Articles | Volume 22, issue 13
https://doi.org/10.5194/acp-22-9083-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-9083-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Secondary organic aerosol formation via multiphase reaction of hydrocarbons in urban atmospheres using CAMx integrated with the UNIPAR model
Zechen Yu
Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida,
Gainesville, FL, USA
Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida,
Gainesville, FL, USA
Soontae Kim
Department of Environmental and Safety Engineering, Ajou University, Suwon, South Korea
Kyuwon Son
Department of Environmental and Safety Engineering, Ajou University, Suwon, South Korea
Sanghee Han
Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida,
Gainesville, FL, USA
Azad Madhu
Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida,
Gainesville, FL, USA
Jinsoo Park
Air Quality Research Division, National Institute of Environmental
Research, Environmental Research Complex, Incheon, South Korea
Related authors
Qun Zhang, Wei Zhou, Shanshan Tang, Kai Huang, Jie Fu, Zechen Yu, Yunhe Teng, Shuyi Shen, Yang Mei, Xuezhi Yang, Jianjie Fu, and Guibin Jiang
Atmos. Chem. Phys., 25, 13475–13491, https://doi.org/10.5194/acp-25-13475-2025, https://doi.org/10.5194/acp-25-13475-2025, 2025
Short summary
Short summary
This article comprehensively investigates the aqueous-phase OH oxidation of benzothiazoles (BTs), common rubber additives widespread in urban air, through laboratory simulation experiments. BTs can rapidly degrade, leading to light absorption, high yields of sulfate, and the formation of oligomerized organic compounds. The results reveal that aqueous-phase BTs can contribute to secondary aerosols, altering the chemical and optical properties of atmospheric particles.
Yujin Jo, Myoseon Jang, Sanghee Han, Azad Madhu, Bonyoung Koo, Yiqin Jia, Zechen Yu, Soontae Kim, and Jinsoo Park
Atmos. Chem. Phys., 24, 487–508, https://doi.org/10.5194/acp-24-487-2024, https://doi.org/10.5194/acp-24-487-2024, 2024
Short summary
Short summary
The CAMx–UNIPAR model simulated the SOA budget formed via multiphase reactions of hydrocarbons and the impact of emissions and climate on SOA characteristics under California’s urban environments during winter 2018. SOA growth was dominated by daytime oxidation of long-chain alkanes and nighttime terpene oxidation with O3 and NO−3 radicals. The spatial distributions of anthropogenic SOA were affected by the northwesterly wind, whereas those of biogenic SOA were insensitive to wind directions.
Qun Zhang, Wei Zhou, Shanshan Tang, Kai Huang, Jie Fu, Zechen Yu, Yunhe Teng, Shuyi Shen, Yang Mei, Xuezhi Yang, Jianjie Fu, and Guibin Jiang
Atmos. Chem. Phys., 25, 13475–13491, https://doi.org/10.5194/acp-25-13475-2025, https://doi.org/10.5194/acp-25-13475-2025, 2025
Short summary
Short summary
This article comprehensively investigates the aqueous-phase OH oxidation of benzothiazoles (BTs), common rubber additives widespread in urban air, through laboratory simulation experiments. BTs can rapidly degrade, leading to light absorption, high yields of sulfate, and the formation of oligomerized organic compounds. The results reveal that aqueous-phase BTs can contribute to secondary aerosols, altering the chemical and optical properties of atmospheric particles.
Laura Hyesung Yang, Daniel J. Jacob, Ruijun Dang, Yujin J. Oak, Haipeng Lin, Jhoon Kim, Shixian Zhai, Nadia K. Colombi, Drew C. Pendergrass, Ellie Beaudry, Viral Shah, Xu Feng, Robert M. Yantosca, Heesung Chong, Junsung Park, Hanlim Lee, Won-Jin Lee, Soontae Kim, Eunhye Kim, Katherine R. Travis, James H. Crawford, and Hong Liao
Atmos. Chem. Phys., 24, 7027–7039, https://doi.org/10.5194/acp-24-7027-2024, https://doi.org/10.5194/acp-24-7027-2024, 2024
Short summary
Short summary
The Geostationary Environment Monitoring Spectrometer (GEMS) provides hourly measurements of NO2. We use the chemical transport model to find how emissions, chemistry, and transport drive the changes in NO2 observed by GEMS at different times of the day. In winter, the chemistry plays a minor role, and high daytime emissions dominate the diurnal variation in NO2, balanced by transport. In summer, emissions, chemistry, and transport play an important role in shaping the diurnal variation in NO2.
Jiwon Choi, Myoseon Jang, and Spencer Blau
Atmos. Chem. Phys., 24, 6567–6582, https://doi.org/10.5194/acp-24-6567-2024, https://doi.org/10.5194/acp-24-6567-2024, 2024
Short summary
Short summary
Persistent phenoxy radical (PPR), formed by phenol gas oxidation and its aqueous reaction, catalytically destroys O3 and retards secondary organic aerosol (SOA) growth. Explicit gas mechanisms including the formation of PPR and low-volatility products from the oxidation of phenol or benzene are applied to the UNIPAR model to predict SOA mass via multiphase reactions of precursors. Aqueous reactions of reactive organics increase SOA mass but retard SOA growth via heterogeneously formed PPR.
