-staining method. Their number concentrations in the pristine marine air masses showed high correlations with concentrations of bacteria and transparent exopolymer particles in the surface seawater, providing strong evidence of their marine origins. We propose equations to derive the atmospheric bioaerosol number concentrations from oceanic parameters.
Maria Sand, Bjørn H. Samset, Gunnar Myhre, Jonas Gliß, Susanne E. Bauer, Huisheng Bian, Mian Chin, Ramiro Checa-Garcia, Paul Ginoux, Zak Kipling, Alf Kirkevåg, Harri Kokkola, Philippe Le Sager, Marianne T. Lund, Hitoshi Matsui, Twan van Noije, Dirk J. L. Olivié, Samuel Remy, Michael Schulz, Philip Stier, Camilla W. Stjern, Toshihiko Takemura, Kostas Tsigaridis, Svetlana G. Tsyro, and Duncan Watson-Parris
Atmos. Chem. Phys., 21, 15929–15947, https://doi.org/10.5194/acp-21-15929-2021, https://doi.org/10.5194/acp-21-15929-2021, 2021
Short summary
Short summary
Absorption of shortwave radiation by aerosols can modify precipitation and clouds but is poorly constrained in models. A total of 15 different aerosol models from AeroCom phase III have reported total aerosol absorption, and for the first time, 11 of these models have reported in a consistent experiment the contributions to absorption from black carbon, dust, and organic aerosol. Here, we document the model diversity in aerosol absorption.
Jun Inoue, Yutaka Tobo, Kazutoshi Sato, Fumikazu Taketani, and Marion Maturilli
Atmos. Meas. Tech., 14, 4971–4987, https://doi.org/10.5194/amt-14-4971-2021, https://doi.org/10.5194/amt-14-4971-2021, 2021
Short summary
Short summary
A cloud particle sensor (CPS) sonde is an observing system to obtain the signals of the phase, size, and the number of cloud particles. Based on the field experiments in the Arctic regions and numerical experiments, we proposed a method to correct the CPS sonde data and found that the CPS sonde system can appropriately observe the liquid cloud if our correction method is applied.
Phuc T. M. Ha, Ryoki Matsuda, Yugo Kanaya, Fumikazu Taketani, and Kengo Sudo
Geosci. Model Dev., 14, 3813–3841, https://doi.org/10.5194/gmd-14-3813-2021, https://doi.org/10.5194/gmd-14-3813-2021, 2021
Short summary
Short summary
Policies to mitigate air pollution require an understanding of tropospheric oxidizing capacity, which is controlled by mechanisms including heterogeneous processes on aerosols and clouds. This study uses a chemistry–climate model CHASER (MIROC) to explore the heterogeneous effects in the troposphere for -2.96 % O3, -2.19 % NOx, +3.28 % CO, and +5.91 % CH4 lifetime. Besides, these processes affect polluted areas and remote areas and can bring challenges to pollution reduction efforts.
Mingxu Liu and Hitoshi Matsui
Atmos. Chem. Phys., 21, 5965–5982, https://doi.org/10.5194/acp-21-5965-2021, https://doi.org/10.5194/acp-21-5965-2021, 2021
Short summary
Short summary
By integrating an advanced global climate model with the latest anthropogenic emission inventory, we quantify the aerosol perturbations to regional radiative budgets due to the changes in anthropogenic emissions in China from 2008–2016. We find that aerosol–radiation interactions lead to a relatively small net radiative forcing at the top of the atmosphere but contribute largely to surface brightening in China over the past few decades.
Jonas Gliß, Augustin Mortier, Michael Schulz, Elisabeth Andrews, Yves Balkanski, Susanne E. Bauer, Anna M. K. Benedictow, Huisheng Bian, Ramiro Checa-Garcia, Mian Chin, Paul Ginoux, Jan J. Griesfeller, Andreas Heckel, Zak Kipling, Alf Kirkevåg, Harri Kokkola, Paolo Laj, Philippe Le Sager, Marianne Tronstad Lund, Cathrine Lund Myhre, Hitoshi Matsui, Gunnar Myhre, David Neubauer, Twan van Noije, Peter North, Dirk J. L. Olivié, Samuel Rémy, Larisa Sogacheva, Toshihiko Takemura, Kostas Tsigaridis, and Svetlana G. Tsyro
Atmos. Chem. Phys., 21, 87–128, https://doi.org/10.5194/acp-21-87-2021, https://doi.org/10.5194/acp-21-87-2021, 2021
Short summary
Short summary
Simulated aerosol optical properties as well as the aerosol life cycle are investigated for 14 global models participating in the AeroCom initiative. Considerable diversity is found in the simulated aerosol species emissions and lifetimes, also resulting in a large diversity in the simulated aerosol mass, composition, and optical properties. A comparison with observations suggests that, on average, current models underestimate the direct effect of aerosol on the atmosphere radiation budget.
María A. Burgos, Elisabeth Andrews, Gloria Titos, Angela Benedetti, Huisheng Bian, Virginie Buchard, Gabriele Curci, Zak Kipling, Alf Kirkevåg, Harri Kokkola, Anton Laakso, Julie Letertre-Danczak, Marianne T. Lund, Hitoshi Matsui, Gunnar Myhre, Cynthia Randles, Michael Schulz, Twan van Noije, Kai Zhang, Lucas Alados-Arboledas, Urs Baltensperger, Anne Jefferson, James Sherman, Junying Sun, Ernest Weingartner, and Paul Zieger
Atmos. Chem. Phys., 20, 10231–10258, https://doi.org/10.5194/acp-20-10231-2020, https://doi.org/10.5194/acp-20-10231-2020, 2020
Short summary
Short summary
We investigate how well models represent the enhancement in scattering coefficients due to particle water uptake, and perform an evaluation of several implementation schemes used in ten Earth system models. Our results show the importance of the parameterization of hygroscopicity and model chemistry as drivers of some of the observed diversity amongst model estimates. The definition of dry conditions and the phenomena taking place in this relative humidity range also impact the model evaluation.
