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Abstract. The prediction of secondary organic aerosol (SOA) on regional scales is traditionally performed by
using gas–particle partitioning models. In the presence of inorganic salted wet aerosols, aqueous reactions of
semivolatile organic compounds can also significantly contribute to SOA formation. The UNIfied Partitioning-
Aerosol phase Reaction (UNIPAR) model utilizes the explicit gas mechanism to better predict SOA formation
from multiphase reactions of hydrocarbons. In this work, the UNIPAR model was incorporated with the Compre-
hensive Air Quality Model with Extensions (CAMx) to predict the ambient concentration of organic matter (OM)
in urban atmospheres during the Korean-United States Air Quality (2016 KORUS-AQ) campaign. The SOA mass
predicted with CAMx–UNIPAR changed with varying levels of humidity and emissions and in turn has the po-
tential to improve the accuracy of OM simulations. CAMx–UNIPAR significantly improved the simulation of
SOA formation under the wet condition, which often occurred during the KORUS-AQ campaign, through the
consideration of aqueous reactions of reactive organic species and gas–aqueous partitioning. The contribution
of aromatic SOA to total OM was significant during the low-level transport/haze period (24–31 May 2016)
because aromatic oxygenated products are hydrophilic and reactive in aqueous aerosols. The OM mass pre-
dicted with CAMx–UNIPAR was compared with that predicted with CAMx integrated with the conventional
two-product model (SOAP). Based on estimated statistical parameters to predict OM mass, the performance of
CAMx–UNIPAR was noticeably better than that of the conventional CAMx model, although both SOA mod-
els underestimated OM compared to observed values, possibly due to missing precursor hydrocarbons such as
sesquiterpenes, alkanes, and intermediate volatile organic compounds (VOCs). The CAMx–UNIPAR simulation
suggested that in the urban areas of South Korea, terpene and anthropogenic emissions significantly contribute
to SOA formation while isoprene SOA minimally impacts SOA formation.
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1 Introduction

The formation of secondary organic aerosol (SOA) has
gained substantial interest from researchers because of its im-
portant impact on climate change (IPCC, 2015; Seinfeld and
Pandis, 2016), urban visibility (Chen et al., 2012; Ren et al.,
2018), and human health (Requia et al., 2018). In urban at-
mospheres, emissions from industries, fuel combustion, and
motor vehicles are major contributors to the observed con-
centrations of organic aerosol via both primary emissions and
SOA formation (Gentner et al., 2017).

SOA forms via traditional gas–particle partitioning (Odum
et al., 1996) of oxygenated products formed from hydrocar-
bon (HC) photooxidation. Additionally, the heterogeneous
chemistry of these oxidized carbons in the aerosol phase
significantly contributes to SOA burdens (Hallquist et al.,
2009; Kalberer et al., 2004; Tolocka et al., 2004). These reac-
tions include condensation reactions between organic species
(i.e., hemiacetal/acetal formation and aldol condensation)
(Jang et al., 2002; Jang and Kamens, 2001; Tobias and Zie-
mann, 2000), reactions of organics with water (i.e., hydra-
tion of aldehydes and hydrolysis of epoxy products) (Jang
et al., 2002; Hallquist et al., 2009; De Haan et al., 2009),
and the formation of organonitrates (Farmer et al., 2010)
and organosulfates (OS) (Surratt et al., 2007). The contribu-
tion of heterogeneous chemistry to SOA growth has a larger
role in the presence of electrolytic wet aerosol (Volkamer
et al., 2007; Volkamer et al., 2009). Polar organic species
can dissolve in the aerosol aqueous phase induced by hy-
groscopic sulfate and increase SOA mass by forming non-
volatile oligomeric matter. Additionally, the aerosol acidity
associated with wet inorganic sulfate can catalyze aqueous
reactions of organic species (Jang and Kamens, 2001; Jang et
al., 2002; Kuwata et al., 2013; Limbeck et al., 2003; Kleindi-
enst et al., 2006; Lewandowski et al., 2015; Hallquist et al.,
2009). Few models account for aqueous reactions of several
products (i.e., glyoxal and IEPOX (epoxy diols form isoprene
products)) that potentially may significantly impact SOA for-
mation (Ervens et al., 2011; Sumner et al., 2014; Budisulis-
tiorini et al., 2017; Knote et al., 2014). However, current
models poorly integrate the multiphase chemistry of many
other organics into SOA mass predictions. In particular, the
model applied to regional scales suffers from a substantial
negative bias under high-humidity conditions (Heald et al.,
2011; Pye et al., 2017; Li et al., 2020). Park et al. (2021) ex-
tensively evaluated the prediction of the organic aerosol pro-
duced during the KORUS-AQ campaign by using different
air quality models, which were varying in chemistry mech-
anisms, aerosol thermodynamics, the types of SOA precur-
sors, and the SOA schemes. In their study, the SOA forma-
tion was simulated with the SOAP, the four-bin-base volatil-
ity basis set (VBS), or the five-bin-base VBS modules. The
predicted organic aerosol masses were, however, underesti-
mated compared to observation data (HR-ToF-AMS), sug-
gesting the limitation of the current SOA modules. The SOA