Azad Madhu, Myoseon Jang, and Yujin Jo
Atmos. Chem. Phys., 24, 5585–5602, https://doi.org/10.5194/acp-24-5585-2024, https://doi.org/10.5194/acp-24-5585-2024, 2024
Short summary
Short summary
Secondary organic aerosol (SOA) formation from branched alkanes (BAs) was simulated using the UNIPAR model, which predicted SOA growth via multiphase reactions of hydrocarbons, and compared with chamber data. Product distributions (PDs) of BAs were created by extrapolating PDs of linear alkanes (LAs). To account for methyl branching, an autoxidation reduction factor was applied to PDs. BAs in diesel fuel were shown to produce a higher proportion of SOA compared with LAs.
Jong-Uk Park, Hyun-Jae Kim, Jin-Soo Park, Jinsoo Choi, Sang Seo Park, Kangho Bae, Jong-Jae Lee, Chang-Keun Song, Soojin Park, Kyuseok Shim, Yeonsoo Cho, and Sang-Woo Kim
Atmos. Meas. Tech., 17, 197–217, https://doi.org/10.5194/amt-17-197-2024, https://doi.org/10.5194/amt-17-197-2024, 2024
Short summary
Short summary
The high-spatial-resolution NO2 vertical column densities (VCDs) were measured from airborne observations using the low-cost hyperspectral imaging sensor (HIS) at three industrial areas in South Korea with the newly developed versatile NO2 VCD retrieval algorithm apt to be applied to the instruments with volatile optical and radiometric properties. The airborne HIS observations emphasized the intensifying satellite sub-grid variability in NO2 VCDs near the emission sources.
Yujin Jo, Myoseon Jang, Sanghee Han, Azad Madhu, Bonyoung Koo, Yiqin Jia, Zechen Yu, Soontae Kim, and Jinsoo Park
Atmos. Chem. Phys., 24, 487–508, https://doi.org/10.5194/acp-24-487-2024, https://doi.org/10.5194/acp-24-487-2024, 2024
Short summary
Short summary
The CAMx–UNIPAR model simulated the SOA budget formed via multiphase reactions of hydrocarbons and the impact of emissions and climate on SOA characteristics under California’s urban environments during winter 2018. SOA growth was dominated by daytime oxidation of long-chain alkanes and nighttime terpene oxidation with O3 and NO−3 radicals. The spatial distributions of anthropogenic SOA were affected by the northwesterly wind, whereas those of biogenic SOA were insensitive to wind directions.
Bok H. Baek, Carlie Coats, Siqi Ma, Chi-Tsan Wang, Yunyao Li, Jia Xing, Daniel Tong, Soontae Kim, and Jung-Hun Woo
Geosci. Model Dev., 16, 4659–4676, https://doi.org/10.5194/gmd-16-4659-2023, https://doi.org/10.5194/gmd-16-4659-2023, 2023
Short summary
Short summary
To enable the direct feedback effects of aerosols and local meteorology in an air quality modeling system without any computational bottleneck, we have developed an inline meteorology-induced emissions coupler module within the U.S. Environmental Protection Agency’s Community Multiscale Air Quality modeling system to dynamically model the complex MOtor Vehicle Emission Simulator (MOVES) on-road mobile emissions inline without a separate dedicated emissions processing model like SMOKE.
Shixian Zhai, Daniel J. Jacob, Drew C. Pendergrass, Nadia K. Colombi, Viral Shah, Laura Hyesung Yang, Qiang Zhang, Shuxiao Wang, Hwajin Kim, Yele Sun, Jin-Soo Choi, Jin-Soo Park, Gan Luo, Fangqun Yu, Jung-Hun Woo, Younha Kim, Jack E. Dibb, Taehyoung Lee, Jin-Seok Han, Bruce E. Anderson, Ke Li, and Hong Liao
Atmos. Chem. Phys., 23, 4271–4281, https://doi.org/10.5194/acp-23-4271-2023, https://doi.org/10.5194/acp-23-4271-2023, 2023
Short summary
Short summary
Anthropogenic fugitive dust in East Asia not only causes severe coarse particulate matter air pollution problems, but also affects fine particulate nitrate. Due to emission control efforts, coarse PM decreased steadily. We find that the decrease of coarse PM is a major driver for a lack of decrease of fine particulate nitrate, as it allows more nitric acid to form fine particulate nitrate. The continuing decrease of coarse PM requires more stringent ammonia and nitrogen oxides emission controls.
Nadia K. Colombi, Daniel J. Jacob, Laura Hyesung Yang, Shixian Zhai, Viral Shah, Stuart K. Grange, Robert M. Yantosca, Soontae Kim, and Hong Liao
Atmos. Chem. Phys., 23, 4031–4044, https://doi.org/10.5194/acp-23-4031-2023, https://doi.org/10.5194/acp-23-4031-2023, 2023
Short summary
Short summary
Surface ozone, detrimental to human and ecosystem health, is very high and increasing in South Korea. Using a global model of the atmosphere, we found that emissions from South Korea and China contribute equally to the high ozone observed. We found that in the absence of all anthropogenic emissions over East Asia, ozone is still very high, implying that the air quality standard in South Korea is not practically achievable unless this background external to East Asia can be decreased.