Xiao Han, Lingyun Zhu, Mingxu Liu, Yu Song, and Meigen Zhang
Atmos. Chem. Phys., 20, 9979–9996, https://doi.org/10.5194/acp-20-9979-2020, https://doi.org/10.5194/acp-20-9979-2020, 2020
Short summary
Short summary
China is one of the largest agricultural countries in the world. Some of the major PM2.5 particles that cause the atmospheric haze and impact the climate change were converted from agricultural NH3 emission. This paper applied the numerical modeling system, coupled with a high-resolution agricultural NH3 emissions inventory, to investigate the contribution of agricultural NH3 to PM2.5 mass burden in China and obtained some interesting results.
Cited articles
Adachi, K., Moteki, N., Kondo, Y., and Igarashi, Y.: Mixing states of
light-absorbing particles measured using a transmission electron microscope
and a single-particle soot photometer in Tokyo, Japan, J. Geophys. Res.-Atmos., 121, 9153–9164, https://doi.org/10.1002/2016JD025153, 2016.
Adachi, K., Dibb, J. E., Scheuer, E., Katich, J. M., Schwarz, J. P., Perring, A. E.,Mediavilla, B., Guo, H., Campuzano-Jost, P., Jimenez, J. L., Crawford, J., Soja, A. J., Oshima, N., Kajino, M., Kinase, T., Kleinman, L., Sedlacek, A. J., Yokelson, R. J., and Buseck, P. R.: Fine ash-bearing particles as a major aerosol component in biomass burning smoke. J. Geophys. Res.-Atmos, 127, e2021JD035657, https://doi.org/10.1029/2021JD035657, 2022.
Baker, A. R., Adams, C., Bell, T. G., Jickells, T. D., and Ganzeveld, L.:
Estimation of atmospheric nutrient inputs to the Atlantic Ocean from
50∘ N to 50∘ S based on large-scale field sampling: Iron
and other dust-associated elements, Global Biogeochem. Cy., 27, 755–767,
https://doi.org/10.1002/gbc.20062, 2013.
Bigg, E. K.: Comparison of aerosol at four baseline atmospheric monitoring
stations, J. Appl. Meteorol., 19, 521–533,
https://doi.org/10.1175/1520-0450(1980)019<0521:COAAFB>2.0.CO;2,
1980.
Chen, H., Laskin, A., Baltrusaitis, J., Gorski, C. A., Scherer, M. M., and
Grassian, V. H.: Coal fly ash as a source of iron in atmospheric dust,
Environ. Sci. Technol., 46, 2112–2120, https://doi.org/10.1021/Es204102f, 2012.
Chen, Y. Wild, O., Conibear, L., Ran, L., He, J. Wang, L., and Wang, Y.:
Local characteristics of and exposure to fine particulate matter (PM2.5) in
four Indian megacities, Atmos. Environ., X5, 100052,
https://doi.org/10.1016/j.aeaoa.2019.100052, 2020.
Chuang, P. Y., Duvall, R. M., Shafer, M. M., and Schauer, J. J.: The origin
of water soluble particulate iron in the Asian atmospheric outflow, Geophys.
Res. Lett., 32, L07813, https://doi.org/10.1029/2004GL021946, 2005.
Conny, J. M.: Internal composition of atmospheric dust particles from
focused ion-beam scanning electron microscopy, Environ. Sci. Technol., 47,
8575–8581, https://doi.org/10.1021/es400727x, 2013.
Conny, J. M., Willis, R. D., and Ortiz-Montalvo, D. L.: Analysis and optical
modeling of individual heterogeneous Asian Dust Particles collected at Mauna
Loa Observatory, J. Geophys. Res.-Atmos., 124, 270–2723,
https://doi.org/10.1029/2018JD029387, 2019.
Corbin, J. C., Mensah, A. A., Pieber, S. M., Orasche, J., Michalke, B.,
Zanatta, M., Czech, H., Massabò, D., Buatier de Mongeot, F., Mennucci,
C., El Haddad, I., Kumar, N. K., Stengel, B., Huang, Y., Zimmermann, R.,
Prévôt, A. S. H., and Gysel, M.: Trace metals in soot and PM2.5 from
heavy-fuel-oil combustion in a marine engine, Environ. Sci. Technol., 52, 6714–6722, https://doi.org/10.1021/acs.est.8b01764, 2018.
Cwiertny, D. M., Baltrusaitis, J., Hunter, G. J., Laskin, A., Scherer, M.
M., and Grassian, V. H.: Characterization and acid-mobilization study of
iron-containing mineral dust source materials, J. Geophys. Res.-Atmos.,
113, D05202, https://doi.org/10.1029/2007JD009332, 2008.
de Baar, H. J. W., Boyd, P. W., Coale, K. H., Landry, M.
R., Tsuda, A., Assmy, P., Bakker, D. C. E., Bozec, Y., Barber, R.
T., Brzezinski, M. A., Buesseler, K. O., Boye, M., Hiscock, W.
T., Laan, P., lancelot, C., Law, C. S., Levasseur, M., Marchetti, A., Millero, F.
J., Nishioka, J., Nojiri, Y., Oijen, T., Riebesell, U., Rijkenberg, M. J.