model, such as the partitioning-based two-product model,
has no feature for SOA formation via aqueous phase reac-
tions of different oxygenated products formed from various
HCs.

The UNIfied Partitioning-Aerosol phase Reaction (UNI-
PAR) model was developed by Im et al. (2014) to predict
SOA mass based on multiphase reactions of toluene and
1,3,5-trimethylbenzene. In the UNIPAR model, the products
predicted using explicit gas mechanisms are lumped based
on volatility and emerging chemistry in the aerosol phase.
This UNIPAR model has been extended to various SOAs
originating from isoprene, terpenes, aromatics, and gasoline
and demonstrated through the extensive photochemical out-
door smog chamber data (Beardsley and Jang, 2016; Cao and
Jang, 2010; Zhou et al., 2019; Yu et al., 2021b; Han and
Jang, 2022). The model parameters linked to thermodynamic
properties and aerosol chemistry are also estimated accord-
ing to lumped species characteristics. By exploiting the ex-
plicit structures of oxygenated products, the UNIPAR model
is capable of processing aerosol chemistry to simulate SOA
formation at different phase states (i.e., dry and wet) of salted
aerosol in the setting of various air pollutant emissions (hy-
drocarbons, NOx , and SO2).

In this study, the UNIPAR model was incorporated with
CAMx (comprehensive air quality model with extensions,
v7.10) (Environ, 2020) to predict SOA formation on regional
scales during the Korea–United States Air Quality (KORUS-
AQ) campaign that took place between 10 May 2016
and 10 June 2016. During this campaign, inorganic salted
aerosols present at four locations across three cities (Seoul,
Daejeon, and Gwangju) were wet for the majority of days
due to high humidity levels during the nighttime and humid-
ity levels above the efflorescent humidity level during the
daytime. In this way, field data accurately portrayed the im-
portance of aqueous phase reactions to predict SOA burdens
in ambient air. The organic matter (OM) mass predicted with
CAMx–UNIPAR was compared with that predicted with
CAMx integrated into the conventional two-product model
(Odum et al., 1996).

2 Methods

2.1 Integration of UNIPAR with CAMx

The CAMx regional air quality model v7.1 (Environ, 2020)
was incorporated with the UNIPAR model as a sub-model
to simulate SOA formation during the KORUS-AQ cam-
paign. Figure 1 illustrates the overall scheme of the inte-
gration of the UNIPAR model into CAMx v7.1. For com-
parison, CAMx was simulated with the pre-existing SOAP
model by using the two-product model (Odum et al., 1996).
CAMx internally maps SOA precursors to their gas oxida-
tion mechanism, which uses the State Air Pollution Research
Center 07TC (SAPRC07TC) (Hutzell et al., 2012). For both
CAMx–UNIPAR and CAMx–SOAP used within this study,
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SOA mass was predicted based on the atmospheric oxidation
of aromatics, terpenes, and isoprene. The lumping species
in the UNIPAR model were constructed using explicit gas
mechanisms that enabled the flexible treatment of multiphase
partitioning and aerosol chemistry. Furthermore, the multi-
phase reaction pathways of organics are important sources
of model bias. As a result, the UNIPAR model will improve
our ability to accurately estimate SOA mass, which is un-
derpredicted by current regional models. The description of
the UNIPAR SOA module is illustrated in Sect. 2.2. For in-
organic aerosol species, ISORROPIA calculates the aerosol
bulk composition at equilibrium. The SOA mass products
sink by dry deposition at the first atmospheric layer to the
surface via an irreversible first-order flux.