Azad Madhu, Myoseon Jang, and David Deacon
Atmos. Chem. Phys., 23, 1661–1675, https://doi.org/10.5194/acp-23-1661-2023, https://doi.org/10.5194/acp-23-1661-2023, 2023
Short summary
Short summary
SOA formation is simulated using the UNIPAR model for series of linear alkanes. The inclusion of autoxidation reactions within the explicit gas mechanisms of C9–C12 was found to significantly improve predictions. Available product distributions were extrapolated with an incremental volatility coefficient (IVC) to predict SOA formation of alkanes without explicit mechanisms. These product distributions were used to simulate SOA formation from C13 and C15 and had good agreement with chamber data.
Sanghee Han and Myoseon Jang
Atmos. Chem. Phys., 23, 1209–1226, https://doi.org/10.5194/acp-23-1209-2023, https://doi.org/10.5194/acp-23-1209-2023, 2023
Short summary
Short summary
The diurnal pattern in biogenic secondary organic aerosol (SOA) formation is simulated by using the UNIPAR model, which predicts SOA growth via multiphase reactions of hydrocarbons under varying NOx levels, aerosol acidity, humidity, and temperature. The simulation suggests that nighttime SOA formation, even in urban environments, where anthropogenic emission is high, is dominated by products from ozonolysis and NO3-initiated oxidation of biogenic hydrocarbons.
Drew C. Pendergrass, Shixian Zhai, Jhoon Kim, Ja-Ho Koo, Seoyoung Lee, Minah Bae, Soontae Kim, Hong Liao, and Daniel J. Jacob
Atmos. Meas. Tech., 15, 1075–1091, https://doi.org/10.5194/amt-15-1075-2022, https://doi.org/10.5194/amt-15-1075-2022, 2022
Short summary
Short summary
This paper uses a machine learning algorithm to infer high-resolution maps of particulate air quality in eastern China, Japan, and the Korean peninsula, using data from a geostationary satellite along with meteorology. We then perform an extensive evaluation of this inferred air quality and use it to diagnose trends in the region. We hope this paper and the associated data will be valuable to other scientists interested in epidemiology, air quality, remote sensing, and machine learning.
Sanghee Han and Myoseon Jang
Atmos. Chem. Phys., 22, 625–639, https://doi.org/10.5194/acp-22-625-2022, https://doi.org/10.5194/acp-22-625-2022, 2022
Short summary
Short summary
The gasoline SOA formation potential was simulated by using the UNIPAR model coupled with CB6r3 mechanism under varying NOx levels, aerosol acidity, humidity, temperature, and concentrations of aqueous salts and gasoline vapor. The model predicts SOA formation via multiphase reactions in the absence of wall bias. The simulation shows that both heterogeneous reactions in the aqueous phase and the implementation of model parameters corrected for GWP are critical to accurately predict SOA mass.
Chinmoy Sarkar, Gracie Wong, Anne Mielnik, Sanjeevi Nagalingam, Nicole Jenna Gross, Alex B. Guenther, Taehyoung Lee, Taehyun Park, Jihee Ban, Seokwon Kang, Jin-Soo Park, Joonyoung Ahn, Danbi Kim, Hyunjae Kim, Jinsoo Choi, Beom-Keun Seo, Jong-Ho Kim, Jeong-Ho Kim, Soo Bog Park, and Saewung Kim
Atmos. Chem. Phys., 21, 11505–11518, https://doi.org/10.5194/acp-21-11505-2021, https://doi.org/10.5194/acp-21-11505-2021, 2021
Short summary
Short summary
We present experimental proofs illustrating the emission of an unexplored volatile organic compound, tentatively assigned as ketene, in an industrial facility in South Korea. The emission of such a compound has rarely been reported, but our experimental data show that the emission rate is substantial. It potentially has tremendous implications for regional air quality and public health, as it is highly reactive and toxic at the same time.
Hyun Cheol Kim, Soontae Kim, Mark Cohen, Changhan Bae, Dasom Lee, Rick Saylor, Minah Bae, Eunhye Kim, Byeong-Uk Kim, Jin-Ho Yoon, and Ariel Stein
Atmos. Chem. Phys., 21, 10065–10080, https://doi.org/10.5194/acp-21-10065-2021, https://doi.org/10.5194/acp-21-10065-2021, 2021
Short summary
Short summary
Global outbreaks of COVID-19 offer rare opportunities of natural experiments in emission control and corresponding responses of tropospheric chemistry. This study's novel approach investigates (1) isolating the pandemic's impact from natural and anthropogenic variations, (2) emission adjustment to reproduce real-time emissions, and (3) brute-force modeling to investigate Chinese economic activities. Results provide characteristics of the region's chemistry and emissions.
Cited articles
Alam, M. S., Zeraati-Rezaei, S., Liang, Z., Stark, C., Xu, H., MacKenzie, A. R., and Harrison, R. M.: Mapping and quantifying isomer sets of hydrocarbons (≥ C12) in diesel exhaust, lubricating oil and diesel fuel samples using GC × GC-ToF-MS, Atmos. Meas. Tech., 11, 3047–3058, https://doi.org/10.5194/amt-11-3047-2018, 2018.