A., Saito, H., Takeda, S., Timmermans, K. R., Veldhuis, M. J. W., Waite, A.
M., and Wong, C.: Synthesis of iron fertilization experiments: from the Iron
Age in the Age of Enlightenment, J. Geophys. Res., 110,
C09S16, https://doi.org/10.1029/2004JC002601, 2005.
Desboeufs, K. V., Sofikitis, A., Losno, R., Colin, J. L., and Ausset, P.:
Dissolution and solubility of trace metals from natural and anthropogenic
aerosol particulate matter, Chemosphere, 58, 195–203,
https://doi.org/10.1016/j.chemosphere.2004.02.025, 2005.
Dhaka, S. K., Kumar, C. V., Panwar, V., Dimri, A. P., Singh, N., Patra, P. K., Matsumi, Y., Takigawa, M., Nakayama, T., Yamaji, K., Kajino, M., Misra, P., and Hayashida, S.: PM2.5 diminution and haze events over Delhi during the COVID-19 lockdown period: an interplay between the baseline pollution and meteorology, Sci. Rep., 10, 13442, https://doi.org/10.1038/s41598-020-70179-8, 2020.
Duce, R. A. and Tindale, N. W.: Atmospheric transport of iron and its
deposition in the ocean, Limnol. Oceanogr., 36, 1715–1726, https://doi.org/10.4319/lo.1991.36.8.1715, 1991.
Ferek, R. J., Lazrus, A. L., and Winchester, J. W.: Electron microscopy of
acidic aerosols collected over the northeastern United States, Atmos.
Environ., 17, 1545–1561, https://doi.org/10.1016/0004-6981(83)90308-6, 1983.
Fisher, G. L., Prentice, B. A., Silberman, D., Ondov, J. M., Biermann, A.
H., Ragaini, R. C., and McFarland, A. R.: Physical and morphological studies
of size-classified coal fly ash, Environ. Sci. Technol., 12, 447–451,
https://doi.org/10.1021/es60140a008, 1978.
Flagan, R. C. and Seinfeld, J. H.: Fundamentals of air pollution
engineering, Courier Corporation, 562 pp., ISBN 9780486488721, 2012.
Frank, E. R. and Lodge, J. P.: Morphological identification of airborne
particles with the electron microscope, J. Microscope, 6, 449–456, 1967.
Gras, J. L. and Ayers, G. P.: On sizing impacted sulfuric acid aerosol
particles, J. Appl. Meteorol., 18, 634–638,
https://doi.org/10.1175/1520-0450(1979)018<0634:OSISAA>2.0.CO;2,
1979.
Guieu, C., Bonnet, S., Wagener, T., and Loÿe-Pilot, M.-D.: Biomass
burning as a source of dissolved iron to the open ocean?, Geophys. Res.
Lett., 32, L19608, https://doi.org/10.1029/2005GL022962, 2005.
Guttikunda, S. K., Goel, R., and Pant, P.: Nature of air pollution, emission
sources, and management in the Indian cities, Atmos. Environ., 95, 501–510,
https://doi.org/10.1016/j.atmosenv.2014.07.006, 2014.
Harrison, P. J., Boyd, P. W., Varela, D. E., Takeda, S., Shiomoto, A., and
Odate, T.: Comparison of factors controlling phytoplankton productivity in
the NE and NW subarctic Pacific gyres, Prog. Oceanogr., 43, 205–234,
https://doi.org/10.1016/S0079-6611(99)00015-4, 1999.
Hidemori, T., Nakayama, T., Matsumi, Y., Kinugawa, T., Yabushita, A.,
Ohashi, M., Miyoshi, T., Irei, S., Takami, A., Kaneyasu, N., Yoshino, A.,
Suzuki, R., Yumoto, Y., and Hatakeyama, S.: Characteristics of atmospheric
aerosols containing heavy metals measured on Fukue Island, Japan, Atmos.
Environ., 97, 447–455, https://doi.org/10.1016/j.atmosenv.2014.05.008, 2014.
Hinckley, C. C., Smith, G. V., Twardowska, H., Saporoschenko, M., Shiley, R.
H., and Griffen, R. A.: Mössbauer studies of iron in Lurgi gasification
ashes and power plant fly and bottom ash, Fuel, 59, 161–165.
https://doi.org/10.1016/0016-2361(80)90160-X, 1980.
Hinds, W. C. and Zhu, Y.: Aerosol technology: Properties, behavior, and
measurement of airborne particles, Third Edition, John Wiley & Sons, ISBN 9781119494041, 425 pp.,
2022.
Hu, Y., Lin, J., Zhang, S., Kong, L., Fu, H., and Chen, J.: Identification
of the typical metal particles among haze, fog, and clear episodes in the
Beijing atmosphere, Sci. Total Environ., 511, 369–380, https://doi.org/10.1016/j.scitotenv.2014.12.071, 2015.
Ingall, E. D., Feng, Y., Longo, A. F., Lai, B., Shelley, R. U., Landing, W.
M., Morton, P. L., Nenes, A., Mihalopoulos, N., Violaki, K., Gao, Y., Sahai,
S., and Castorina, E.: Enhanced iron solubility at low pH in global
aerosols, Atmosphere, 9, 201, https://doi.org/10.3390/atmos9050201, 2018.
Ito, A.: Atmospheric processing of combustion aerosols as a source of
bioavailable iron, Environ. Sci. Technol. Lett., 2, 70–75, https://doi.org/10.1021/acs.estlett.5b00007, 2015
Ito, A. and Feng, Y.: Role of dust alkalinity in acid mobilization of iron, Atmos. Chem. Phys., 10, 9237–9250, https://doi.org/10.5194/acp-10-9237-2010, 2010.