2.2 UNIPAR SOA model

The configuration of the UNIPAR model for SOA forma-
tion from each precursor has been described in prior stud-
ies (Beardsley and Jang, 2016; Im et al., 2014; Cao and
Jang, 2010; Zhou et al., 2019; Yu et al., 2021b; Han and
Jang, 2022). The predetermined mathematical equations and
the model parameters employed in the UNIPAR model have
been evaluated in the UF-APHOR chamber for various aro-
matic volatile organic compounds (VOCs) and biogenic
VOCs (terpenes and isoprene) under varying aqueous salted
seeds, NOx , SO2, humidity levels, and temperatures. The
model equations and parameters used in the UNIPAR model
of this study are reported in Sect. S1 of the Supplement.
In brief, the key components of the UNIPAR model are de-
scribed as follows,

1. SOA formation via aqueous phase reactions of organic
species is simulated based on the assumption of liquid–
liquid phase separation (LLPS) between the organic
phase and the salted inorganic solution (Yu et al., 2021a;
Im et al., 2014). SOA formation is processed via mul-
tiphase partitioning, organic phase oligomerization, and
aqueous phase reactions in wet inorganic salted aerosol.

2. The UNIPAR model employs a predetermined math-
ematical equation to dynamically construct the lump-
ing array, which is linked to the stoichiometric coef-
ficient array of oxygenated products predicted by us-
ing near-explicit gas mechanisms (MCM v3.3.1 (Jenkin,
2004)) for each precursor. The resulting lumping groups
are applied to gas–particle partitioning and heteroge-
neous reactions in the aerosol phase based on eight
volatility (10−8, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1,
and 10−0 in mmHg) and six reactivity categories de-
fined by their emerging chemistry. These categories
are non-reactive (P), slow (S), medium (M), fast (F),
very fast (VF), and multifunctional alcohols (MA).
Explicit species in UNIPAR lumping include glyoxal
(Gly), methylglyoxal (MGly), and isoprene epoxydiols
(IEPOX). The UNIPAR model of this study includes

151 lumping species, of which 50 originate from 10 aro-
matics (benzene, toluene, ethylbenzene, propylbenzene,
o-xylene, m-xylene, p-xylene, 1,2,3-timethylbenzene,
1,2,4-timethylbenzene, and 1,3,5-timethylbenzene), 50
originate from terpenes, and 51 originate from isoprene.

3. The stoichiometric coefficient array replicates the influ-
ence of NOx on SOA formation by capturing the RO2
chemistry between RO2+NO reactions and RO2+HO2
reactions under varying NOx environments. Addition-
ally, the stoichiometric coefficient array captures dy-
namically modulated gas under various concentrations
of RO2 and HO2 and levels of NOx . The mathemati-
cal equations used to construct the stoichiometric coef-
ficient array are reported in Sect. S1.

4. In the UNIPAR integrated CAMx model, precursor HC
consumption is estimated by using the SAPRC07TC
gas mechanism (Hutzell et al., 2012). The concentra-
tion (µg m−3 of air) of lumping species i is estimated by
using the product of the stoichiometric coefficient and
each HC consumption value. The resulting concentra-
tion is distributed into gas (Cg), organic (Cor), and inor-
ganic phases (Cin) by using partitioning coefficients and
aerosol masses within each phase (Fig. 1). Both the gas–
organic partitioning and the gas–aqueous partitioning
coefficients are estimated based on Pankow’s absorptive
partitioning model (Pankow, 1994) with vapor pressure,
the estimated activity coefficients of lumping species in
each phase of LLPS (Zhou et al., 2019; Jang et al., 1997;
Jang and Kamens, 1998), and aerosol’s average molec-
ular weight in each phase. The SOA mass formed from
the partitioning process (OMP) is attributed to Cor and
Cin.

5. The physicochemical parameter arrays, such as molecu-
lar weight (MWi), organic-to-carbon ratio (O : Ci), and
hydrogen bonding (HBi), are used to process multi-
phase partitioning of lumping species. They are univer-
salized for three major precursor groups (aromatics, ter-
penes, and isoprene) in the UNIPAR model of this study
as described in Sect. S1.