Beardsley, R. L. and Jang, M.: Simulating the SOA formation of isoprene from partitioning and aerosol phase reactions in the presence of inorganics, Atmos. Chem. Phys., 16, 5993–6009, https://doi.org/10.5194/acp-16-5993-2016, 2016.
Benjey, W., Houyoux, M., and Susick, J.: Implementation of the SMOKE
emission data processor and SMOKE tool input data processor in models-3,
Presented at The Emission Inventory Conference, Denver, CO, 1–4 May, https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=63806&Lab=NERL (last access: 7 November 2021), 2001.
Boylan, J. W. and Russell, A. G.: PM and light extinction model performance
metrics, goals, and criteria for three-dimensional air quality models, Atmos.
Environ., 40, 4946–4959, 2006.
Budisulistiorini, S. H., Nenes, A., Carlton, A. G., Surratt, J. D., McNeill,
V. F., and Pye, H. O. T.: Simulating Aqueous-Phase Isoprene-Epoxydiol
(IEPOX) Secondary Organic Aerosol Production During the 2013 Southern
Oxidant and Aerosol Study (SOAS), Environ. Sci. Technol., 51, 5026–5034,
https://doi.org/10.1021/acs.est.6b05750, 2017.
Cao, G. and Jang, M.: An SOA Model for Toluene Oxidation in the Presence of
Inorganic Aerosols, Environ. Sci. Technol., 44, 727–733, 2010.
Carter, W. P.: Development of the SAPRC-07 chemical mechanism, Atmos.
Environ., 44, 5324–5335, 2010.
Chen, J., Zhao, C. S., Ma, N., Liu, P. F., Göbel, T., Hallbauer, E., Deng, Z. Z., Ran, L., Xu, W. Y., Liang, Z., Liu, H. J., Yan, P., Zhou, X. J., and Wiedensohler, A.: A parameterization of low visibilities for hazy days in the North China Plain, Atmos. Chem. Phys., 12, 4935–4950, https://doi.org/10.5194/acp-12-4935-2012, 2012.
Choi, S.-W., Kim, T., Lee, H.-K., Kim, H.-C., Han, J., Lee, K.-B., Lim,
E.-H., Shin, S.-H., Jin, H.-A., and Cho, E.: Analysis of the National Air
Pollutant Emission Inventory (CAPSS 2016) and the Major Cause of Change in
Republic of Korea, Asian Journal of Atmospheric Environment (AJAE), 14,
422–445, 2020.
Crawford, J. H., Ahn, J.-Y., Al-Saadi, J., Chang, L., Emmons, L. K., Kim,
J., Lee, G., Park, J.-H., Park, R. J., and Woo, J. H.: The Korea–United
States Air Quality (KORUS-AQ) field study, Elem. Sci. Anth., 9, 00163, https://doi.org/10.1525/elementa.2020.00163,
2021.
De Haan, D. O., Corrigan, A. L., Tolbert, M. A., Jimenez, J. L., Wood, S.
E., and Turley, J. J.: Secondary Organic Aerosol Formation by Self-Reactions
of Methylglyoxal and Glyoxal in Evaporating Droplets, Environ. Sci.
Technol., 43, 8184–8190, 2009.
Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67, https://doi.org/10.5194/gmd-3-43-2010, 2010.
Environ, R.: User's Guide Comprehensive Air Quality Model with Extensions
version 7.10, https://camx-wp.azurewebsites.net/Files/CAMxUsersGuide_v7.10.pdf (last access: 7 November 2021), 2020.
Ervens, B., Turpin, B. J., and Weber, R. J.: Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies, Atmos. Chem. Phys., 11, 11069–11102, https://doi.org/10.5194/acp-11-11069-2011, 2011.
Estillore, A. D., Hettiyadura, A. P. S., Qin, Z., Leckrone, E., Wombacher,
B., Humphry, T., Stone, E. A., and Grassian, V. H.: Water Uptake and
Hygroscopic Growth of Organosulfate Aerosol, Environ. Sci. Technol., 50,
4259–4268, https://doi.org/10.1021/acs.est.5b05014, 2016.
Farmer, D. K., Matsunaga, A., Docherty, K. S., Surratt, J. D., Seinfeld, J.
H., Ziemann, R. J., and Jimenez, J. L.: Response of an aerosol mass
spectrometer to organonitrates and organosulfates and implications for
atmospheric chemistry, P. Natl. Acad. Sci. USA, 107, 6670–6675,
https://doi.org/10.1073/pnas.0912340107, 2010.
Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH –Na+–SO –NO –Cl−–H2O aerosols, Atmos. Chem. Phys., 7, 4639–4659, https://doi.org/10.5194/acp-7-4639-2007, 2007.
Gentner, D. R., Jathar, S. H., Gordon, T. D., Bahreini, R., Day, D. A., El
Haddad, I., Hayes, P. L., Pieber, S. M., Platt, S. M., de Gouw, J.,
Goldstein, A. H., Harley, R. A., Jimenez, J. L., Prévôt, A. S. H.,
and Robinson, A. L.: Review of Urban Secondary Organic Aerosol Formation
from Gasoline and Diesel Motor Vehicle Emissions, Environ. Sci.