Ito, A., Myriokefalitakis, S., Kanakidou, M., Mahowald, N. M., Scanza, R.
A., Hamilton, D. S., Baker, A. R., Jickells, T., Sarin, M., Bikkina, S.,
Gao, Y., Shelley, R. U., Buck, C. S., Landing, W. M., Bowie, A. R., Perron,
M. M. G., Guieu, C., Meskhidze, N., Johnson, M. S., Feng, Y., Kok, J. F.,
Nenes, A., and Duce, R. A.: Pyrogenic iron: The missing link to high iron
solubility in aerosols, Sci. Adv., 25, 7671, https://doi.org/10.1126/sciadv.aau7671,
2019.
Iwamoto, Y., Narita, Y., Tsuda, A., and Uematsu, M.: Single particle
analysis of oceanic suspended matter during the SEEDS II iron fertilization
experiment, Mar. Chem., 113, 212–218, https://doi.org/10.1016/j.marchem.2009.02.002, 2009.
Iwamoto, Y., Yumimoto, K., Toratani, M., Tsuda, A., Miura, K., Uno, I., and
Uematsu, M.: Biogeochemical implications of increased mineral particle
concentrations in surface waters of the northwestern North Pacific during an
Asian dust event, Geophys, Res. Lett., 38, L01604, https://doi.org/10.1029/2010GL045906,
2011.
Jeong, G. Y. and Nousiainen, T.: TEM analysis of the internal structures and mineralogy of Asian dust particles and the implications for optical modeling, Atmos. Chem. Phys., 14, 7233–7254, https://doi.org/10.5194/acp-14-7233-2014, 2014.
Jeong, G. Y., Kim, J. Y., Seo, J., Kim, G. M., Jin, H. C., and Chun, Y.: Long-range transport of giant particles in Asian dust identified by physical, mineralogical, and meteorological analysis, Atmos. Chem. Phys., 14, 505–521, https://doi.org/10.5194/acp-14-505-2014, 2014.
Jeong, G. Y., Park, M. Y., Kandler, K., Nousiainen, T., and Kemppinen, O.: Mineralogical properties and internal structures of individual fine particles of Saharan dust, Atmos. Chem. Phys., 16, 12397–12410, https://doi.org/10.5194/acp-16-12397-2016, 2016.
Jickells, T. and Moore, C. M.: The importance of atmospheric deposition for
ocean productivity, Annu. Rev. Ecol. Evol. Syst., 46, 481–501, https://doi.org/10.1146/annurev-ecolsys-112414-054118, 2015.
Jickells, T. D. An, Z. S. Andersena, K. K., Baker, A. R., Bergamettin, G.
Brooks, N., Cao, J. J., Boyd, P. W., DUCE, R. A., and Torres, R.: Global
iron connections between desert dust, ocean biogeochemistry, and climate,
Science, 308, 67–71, https://doi.org/10.1126/science.1105959, 2005.
Journet, E., Desboeufs, K. V., Caquineau, S., and Colin, J. L.: Mineralogy
as a critical factor of dust iron solubility, Geophys. Res. Lett.,
35, L07805, https://doi.org/10.1029/2007GL031589, 2008.
Kanawade, V. P., Srivastava, A. K., Ram, K., Asmi, E., Vakkari, V., Soni, V.
K., Varaprasad, V., and Sarangi, C.: What caused severe air pollution
episode of November 2016 in New Delhi?, Atmos. Environ., 222, 117125, https://doi.org/10.1016/j.atmosenv.2019.117125, 2020.
Kukutschová, J., Moravec, P., Tomášek, V., Matějka, V.,
Smolík, J., Schwarz, J., Seidlerová, J., Safářová, K.,
and Filip, P.: On airborne nano/micro-sized wear particles released from
low-metallic automotive brakes, Environ. Pollut., 159, 998–1006,
https://doi.org/10.1016/j.envpol.2010.11.036, 2011.
Kumar, A. and Sarin, M.: Aerosol iron solubility in a semi-arid region:
Temporal trend and impact of anthropogenic sources, Tellus B Chem.
Phys. Meteorol., 62, 125–132, https://doi.org/10.1111/j.1600-0889.2009.00448.x, 2010.
Li, W., Xu, L., Liu, X., Zhang, J., Lin, Y., Yao, X., Gao, H., Zhang, D.,
Chen, J., Wang, W., Harrison, R. M., Zhang, X., Shao, L., Fu, P., Nenes, A.,
and Shi, Z.: Air pollution – aerosol interactions produce more bioavailable
iron for ocean ecosystems, Sci. Adv., 3, e1601749,
https://doi.org/10.1126/sciadv.1601749, 2017.
Liati, A., Pandurangi, S. S., Boulouchos, K., Schreiber, D., and Dasilva, Y.
A. R.: Metal nanoparticles in diesel exhaust derived by in-cylinder melting
of detached engine fragments, Atmos. Environ., 101, 34–40,
https://doi.org/10.1016/j.atmosenv.2014.11.014, 2015.
Liu, M. and Matsui, H.: Aerosol radiative forcings induced by substantial changes in anthropogenic emissions in China from 2008 to 2016, Atmos. Chem. Phys., 21, 5965–5982, https://doi.org/10.5194/acp-21-5965-2021, 2021a.
Liu, M. and Matsui, H.: Improved simulations of global black carbon
distributions by modifying wet scavenging processes in convective and
mixed-phase clouds, J. Geophys. Res.-Atmos, 126, e2020JD033890, https://doi.org/10.1029/2020JD033890, 2021b.