6. Both organic phase oligomerization and aqueous reac-
tions of reactive species yield nonvolatile OM in the
model. Hence, the heterogeneous reactions in LLPS
are operated by two different second-order reaction rate
constants: ko,i (L mol−1 s−1) for the organic phase and
kAR,i (L mol−1 s−1) for the aqueous phase. The impact
of viscosity on aerosol growth is also considered by
including the equation term as a function of the aver-
age molecular weight of OM and the O : C ratio (Han
and Jang, 2022). Aqueous reactions in the presence
of salted solution are operated by acid-catalyzed reac-
tions and OS formation and are processed under broad
ranges of aerosol acidity ([H+]) and relative humidity
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Figure 1. Scheme of CAMx v7.1 chemistry transport model integrated with the UNIPAR secondary organic aerosol module.

(RH) levels to form both dry and wet inorganic salted
aerosols. In order to simulate SOA mass in ambient
air, the chamber-generated kinetic parameters are up-
dated by removing the artifact from gas–wall partition-
ing (Han and Jang, 2020, 2022).

7. The SOA mass produced via gas–organic partitioning is
estimated using the Newtonian method, which is typi-
cally applied in air quality models (i.e., CMAQ) (Schell
et al., 2001) based on a mass balance of organic com-
pounds between the gas and particle phases governed
by Raoult’s law. Heterogeneously formed nonvolatile
OM (OMH) is considered to be a pre-existing absorb-
ing material for gas–particle partitioning (Cao and Jang,
2010; Im et al., 2014). Hence, the gas–organic parti-
tioned equation is modified to include OMH. The SOA
mass in the UNIPAR model is attributed to OMP and
OMH.

8. The esterification of sulfuric acid with organic species
can form organosulfates (Surratt et al., 2007; Lig-
gio et al., 2005). In particular, dialkylsulfate is non-
electrolytic and neutral and appears in a variety of SOAs
(toluene, trimethylbenzene, isoprene, and α-pinene) (Li
et al., 2015). In the UNIPAR model, the formation of
dialkylsulfate is predicted based on the Hinshelwood-
type reaction (Im et al., 2014). The formation of di-
alkylsulfate reduces aerosol acidity in the presence of
sulfuric acid, which catalyzes SOA formation (Jang et
al., 2002) and alters aerosol liquid water content (Es-
tillore et al., 2016). In turn, the reduced acidic sulfate
due to the dialkylsulfate formation is applied to the inor-
ganic thermodynamic model (ISORROPIA) to estimate

aerosol acidity and aerosol liquid water content for the
next step.

9. In order to process SOA formation in the inorganic
aqueous phase, the inorganic composition and aerosol
acidity are predicted by using the inorganic thermo-
dynamic model, ISORROPIA (Fountoukis and Nenes,
2007), and then incorporated into the UNIPAR model.
For the ISORROPIA model, mutual deliquescence rela-
tive humidity (MDRH) is predicted. In addition, the ef-
florescence relative humidity (ERH) is predicted using
a pre-trained neural network model based on the inor-
ganic composition (Yu et al., 2021a). With MDRH and
ERH, the aerosol condition is then estimated to be wet
(organic phase+ inorganic aqueous phase) or dry (or-
ganic phase + solid-dry inorganic phase). The detailed
information for the prediction of aerosol inorganic com-
position and aerosol acidity is shown in Sect. S2 in the
Supplement.

2.3 CAMx configurations

2.3.1 Simulation domain and model configurations

The CAMx simulation was conducted using two-way nested
grids with a 27 km resolution domain over eastern Asia
(EA) and a 9 km fine-resolution domain over South Ko-
rea (SK). Figure 2 displays the simulated domain for this
study. For the vertical domains, 22 vertical layers were sim-
ulated for both domains. For comparison, CAMx was simu-
lated with two different SOA modules: the original organic
gas–aerosol partitioning and oxidation module (SOAP2.2)
and the UNIPAR SOA module of this study. The two-mode
coarse–fine (CF) scheme for the particle mass distribution
was employed. In CAMx, the multi-section size scheme can
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Figure 2. Simulated domain and observation sites during the
KORUS-AQ campaign. “EA” and “SK” represent eastern Asia and
South Korea, respectively.