Technol., 51, 1074–1093, https://doi.org/10.1021/acs.est.6b04509, 2017.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009.
Han, S. and Jang, M.: Simulating impacts of gas-wall partitioning on SOA
formation using the explicit gas mechanism integrated with aerosol phase
reactions in the presence of electrolytes, Sci. Total Environ., 748, 141360,
https://doi.org/10.1016/j.scitotenv.2020.141360, 2020.
Han, S. and Jang, M.: Prediction of secondary organic aerosol from the multiphase reaction of gasoline vapor by using volatility–reactivity base lumping, Atmos. Chem. Phys., 22, 625–639, https://doi.org/10.5194/acp-22-625-2022, 2022.
Heald, C. L., Coe, H., Jimenez, J. L., Weber, R. J., Bahreini, R., Middlebrook, A. M., Russell, L. M., Jolleys, M., Fu, T.-M., Allan, J. D., Bower, K. N., Capes, G., Crosier, J., Morgan, W. T., Robinson, N. H., Williams, P. I., Cubison, M. J., DeCarlo, P. F., and Dunlea, E. J.: Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model, Atmos. Chem. Phys., 11, 12673–12696, https://doi.org/10.5194/acp-11-12673-2011, 2011.
Hutzell, W. T., Luecken, D. J., Appel, K. W., and Carter, W. P. L.:
Interpreting predictions from the SAPRC07 mechanism based on regional and
continental simulations, Atmos. Environ., 46, 417–429,
https://doi.org/10.1016/j.atmosenv.2011.09.030, 2012.
Im, Y., Jang, M., and Beardsley, R. L.: Simulation of aromatic SOA formation using the lumping model integrated with explicit gas-phase kinetic mechanisms and aerosol-phase reactions, Atmos. Chem. Phys., 14, 4013–4027, https://doi.org/10.5194/acp-14-4013-2014, 2014.
IPCC: Climate change 2014: mitigation of climate change, Cambridge
University Press, https://www.ipcc.ch/report/ar5/wg3/ (last access: 7 November 2021), 2015.
Jang, M. and Kamens, R. M.: A Thermodynamic Approach for Modeling
Partitioning of Semivolatile Organic Compounds on Atmospheric Particulate
Matter: Humidity Effects, Environ. Sci. Technol., 32, 1237–1243, 1998.
Jang, M. and Kamens, R. M.: Atmospheric Secondary Aerosol Formation by
Heterogeneous Reactions of Aldehydes in the Presence of a Sulfuric Acid
Aerosol Catalyst, Environ. Sci. Technol., 35, 4758–4766, 2001.
Jang, M., Kamens, R. M., Leach, K. B., and Strommen, M. R.: A thermodynamic approach using group contribution methods to model the partitioning of semivolatile organic compounds on atmospheric particulate matter, Environ. Sci. Technol., 31, 2805–2811, 1997.
Jang, M., Czoschke, N. M., Lee, S., and Kamens, R. M.: Heterogeneous
Atmospheric Aerosol Production by Acid- Catalyzed Particle-Phase Reactions,
Science, 298, 814–817, 2002.
Jang, M., Sun, S., Winslow, R., Han, S., and Yu, Z.: In situ aerosol acidity
measurements using a UV–Visible micro-spectrometer and its application to
the ambient air, Aerosol Sci. Tech., 54, 446–461,
https://doi.org/10.1080/02786826.2020.1711510, 2020.
Jang, Y., Lee, Y., Kim, J., Kim, Y., and Woo, J.-H.: Improvement China point
source for improving bottom-up emission inventory, Asia-Pac. J.
Atmos. Sci., 56, 107–118, 2020.
Jenkin, M. E.: Modelling the formation and composition of secondary organic aerosol from α- and β-pinene ozonolysis using MCM v3, Atmos. Chem. Phys., 4, 1741–1757, https://doi.org/10.5194/acp-4-1741-2004, 2004.
Jenkin, M. E., Wyche, K. P., Evans, C. J., Carr, T., Monks, P. S., Alfarra, M. R., Barley, M. H., McFiggans, G. B., Young, J. C., and Rickard, A. R.: Development and chamber evaluation of the MCM v3.2 degradation scheme for β-caryophyllene, Atmos. Chem. Phys., 12, 5275–5308, https://doi.org/10.5194/acp-12-5275-2012, 2012.
Jiang, J., El Haddad, I., Aksoyoglu, S., Stefenelli, G., Bertrand, A., Marchand, N., Canonaco, F., Petit, J.-E., Favez, O., Gilardoni, S., Baltensperger, U., and Prévôt, A. S. H.: Influence of biomass burning vapor wall loss correction on modeling organic aerosols in Europe by CAMx v6.50, Geosci. Model Dev., 14, 1681–1697, https://doi.org/10.5194/gmd-14-1681-2021, 2021.
Kalberer, M., Paulsen, D., Sax, M., Steinbacher, M., Dommen, J., Prevot, A.