Liu, H., Wang, Y., and Wendt, J. O.: Particle size distributions of fly ash
arising from vaporized components of coal combustion: A comparison of theory
and experiment, Energy Fuels, 32, 4300–4307, https://doi.org/10.1021/acs.energyfuels.7b03126, 2018.
Liu, M., Matsui, H., Hamilton, D., Lamb, K. D., Rathod, S. D., Schwarz, J.
P., and Mahowald, N. M.: The underappreciated role of anthropogenic sources
in atmospheric soluble iron flux to the Southern Ocean, npg Clim, Atmos.
Sci., 5, 28, https://doi.org/10.1038/s41612-022-00250-w, 2022.
Luo, C., Mahowald, N., Bond, T., Chuang, P. Y., Artaxo, P., Siefert, R.,
Chen, Y., and Schauer, J.: Combustion iron distribution and deposition,
Global Biogeochem. Cy., 22, GB1012, https://doi.org/10.1029/2007GB002964, 2008.
Machemer, S. D.: Characterization of airborne and bulk particulate from iron
and steel manufacturing facilities, Environ. Sci. Technol., 38, 381–389,
https://doi.org/10.1021/es020897v, 2004.
Mahowald, N. M., Baker, A. R., Bergametti, G., Brooks, N., Duce, R. A.,
Jickells, T. D., Kubilay, N., Prospero, J. M., and Tegen, I.: Atmospheric
global dust cycle and iron inputs to the ocean, Glob. Biogeochem.
Cy., 19, GB402, https://doi.org/10.1029/2004GB002402, 2005.
Mahowald, N. M., Engelstaedter, S., Luo, C., Sealy, A., Artaxo, P.,
Benitez-Nelson, C., Bonnet, S., Chen, Y., Chuang, P. Y., Cohen, D. D.,
Dulac, F., Herut, B., Johansen, A. M., Kubilay, N., Losno, R., Maenhaut, W.,
Paytan, A., Prospero, J. M., Shank, L. M., and Siefert R. L.: Atmospheric
Iron Deposition: Global Distribution, Variability, and Human Perturbations,
Annu. Rev. Marine. Sci., 1, 245–278,
https://doi.org/10.1146/annurev.marine.010908.163727, 2009.
Mahowald, N., Albani, S., Kok, J. F., Engelstaeder, S., Scanza, R., Ward, D.
S., and Flanner, M. G.: The size distribution of desert dust aerosols and
its impact on the Earth system, Aeolian Res., 15, 53–71, https://doi.org/10.1016/j.aeolia.2013.09.002,2014.
Mahowald, N. M., Hamilton, D. S., Mackey, K. R. M., Moore, J. K., Baker, A.
R., Scanza, R. A., and Zhang, Y.: Aerosol trace metal leaching and impacts
on marine microorganisms, Nat. Commun., 9, 2614,
https://doi.org/10.1038/s41467-018-04970-7, 2018.
Markowski, G. R. and Filby, R.: Trace Element Concentration as a Function of
Particle Size in Fly Ash from a Pulverized Coal Utility Boiler, Environ.
Sci. Technol., 19, 796–804, https://doi.org/10.1021/es00139a005, 1985.
Martin, J. H. and Fitzwater, S.: Iron deficiency limits phytoplankton growth
in the north-east Pacific subarctic, Nature, 331, 947–975, 1988.
Matsui, H.: Development of a global aerosol model using a two-dimensional
sectional method: 1. Model design, J. Adv. Model. Earth Syst., 9,
1921–1947, https://doi.org/10.1002/2017ms000936, 2017.
Matsui, H., Koike, M., Kondo, Y., Fast, J. D., and Takigawa, M.: Development of an aerosol microphysical module: Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS), Atmos. Chem. Phys., 14, 10315–10331, https://doi.org/10.5194/acp-14-10315-2014, 2014.
Matsui, H. and Mahowald, N.: Development of a global aerosol model using a
two-dimensional sectional method: 2. Evaluation and sensitivity simulations,
J. Adv. Model. Earth Syst., 9, 1887–1920, https://doi.org/10.1002/2017ms000937, 2017.
Matsui, H., Hamilton, D. S., and Mahowald, N. M.: Black carbon radiative
effects highly sensitive to emitted particle size when resolving
mixing-state diversity, Nat. Commun., 9, 3446,
https://doi.org/10.1038/s41467-018-05635-1, 2018a.
Matsui, H., Mahowald, N. M., Moteki,
N., Hamilton, D. S., Ohata, S., Yoshida, A., Koike, M., Scanza, R. A., and
Flanner, M. G.: Anthropogenic combustion iron as a complex climate forcer,
Nat. Commun., 9, 1593, https://doi.org/10.1038/s41467-018-03997-0, 2018b.
Matsuki, A., Iwasaka, Y., Shi, G., Zhang, D., Trochkine, D., Yamada, M.,
Kim, Y.-S., Chen, B., Nagatani, T., Miyazawa, T., Nagatani, M., and Nakata,
H.: Morphological and chemical modification of mineral dust: Observational
insight into the heterogeneous uptake of acidic gases, Geophys. Res. Lett.,
32, L22806, https://doi.org/10.1029/2005GL024176, 2005.
Miki, Y., Ueda, S., Miura, K., Furutani, H., and Uematsu, M.: Atmospheric
Fe-containing particles over the North Pacific Ocean: The mixing states with
water soluble materials, Earozoru Kenkyu, 29, 104–111, 2014.