be operated with ISORROPIA and SOAP chemistry inte-
grated with CB05, but it is currently not comparable with
other gas mechanisms such as SAPRC or other SOA mod-
ules (i.e., VBS modules). The dry and wet depositions of
aerosols and gas species were estimated with the module ex-
isting in CAMx for both SOAP and UNIPAR simulations.
The detailed explanation for the deposition model can be
found in the CAMx User Guide v7.10 (Environ, 2020). All
simulations were performed during the time period between
10 May 2016 and 10 June 2016. The detailed configuration
of the CAMx simulations is listed in Table 1. The boundary
conditions were converted from the MOZART-4 global simu-
lation results (https://www.acom.ucar.edu/wrf-chem/mozart.
shtml, last access: 7 November 2021) (Emmons et al., 2010).
The meteorological data used in the CAMx simulation were
output from the Weather Research and Forecasting (WRF)
model. The initial conditions were generated by using a 2-
week spin-up simulation with the same CAMx model setup.
The computation cost for CAMx–UNIPAR was evaluated for
the 1 d simulation of KORUS-AQ data and summarized in
Table S1. Overall, the computation time for CAMx–UNIPAR
is approximately 2 to 2.5 times that of the default CAMx–
SOAP simulation depending on the parallel computation
setup. The detailed descriptions of statistical parameters to
evaluate the model performance are presented in Table S2.
Table S3 summarizes the predetermined mathematical equa-
tions employed in the UNIPAR to dynamically construct the
stoichiometric coefficient array of oxygenated products. The
physicochemical parameter arrays for MWi , HBi , and the
O : Ci ratios are summarized in Tables S4, S5, and S6, re-
spectively. Tables S7 and S8 show the kinetic parameters
(lumping species’ reactivity scales and their basicity con-
stants, respectively) to calculate aerosol phase reaction rate
constants in the organic phase and inorganic phase.

2.3.2 Emission source

The anthropogenic emissions were processed with the Sparse
Matrix Operator Kernel Emission (SMOKE) v3.1 (Benjey et
al., 2001) for spatiotemporal allocations and chemical speci-
ation as well as vertical allocations for elevated point sources.
For areas outside of South Korea, the northeast Asian emis-
sions inventory contained within the KORUS v5 (Y. Jang et
al., 2020) data was applied. For South Korea, the national
emissions inventory named the Clean Air Policy Support
System (CAPSS) 2016 (https://www.air.go.kr/jbmd/sub43.
do?tabPage=0, last access: 2 June 2022) was applied (Choi et
al., 2020; Lee et al., 2011). The Model of Emissions of Gases
and Aerosols from Nature (MEGAN) v2.04 (Guenther et al.,
2006) was used to prepare the biogenic emissions. Since the
chemical speciation profiles for the emissions inventory were
only available for the SAPRC99 chemical mechanism, some
of the model VOC species were mapped into those in the
SAPRC07TC, with which CAMx was operated in this study.

2.4 Observations during the KORUS-AQ campaign

The KORUS-AQ field study was conducted by the joint ef-
forts of the National Institute of Environmental Research of
South Korea and the National Aeronautics and Space Ad-
ministration (NASA) of the United States to understand the
factors controlling air quality across urban, rural, and coastal
interfaces. The study integrated observations from aircraft,
ground sites, and satellites with air quality models. The
ground-level observational data used in this study were per-
formed at four different monitoring stations located in three
cities within South Korea (Crawford et al., 2021). Table 2
lists the geological locations of the monitoring sites, the sam-
pling times, and the measured chemical species used in this
study. The Olympic Park site is a green site for recreational
and sports activities that is heavily influenced by pollution
from surrounding urban traffic and buildings in Seoul. The
Bulkwang site is a highly populated residential area located
in the far northwestern corner of Seoul. The Daejeon site is a
populated downtown location within a metropolitan city. The
Gwangju site is a residential and forest area located far north
of downtown Gwangju.

The organic carbon concentration (OC) was continuously
monitored by using the semi-continuous organic carbon–
elemental carbon analyzer (OCEC, Sunset Lab. Inc). An av-
eraged OM–OC factor of 1.5 was applied to estimate the OM
concentration at the observation sites (Park et al., 2018). The
concentrations of water-soluble inorganic ions were moni-
tored by using an ambient ion monitor (AIM) at the Bulk-
wang supersite, the Daejeon supersite, and the Gwangju su-
persite. The Monitor for AeRosols and Gases in Ambient
air (MARGA ADI 2080, Metrohm, Switzerland) was used
to measure the inorganic compositions at the Olympic Park
supersite. O3 and NOx levels were monitored by using an
O3 analyzer (EC9810, Ecotech, Australia) and a NOx ana-
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Table 1. List of KORUS-AQ campaign observation sites.