S. H., Fisseha, R., Weingartner, E., Frankevich, V., Zenobi, R., and
Baltensperger, U.: Identification of Polymers as Major Components of
Atmospheric Organic Aerosols, Science, 303, 1659–1662, 2004.
Kim, H., Zhang, Q., and Heo, J.: Influence of intense secondary aerosol formation and long-range transport on aerosol chemistry and properties in the Seoul Metropolitan Area during spring time: results from KORUS-AQ, Atmos. Chem. Phys., 18, 7149–7168, https://doi.org/10.5194/acp-18-7149-2018, 2018.
Kleindienst, T. E., Edney, E. O., Lewandowski, M., Offenberg, J. H., and
Jaoui, M.: Secondary Organic Carbon and Aerosol Yields from the Irradiations
of Isoprene and a-Pinene in the Presence of NOx and SO2, Environ.
Sci. Technol., 40, 3807–3812, https://doi.org/10.1029/2005JD006004 2005, 110,
2006.
Knote, C., Hodzic, A., Jimenez, J. L., Volkamer, R., Orlando, J. J., Baidar, S., Brioude, J., Fast, J., Gentner, D. R., Goldstein, A. H., Hayes, P. L., Knighton, W. B., Oetjen, H., Setyan, A., Stark, H., Thalman, R., Tyndall, G., Washenfelder, R., Waxman, E., and Zhang, Q.: Simulation of semi-explicit mechanisms of SOA formation from glyoxal in aerosol in a 3-D model, Atmos. Chem. Phys., 14, 6213–6239, https://doi.org/10.5194/acp-14-6213-2014, 2014.
Kuwata, M., Shao, W., Lebouteiller, R., and Martin, S. T.: Classifying organic materials by oxygen-to-carbon elemental ratio to predict the activation regime of Cloud Condensation Nuclei (CCN), Atmos. Chem. Phys., 13, 5309–5324, https://doi.org/10.5194/acp-13-5309-2013, 2013.
Lee, D.-G., Lee, Y.-M., Jang, K.-W., Yoo, C., Kang, K.-H., Lee, J.-H., Jung,
S.-W., Park, J.-M., Lee, S.-B., and Han, J.-S.: Korean national emissions
inventory system and 2007 air pollutant emissions, Asian Journal of
Atmospheric Environment, 5, 278–291, 2011.
Lewandowski, M., Jaoui, M., Offenberg, J. H., Krug, J. D., and Kleindienst, T. E.: Atmospheric oxidation of isoprene and 1,3-butadiene: influence of aerosol acidity and relative humidity on secondary organic aerosol, Atmos. Chem. Phys., 15, 3773–3783, https://doi.org/10.5194/acp-15-3773-2015, 2015.
Li, J., Jang, M., and Beardsley, R.: Dialkylsulfate Formation in Sulfuric
Acid Seeded Secondary Organic Aerosol Produced Using an Outdoor Chamber
Under Natural Sunlight, Environ. Chem., 13, 590–601,
https://doi.org/10.1071/EN15129, 2015.
Li, J., Zhang, H., Ying, Q., Wu, Z., Zhang, Y., Wang, X., Li, X., Sun, Y., Hu, M., Zhang, Y., and Hu, J.: Impacts of water partitioning and polarity of organic compounds on secondary organic aerosol over eastern China, Atmos. Chem. Phys., 20, 7291–7306, https://doi.org/10.5194/acp-20-7291-2020, 2020.
Liggio, J., Li, S.-M., and McLaren, R.: Heterogeneous Reactions of Glyoxal
on Particulate Matter: Identification of Acetals and Sulfate Esters,
Environ. Sci. Technol., 39, 1532–1541, 2005.
Limbeck, A., Kulmala, M., and Puxbaum, H.: Secondary organic aerosol
formation in the atmosphere via heterogenous reaction of gaseous isoprene on
acidic particles, Geophys. Res. Lett., 30, 1996, https://doi.org/10.1029/2003GL017738, 2003.
Marais, E. A., Jacob, D. J., Jimenez, J. L., Campuzano-Jost, P., Day, D. A., Hu, W., Krechmer, J., Zhu, L., Kim, P. S., Miller, C. C., Fisher, J. A., Travis, K., Yu, K., Hanisco, T. F., Wolfe, G. M., Arkinson, H. L., Pye, H. O. T., Froyd, K. D., Liao, J., and McNeill, V. F.: Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO2 emission controls, Atmos. Chem. Phys., 16, 1603–1618, https://doi.org/10.5194/acp-16-1603-2016, 2016.
McDonald, B. C., de Gouw, J. A., Gilman, J. B., Jathar, S. H., Akherati, A.,
Cappa, C. D., Jimenez, J. L., Lee-Taylor, J., Hayes, P. L., and McKeen, S.
A.: Volatile chemical products emerging as largest petrochemical source of
urban organic emissions, Science, 359, 760–764, 2018.
Meroni, A., Pirovano, G., Gilardoni, S., Lonati, G., Colombi, C., Gianelle,
V., Paglione, M., Poluzzi, V., Riva, G. M., and Toppetti, A.: Investigating
the role of chemical and physical processes on organic aerosol modelling
with CAMx in the Po Valley during a winter episode, Atmos. Environ., 171,
126–142, https://doi.org/10.1016/j.atmosenv.2017.10.004, 2017.