Mossop, S. C.: Stratospheric particles at 20 km, Nature, 199, 325–326,
https://doi.org/10.1016/0016-7037(65)90017-7, 1963.
Moteki, N. Adachi, K., Ohata, S., Yoshida, A., Harigaya, T., Koike, M., and
Kondo, Y.: Anthropogenic iron oxide aerosols enhance atmospheric heating,
Nat. Commun., 8, 15329, https://doi.org/10.1038/ncomms15329, 2017.
Myriokefalitakis, S., Ito, A., Kanakidou, M., Nenes, A., Krol, M. C., Mahowald, N. M., Scanza, R. A., Hamilton, D. S., Johnson, M. S., Meskhidze, N., Kok, J. F., Guieu, C., Baker, A. R., Jickells, T. D., Sarin, M. M., Bikkina, S., Shelley, R., Bowie, A., Perron, M. M. G., and Duce, R. A.: Reviews and syntheses: the GESAMP atmospheric iron deposition model intercomparison study, Biogeosciences, 15, 6659–6684, https://doi.org/10.5194/bg-15-6659-2018, 2018.
NOAA: HYSPLIT, NOAA [data],
https://www.ready.noaa.gov/HYSPLIT.php (last access: 8 March 2018), 2023.
Oakes, M., Ingall, E. D., Lai, B., Shafer, M. M., Hays, M. D., and Liu, Z.
G.: Iron solubility related to particle sulfur content in source emission
and ambient fine particles, Environ. Sci. Technol., 46,
6637–6644, https://doi.org/10.1021/es300701c, 2012.
Ohata, S., Yoshida, A., Moteki, N., Adachi, K., Takahashi, Y., Kurisu, M.,
and Koike, M.: Abundance of light-absorbing anthropogenic iron oxide
aerosols in the urban atmosphere and their emission sources, J. Geophys.
Res.-Atmos., 123, 8115–8134, https://doi.org/10.1029/2018JD028363, 2018.
Ojha, N., Sharma, A., Kumar, M., Girach, I., Ansari, T. U., Sharma, S. K.,
Singh, N., Pozzer, A., and Gunthe, S. S.: On the widespread enhancement in
fine particulate matter across the Indo-Gangetic Plain towards winter, Sci.
Rep., 10, 5862, https://doi.org/10.1038/s41598-020-62710-8, 2020.
Okada, K.: Nature of individual hygroscopic particles in the urban
atmosphere, J. Meteor. Soc. Japan, 61, 727–735, 1983.
Okada, K. and Hitzenberger, R. M.: Mixing properties of individual
submicrometer aerosol particles in Vienna, Atmos. Environ., 35, 5617–5628,
https://doi.org/10.1016/S1352-2310(01)00126-1, 2001.
Okada, K., Naruse, H., Tanaka, T., Nemoto, O., Iwasaka, Y., Wu, P.-M., Ono,
A., Duce, R. A., Uematsu, M., Merrill, J. T., and Arao, K.: X-ray
spectrometry of individual Asian dust-storm particles over the Japanese
islands and the North Pacific Ocean, Atmos. Environ., 24A, 1369–1378, https://doi.org/10.1016/0960-1686(90)90043-M, 1990.
Okada, K., Qin, Y., and Kai, K.: Elemental composition and mixing properties
of atmospheric mineral particles collected in Hohhot, China, Atmos. Res.,
73, 45–67, https://doi.org/10.1016/j.atmosres.2004.08.001, 2005.
Rathod, S. D., Hamilton, D. S., Mahowald, N. M., Klimont, Z., Corbett, J.
J., and Bond, T. C.: A mineralogy-based anthropogenic combustion-iron
emission inventory, J. Geophys. Res.-Atmos., 125, e2019JD032114, https://doi.org/10.1029/2019JD032114, 2020.
Rolph, G., Stein, A., and Stunder, B.: Real-time Environmental Applications
and Display sYstem: READY, Environ. Modell. Softw., 95, 210–228,
https://doi.org/10.1016/j.envsoft.2017.06.025, 2017.
Sakata, K., Kurisu, M., Takeichi, Y., Sakaguchi, A., Tanimoto, H., Tamenori, Y., Matsuki, A., and Takahashi, Y.: Iron (Fe) speciation in size-fractionated aerosol particles in the Pacific Ocean: The role of organic complexation of Fe with humic-like substances in controlling Fe solubility, Atmos. Chem. Phys., 22, 9461–9482, https://doi.org/10.5194/acp-22-9461-2022, 2022.
Sanderson, P., Su, S. S., Chang, I. T. H., Delgado Saborit, J. M.,
Kepaptsoglou, D. M., Weber, R. J. M., and Harrison, R. M.: Characterisation
of iron-rich atmospheric submicrometre particles in the roadside
environment, Atmos. Environ., 140, 167–175,
https://doi.org/10.1016/j.atmosenv.2016.05.040, 2016.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: from
air pollution to climate change, Second Edition, John Wiley & Sons, ISBN 9780471720188, 1203 pp., 2006.
Scanza, R. A., Hamilton, D. S., Perez Garcia-Pando, C., Buck, C., Baker, A., and Mahowald, N. M.: Atmospheric processing of iron in mineral and combustion aerosols: development of an intermediate-complexity mechanism suitable for Earth system models, Atmos. Chem. Phys., 18, 14175–14196, https://doi.org/10.5194/acp-18-14175-2018, 2018.
Schroth, A. W., Crusius, J., Sholkovitz, E. R., and Bostick, B. C.: Iron
solubility driven by speciation in dust sources to the ocean, Nat.