Site name Location (latitude, longitude) Time period Measurements∗

Bulkwang supersite 37.61, 126.93 8 May–12 June OC, inorganic ions
Olympic supersite 37.52, 127.12 9 May–13 June OC, inorganic ions, O3, NOx , SO2
Daejeon supersite 36.35, 127.38 8 May–12 June OC, inorganic ions
Gwangju supersite 35.23, 126.84 8 May–12 June OC, inorganic ions

∗ The detailed instruments used for the observations are described by Crawford et al. (2021).

Table 2. List of SOA products in the SOAP and UNIPAR modules.

Mechanism Species Number of species Note

SOAP

SOA1 1 High-volatility aromatic SOA products
SOA2 1 Low-volatility aromatic SOA products
SOPA 1 Non-volatile aromatic SOA products
SOA3 1 High-volatility biogenic SOA products
SOA4 1 Low-volatility biogenic SOA products
SOPB 1 Non-volatile biogenic SOA products

UNIPAR

OMH-ar 50 Heterogeneously formed aromatic SOA
OMP-ar 50 Partitioned aromatic SOA
OMH-te 50 Heterogeneously formed terpene SOA
OMP-te 50 Partitioned terpene SOA
OMH-is 51 Heterogeneously formed isoprene SOA
OMP-is 51 Partitioned isoprene SOA

lyzer (EC9841, Ecotech, Australia), respectively. VOCs were
monitored by using a gas chromatography–flame ionization
detector (Varian GC450). The hourly averaged observations
and simulations of sulfate, nitrate, and ammonium concen-
trations are displayed in Figs. S1–S3. The 8 h averaged con-
centrations of O3, NOx , and SO2 are displayed in Fig. S4.
In Fig. S5, the simulated concentration of SOA precursors,
including toluene, benzene, and isoprene, are plotted against
the observations at the Olympic Park supersite. For isoprene,
the observation was not available. For meteorological inputs,
the observed temperature and RH at the Olympic Park super-
site are plotted versus the simulations in Fig. S8. Overall, the
smaller bias between observations and predictions appeared
in temperature compared to RH.

The KORUS-AQ campaign performed several flight mea-
surements by using the NASA DC-8 research aircraft with
a comprehensive payload for in situ sampling of trace gas
and aerosol compositions. Figure S11 shows the flight tracks
of the NASA DC-8 aircraft missions during the KORUS-AQ
campaign between 10 May and 10 June in 2016. The ob-
served airborne concentrations of O3, NO, NO2, and toluene
are plotted against the simulation from CAMx–UNIPAR
(Fig. S12).

3 Results and discussion

3.1 Simulated concentration of OM

The OM concentrations, which were simulated by using
CAMx with two different SOA module setups (SOAP and
UNIPAR), were plotted with the ground-based observation
data at the four different monitoring sites (the Bulkwang
supersite, the Olympic Park supersite, the Daejeon super-
site, and the Gwangju supersite) between 10 May 2016 and
10 June 2016 during the KORUS-AQ campaign (Fig. 3). Ta-
ble 2 summarizes the organic products used to estimate the
SOA formation in both the SOAP and UNIPAR models. For
the SOAP simulation, the OM is the sum of the primary
organic matter (POM) and SOAP products (SOA1, SOA2,
SOA3, SOA4, SOPA, and SOPB). In the UNIPAR module,
OM is predicted as the sum of POM and SOA produced
from 151 lumping species. The POM is a single non-volatile
species that is not involved in the aerosol phase chemistry.
POM and non-volatile SOA mass can both influence the gas–
particle partitioning process.

For all four sites, the ground-based OM concentrations
were noticeably high between 24–31 May 2016. CAMx
equipped with both SOAP and UNIPAR mechanisms gen-
erally simulate this tendency. Figure 4 illustrates the hourly
averaged OM concentrations during this high-OM period.
A sharp increase in OM appears during the daytime in all
field data. This tendency is captured by CAMx at both the
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Figure 3. Time profiles of OM concentration (µg m−3) averaged over 8 h for the observation data and the CAMx simulation results at the
(a) Bulkwang, (b) Olympic Park, (c) Daejeon, and (d) Gwangju supersites.