Nault, B. A., Campuzano-Jost, P., Day, D. A., Jo, D. S., Schroder, J. C.,
Allen, H. M., Bahreini, R., Bian, H., Blake, D. R., and Chin, M.: Chemical
transport models often underestimate inorganic aerosol acidity in remote
regions of the atmosphere, Communications Earth & Environment, 2, 1–13,
2021.
Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., and
Seinfeld, J. H.: Gas/Particle Partitioning and Secondary Organic Aerosol
Yields, Environ. Sci. Technol., 30, 2580–2585, 1996.
Pankow, J. F.: An absorption model of the gas/aerosol partitioning involved
in the formation of secondary organic aerosol, Atmos. Environ., 28, 189–193,
1994.
Park, E. H., Heo, J., Hirakura, S., Hashizume, M., Deng, F., Kim, H., and
Yi, S.-M.: Characteristics of PM2.5 and its chemical constituents in
Beijing, Seoul, and Nagasaki, Air Qual., Atmos. Health, 11, 1167–1178,
https://doi.org/10.1007/s11869-018-0616-y, 2018.
Park, R. J., Oak, Y. J., Emmons, L. K., Kim, C.-H., Pfister, G. G.,
Carmichael, G. R., Saide, P. E., Cho, S.-Y., Kim, S., Woo, J.-H., Crawford,
J. H., Gaubert, B., Lee, H.-J., Park, S.-Y., Jo, Y.-J., Gao, M., Tang, B.,
Stanier, C. O., Shin, S. S., Park, H. Y., Bae, C., and Kim, E.: Multi-model
intercomparisons of air quality simulations for the KORUS-AQ campaign,
Elementa: Science of the Anthropocene, 9, 00139,
https://doi.org/10.1525/elementa.2021.00139, 2021.
Perrone, M. G., Carbone, C., Faedo, D., Ferrero, L., Maggioni, A.,
Sangiorgi, G., and Bolzacchini, E.: Exhaust emissions of polycyclic aromatic
hydrocarbons, n-alkanes and phenols from vehicles coming within different
European classes, Atmos. Environ., 82, 391–400, 2014.
Pye, H. O. T., Pinder, R. W., Piletic, I. R., Xie, Y., Capps, S. L., Lin,
Y.-H., Surratt, J. D., Zhang, Z., Gold, A., Luecken, D. J., Hutzell, W. T.,
Jaoui, M., Offenberg, J. H., Kleindienst, T. E., Lewandowski, M., and Edney,
E. O.: Epoxide Pathways Improve Model Predictions of Isoprene Markers and
Reveal Key Role of Acidity in Aerosol Formation, Environ. Sci. Technol., 47,
11056–11064, https://doi.org/10.1021/es402106h, 2013.
Pye, H. O. T., Murphy, B. N., Xu, L., Ng, N. L., Carlton, A. G., Guo, H., Weber, R., Vasilakos, P., Appel, K. W., Budisulistiorini, S. H., Surratt, J. D., Nenes, A., Hu, W., Jimenez, J. L., Isaacman-VanWertz, G., Misztal, P. K., and Goldstein, A. H.: On the implications of aerosol liquid water and phase separation for organic aerosol mass, Atmos. Chem. Phys., 17, 343–369, https://doi.org/10.5194/acp-17-343-2017, 2017.
Ren, J., Zhang, F., Wang, Y., Collins, D., Fan, X., Jin, X., Xu, W., Sun, Y., Cribb, M., and Li, Z.: Using different assumptions of aerosol mixing state and chemical composition to predict CCN concentrations based on field measurements in urban Beijing, Atmos. Chem. Phys., 18, 6907–6921, https://doi.org/10.5194/acp-18-6907-2018, 2018.
Requia, W. J., Higgins, C. D., Adams, M. D., Mohamed, M., and Koutrakis, P.:
The health impacts of weekday traffic: A health risk assessment of PM2.5
emissions during congested periods, Environ. Int., 111, 164–176,
https://doi.org/10.1016/j.envint.2017.11.025, 2018.
Schell, B., Ackermann, I. J., Hass, H., Binkowski, F. S., and Ebel, A.:
Modeling the formation of secondary organic aerosol within a comprehensive
air quality model system, J. Geophys. Res.-Atmos., 106,
28275–28293, 2001.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: from
air pollution to climate change, 2nd edn., John Wiley & Sons, ISBN 0-471-17815-2,
2016.
Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T., Müller, J.-F., Kuhn, U., Stefani, P., and Knorr, W.: Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years, Atmos. Chem. Phys., 14, 9317–9341, https://doi.org/10.5194/acp-14-9317-2014, 2014.
Sumner, A. J., Woo, J. L., and McNeill, V. F.: Model Analysis of Secondary
Organic Aerosol Formation by Glyoxal in Laboratory Studies: The Case for
Photoenhanced Chemistry, Environ. Sci. Technol., 48, 11919–11925,
https://doi.org/10.1021/es502020j, 2014.