Geosci., 2, 337–340, https://doi.org/10.1038/ngeo501, 2009.
Sedwick, P. N., Sholkovitz, E. R., and Church, T. M.: Impact of
anthropogenic combustion emissions on the fractional solubility of aerosol
iron: Evidence from the Sargasso Sea, Geochem. Geophys. Geosyst., 8, Q10Q06,
https://doi.org/10.1029/2007GC001586, 2007.
Shi, Z., Krom, M. D., Bonneville, S., Baker, A. R., Jickells, T. D., and
Benning, L. G.: Formation of iron nanoparticles and increase in iron
reactivity in mineral dust during simulated cloud processing, Environ. Sci.
Technol., 43, 6592–6596, 2009.
Shi, Z., Krom, M. D., Jikells, T. D., Bonneville, S., Carslaw, K. S.,
Mihalopoulos, N., Baker, A. R., and Benning, L. G.: Impacts on iron
solubility in the mineral dust by processes in the source region and the
atmosphere: a review, Aeolian Res., 5, 21–42, https://doi.org/10.1016/j.aeolia.2012.03.001, 2012.
Shi, Z., Krom, M. D., Bonneville, S., and Benning, L. G.: Atmospheric
processing outside clouds increases soluble iron in mineral dust, Environ.
Sci. Technol., 49, 1472–1477, 2015.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D.,
and Ngan, F.: NOAA's HYSPLIT atmospheric transport and dispersion modeling
system, B. Am. Meteorol. Soc., 96, 2059–2077, https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Szumiata, T., Gzik-Szumiata, M., Brzózka, K., Górka, B.,
Gawroński, M., Świetlik, R., and Trojanowska, M.: Iron-containing
phases in fly ashes from different combustion systems, Nukleonika, 60,
151–154, https://doi.org/10.1515/nuka-2015-0030, 2015.
Takahashi, Y., Furukawa, T., Kanai, Y., Uematsu, M., Zheng, G., and Marcus, M. A.: Seasonal changes in Fe species and soluble Fe concentration in the atmosphere in the Northwest Pacific region based on the analysis of aerosols collected in Tsukuba, Japan, Atmos. Chem. Phys., 13, 7695–7710, https://doi.org/10.5194/acp-13-7695-2013, 2013.
Takigawa, M., Patra, P. K., Matsumi, Y., Dhaka, S. K., Nakayama, T., Yamaji,
K., Kajino, M., and Hayashida, S.: Can Delhi's pollution be affected by crop
fires in the Punjab Region?, SOLA, 16, 86–91, https://doi.org/10.2151/sola.2020-015,
2020.
Tomeczek, J. and Palugniok, H.: Kinetics of mineral matter transformation
during coal combustion, Fuel, 81, 1251–1258, https://doi.org/10.1016/S0016-2361(02)00027-3, 2002
Tsuda, A., Takeda, S., Saito, H., Nishioka, J., Nojiri, Y., Kudo, I., Kiyosawa, H., Shiomoto, A., Imai, K., Ono, T., Shimamoto, A., Tsumune, D., Yoshimura, T., Aono, T., Hinuma, A., Kinugasa, M., Suzuki, K.,
Sohrin, Y., Noiri, Y., Tani, H., Deguchi, Y., Tsurushima, N., Ogawa, H., Fukami, K., Kuma, K., and
Saino, T.: A mesoscale iron enrichment in the Western Subarctic Pacific
induces a large centric diatom bloom, Science, 300, 958–961,
https://doi.org/10.1126/science.1082000, 2003.
Tsuda, A., Takeda, S., Saito, H., Nishioka, J., Kudo, I., Nojiri, Y.,
Suzuki, K., Uematsu, M., Wells, M. L., Tsumune, D., Yoshimura, Y., Aono, T.,
Aramaki, T., Cochlan, W. P., Hayakawa, M., Imai, K., Isada, T., Iwamoto, Y.,
Johnson, W. K., Kameyama, S., Kato, S., Kiyosawa, H., Kondo, Y., Levasseur,
M., Machida, R. J., Nagao, I., Nakagawa, F., Nakanishi, T., Nakatsuka, S.,
Narita, A., Noiri, Y., Obata, H., Ogawa, H., Oguma, K., Ono, T., Sakuragi,
T., Sasakawa, M., Sato, M., Shimamoto, A., Takata, H., Trick, C. G.,
Watanabe, Y. W., Wong, C. S., and Yoshie, N.: Evidence for the grazing
hypothesis: grazing reduces phytoplankton responses of the HNLC ecosystem to
iron enrichment in the Western Subarctic Pacific (SEED II), J.
Oceanogr., 63, 983–994, https://doi.org/10.1007/s10872-007-0082-x, 2007.
Ueda, S.: Morphological change of solid ammonium sulfate particles below the
deliquescence relative humidity: Experimental reproduction of atmospheric
sulfate particle shapes, Aerosol Sci. Technol., 55, 423–437, https://doi.org/10.1080/02786826.2020.1864277, 2021.
Ueda, S., Osada, K., and Okada, K.: Mixing states of cloud interstitial
particles between water-soluble and insoluble materials at Mt. Tateyama,
Japan: Effect of meteorological conditions, Atmos. Res., 99, 325–336,
https://doi.org/10.1016/j.atmosres.2010.10.021, 2011a.
Ueda, S., Osada, K., and Takami, A.: Morphological features of
soot-containing particles internally mixed with water-soluble materials in
continental outflow observed at Cape Hedo, Okinawa, Japan, J. Geophys. Res.,
116, D17207, https://doi.org/10.1029/2010JD015565, 2011b.
Ueda, S., Nakayama, T., Taketani, F., Adachi, K., Matsuki, A., Iwamoto, Y., Sadanaga, Y., and Matsumi, Y.: Light absorption and morphological properties of soot-containing aerosols observed at an East Asian outflow site, Noto Peninsula, Japan, Atmos. Chem. Phys., 16, 2525–2541, https://doi.org/10.5194/acp-16-2525-2016, 2016.
Ueda, S., Osada, K., Hara, K., Yabuki, M., Hashihama, F., and Kanda, J.: Morphological features and mixing states of soot-containing particles in the marine boundary layer over the Indian and Southern oceans, Atmos. Chem. Phys., 18, 9207–9224, https://doi.org/10.5194/acp-18-9207-2018, 2018.
Ueda, S., Miki, Y., Kato, H., Miura, K., Nakayama, H., Furutani, H., and
Uematsu, M.: Internal structure of Asian dust particles over the western
North Pacific: analyses using focused ion beam and transmission electron
microscopy, Atmosphere, 11, 78, https://doi.org/10.3390/atmos11010078, 2020.
Ueda, S., Mori, T., Iwamoto, Y., Ushikubo, Y., and Miura, K.: Wetting
properties of fresh urban soot particles: Evaluation based on critical
supersaturation and observation of surface trace materials, Sci.
Total Environ., 811, 152274, https://doi.org/10.1016/j.scitotenv.2021.152274, 2022.
Uematsu, M., Duce, R. A., Prospero, J. M., Chen, L., Merrill, J. T., and
McDonald, R. L.: Transport of mineral aerosol from Asia over the North
Pacific Ocean, J. Geophys. Res., 88, 5343–5352,
https://doi.org/10.1029/JC088iC09p05343, 1983.
Umo, N. S., Wagner, R., Ullrich, R., Kiselev, A., Saathoff, H., Weidler, P. G., Cziczo, D. J., Leisner, T., and Möhler, O.: Enhanced ice nucleation activity of coal fly ash aerosol particles initiated by ice-filled pores, Atmos. Chem. Phys., 19, 8783–8800, https://doi.org/10.5194/acp-19-8783-2019, 2019.
Waanders, F. B., Vinken, E., Mans, A., and Mulaba-Bafubiandi, A. F.: Iron
minerals in coal, weathered coal and coal ash – SEM and Mössbauer
results, Hyperfine Interact., 148–149, 21–29,
https://doi.org/10.1023/B:HYPE.0000003760.89706.f6, 2003.
Waller, R. E., Brooks, A. G. F., and Cartwright, J.: An electron microscope
study of particles in town air, J. Air Wet. Pollut., 7, 779–785, 1963.
Wang, R., Balkanski, Y., Boucher, O., Bopp, L., Chappell, A., Ciais, P., Hauglustaine, D., Peñuelas, J., and Tao, S.: Sources, transport and deposition of iron in the global atmosphere, Atmos. Chem. Phys., 15, 6247–6270, https://doi.org/10.5194/acp-15-6247-2015, 2015.
Wiederhold, J. G., Kraemer, S. M., Teutsch, N., Borer, P. M., Halliday, A.
N., and Kretzschmar, R.: Iron isotope fractionation during proton-promoted,
ligand-controlled, and reductive dissolution of goethite, Environ. Sci.
Technol., 40, 3787–3793, 2006.
Wilson, T. R. S.: Salinity and the major elements of sea water, in Chemical
Oceanography 1, 2nd Edn., edited by: Riley, J. P. and Skirrow, G., 365–413, Elsevier, New York, ISBN 9780125886062, 1975.
Yao, Z. T., Ji, X. S., Sarker, P. K., Tang, J. H., Ge, L. Q., Xia, M. S.,
and Xi, Y. Q.: A comprehensive review on the applications of coal fly ash,
Earth Sci. Rev., 141, 105–121, https://doi.org/10.1016/j.earscirev.2014.11.016, 2015.
Zhang, D. and Iwasaka, Y.: Nitrate and sulfate in individual Asian
dust-storm particles in Beijing, China in spring of 1995 and 1996, Atmos.
Environ., 33, 3213–3223, https://doi.org/10.1016/S1352-2310(99)00116-8, 1999.
Zhang, X. Y., Gong, S. L., Shen, Z. X., Mei, F. M., Xi, X. X., Liu, L. C.,
Zhou, Z. J., Wang, D., Wang, Y. Q., and Cheng, Y.: Characterization of soil
dust aerosol in China and its transport and distribution during 2001
ACE-Asia: 1. Network observations, J. Geophys. Res., 108, 4261,
https://doi.org/10.1029/2002JD002632, 2003.
Zhao, C., Liu, X., Leung, L. R., Johnson, B., McFarlane, S. A., Gustafson Jr., W. I., Fast, J. D., and Easter, R.: The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: modeling sensitivities to dust emissions and aerosol size treatments, Atmos. Chem. Phys., 10, 8821–8838, https://doi.org/10.5194/acp-10-8821-2010, 2010.
Short summary
We examine iron in atmospheric fine aerosol particles collected over the Indian Ocean during shipborne observations in November 2018. Transmission electron microscopy analysis with water dialysis shows that various types of iron (fly ash, iron oxide, and mineral dust) co-exist with ammonium sulfate and that their solubility differs depending on the iron type. Using PM2.5 bulk samples and global model simulations, we elucidate their origins, aging, and implications for present iron simulations.
We examine iron in atmospheric fine aerosol particles collected over the Indian Ocean during...
Altmetrics
Final-revised paper
Preprint