Surratt, J. D., Kroll, J. H., Kleindienst, T. E., Edney, E. O., Claeys, M.,
Sorooshian, A., Ng, N. L., Offenberg, J. H., Lewandowski, M., Jaoui, M.,
Flagan, R. C., and Seinfeld, J. H.: Evidence for Organosulfates in Secondary
Organic Aerosol, Environ. Sci. Technol., 41, 517–527, 2007.
Tanaka, P. L., Allen, D. T., McDonald-Buller, E. C., Chang, S., Kimura, Y.,
Mullins, C. B., Yarwood, G., and Neece, J. D.: Development of a chlorine
mechanism for use in the carbon bond IV chemistry model, J.
Geophys. Res.-Atmos., 108, 4145, https://doi.org/10.1029/2002JD002432, 2003.
Tobias, H. J. and Ziemann, P. J.: Thermal Desorption Mass Spectrometric
Analysis of Organic Aerosol Formed from Reactions of 1-Tetradecene and O3 in
the Presence of Alcohols and Carboxylic Acids, Environ. Sci. Technol., 34,
2105–2115, 2000.
Tolocka, M. P., Jang, M., Ginter, J. M., Cox, F. J., Kamens, R. M., and
Johnston, M. V.: Formation of Oligomers in Secondary Organic Aerosol,
Environ. Sci. Technol., 38, 1428–1434, 2004.
Volkamer, R., San Martini, F., Molina, L. T., Salcedo, D., Jimenez, J. L.,
and Molina, M. J.: A missing sink for gas-phase glyoxal in Mexico City:
formation of secondary organic aerosol, Geophys. Res. Lett., 34,
L19807, https://doi.org/10.1029/2007gl030752, 2007.
Volkamer, R., Ziemann, P. J., and Molina, M. J.: Secondary Organic Aerosol Formation from Acetylene (C2H2): seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase, Atmos. Chem. Phys., 9, 1907–1928, https://doi.org/10.5194/acp-9-1907-2009, 2009.
Witkowski, B., Al-sharafi, M., and Gierczak, T.: Kinetics of Limonene
Secondary Organic Aerosol Oxidation in the Aqueous Phase, Environ. Sci.
Technol., 52, 11583–11590, https://doi.org/10.1021/acs.est.8b02516, 2018.
Worton, D. R., Isaacman, G., Gentner, D. R., Dallmann, T. R., Chan, A. W.,
Ruehl, C., Kirchstetter, T. W., Wilson, K. R., Harley, R. A., and Goldstein,
A. H.: Lubricating oil dominates primary organic aerosol emissions from
motor vehicles, Environ. Sci. Technol., 48, 3698–3706, 2014.
Yarwood, G., Whitten, G. Z., and Rao, S.: Updates to the Carbon Bond 4
photochemical mechanism, Environ. Int. Corp, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.616.4133&rep=rep1&type=pdf (last access: 7 November 2021), 2005.
Yarwood, G., Jung, J., Whitten, G. Z., Heo, G., Mellberg, J., and Estes, M.:
Updates to the Carbon Bond Mechanism for Version 6 (CB6), 2010 CMAS
Conference, Chapel Hill, NC, 11–13 October 2010, http://www.cmascenter.org/conference/2010/abstracts/emery_updates_carbon_2010.pdf (last access: 7 November 2021), 2010.
Yu, Z., Jang, M., Kim, S., Bae, C., Koo, B., Beardsley, R., Park, J., Chang,
L. S., Lee, H. C., Lim, Y.-K., and Cho, J. H.: Simulating the Impact of
Long-Range-Transported Asian Mineral Dust on the Formation of Sulfate and
Nitrate during the KORUS-AQ Campaign, ACS Earth Space Chem., 4,
1039–1049, https://doi.org/10.1021/acsearthspacechem.0c00074, 2020.
Yu, Z., Jang, M., and Madhu, A.: Prediction of Phase State of Secondary
Organic Aerosol Internally Mixed with Aqueous Inorganic Salts, J.
Phys. Chem. A, 125, 10198–10206, https://doi.org/10.1021/acs.jpca.1c06773,
2021a.
Yu, Z., Jang, M., Zhang, T., Madhu, A., and Han, S.: Simulation of
Monoterpene SOA Formation by Multiphase Reactions Using Explicit Mechanisms,
ACS Earth Space Chem., 5, 1455–1467, https://doi.org/10.1021/acsearthspacechem.1c00056,
2021b.
Zhou, C., Jang, M., and Yu, Z.: Simulation of SOA formation from the photooxidation of monoalkylbenzenes in the presence of aqueous aerosols containing electrolytes under various NOx levels, Atmos. Chem. Phys., 19, 5719–5735, https://doi.org/10.5194/acp-19-5719-2019, 2019.
Short summary
The UNIPAR model was incorporated into CAMx to predict the ambient concentration of organic matter in urban atmospheres during the KORUS-AQ campaign. CAMx–UNIPAR significantly improved the simulation of SOA formation under the wet aerosol condition through the consideration of aqueous reactions of reactive organic species and gas–aqueous partitioning into the wet inorganic aerosol.
The UNIPAR model was incorporated into CAMx to predict the ambient concentration of organic...
Altmetrics
Final-revised paper
Preprint