Olympic Park (Fig. 4b) and Daejeon sites (Fig. 4c) but is
not well predicted at the other two sites (Fig. 4a and d).
The rapid increase in OM concentrations during the daytime
can be explained by the diurnal pattern of pollutant emission
due to human activities and photochemically produced SOA.
Overall, the CAMx–UNIPAR simulation better predicts field
observations than CAMx with the SOAP module, although
both the UNIPAR and SOAP models underestimate high-
OM data points. The underestimation of high OM peaks is
potentially due to the missing precursors in the emission in-
ventories. For example, the CAMx simulation used in this
study was performed with aromatics, terpenes, and isoprene
(Table 2). The SOA simulation needs to be updated to in-
clude sesquiterpenes, intermediate VOCs, and volatile chem-
ical species sourced from residential, commercial, and indus-
trial sectors (McDonald et al., 2018).

Figure 5 displays the scatter plot for the hourly averaged
OM observations vs. predictions at four different ground-
based monitoring sites. The statistical parameters were cal-
culated for each site by using the mean bias error (MBE),
the Pearson correlation coefficient (PCC), the mean frac-

tional bias (MFB), and the mean fractional error (MFE).
The detailed descriptions of these statistical parameters are
presented in Table S2. For the Bulkwang, Daejeon, and
Gwangju supersites, the estimated MBE value is between
−1.59 and −0.50, indicating that the OM concentration is
slightly underestimated in the simulation. The absolute val-
ues of MBE, which indicates proximity to observations, are
smaller in CAMx–UNIPAR for Bulkwang (−0.80), Daejeon
(−0.50), and Gwangju (−1.02) than those in CAMx–SOAP
for Bulkwang (−1.43), Daejeon (−1.01), and Gwangju
(−1.59). In general, the model performance was proposed
as MFB≤±30 % with MFE≤±50 % for the best model
performance and MFB≤±60 % with MFE≤±75 % for ac-
ceptable model performance (Boylan and Russell, 2006).
For all the simulations performed with CAMx–UNIPAR, the
simulation results meet the best model performance goal.
Additionally, the estimated MFBs with CAMx–UNIPAR at
the Bulkwang, Daejeon, and Gwangju supersites are lower
than those with CAMx–SOAP. The estimated MFE val-
ues with the CAMx–UNIPAR simulation are also 3 %–10 %
lower than those with CAMx–SOAP. For the Olympic Park

https://doi.org/10.5194/acp-22-9083-2022 Atmos. Chem. Phys., 22, 9083–9098, 2022



9090 Z. Yu et al.: Simulation of SOA formation using CAMx integrated with UNIPAR

Figure 4. Time profiles of hourly averaged OM concentrations (µg m−3) for the observation data and the CAMx simulation results at the (a)
Bulkwang, (b) Olympic Park, (c) Daejeon, and (d) Gwangju supersites.

supersite, the simulations by both the SOAP and UNIPAR
modules yield positive MBE (0.3 and 0.89, respectively) and
MFB (17.7 % and 34.4 %, respectively) values, indicating
that OM is overestimated. This overestimation can be associ-
ated with the variabilities in local emissions at Olympic Park,
which is a green space in an urban area. Thus, the ground pol-
lution levels measured at this site may be lower than those
observed in the city center. However, the model simulation
is mainly influenced by the polluted urban air within a 9 km
fine-resolution domain. For the PCC values, no significant
differences are observed between the values generated by
the SOAP and UNIPAR simulations. For organic matter, the
average normalized mean bias (NMB, %) between model
predictions and observations at the four monitoring sites is
−50 % for CAMx–SOAP and −39 % for CAMx–UNIPAR.
A similar level of the NMB (≈ 46 %) was reported in the pre-
vious simulation for the same campaign (Park et al., 2021).

3.2 Impact of aqueous reactions on SOA mass

Aqueous reactions of reactive organic species in the presence
of salted wet aerosol play an important role in the formation
of SOA (Volkamer et al., 2007, 2009). Therefore, the quantity
of aerosol liquid water content is an important model param-
eter to simulate aqueous reactions. In the CAMx–UNIPAR
modules, the phase state of inorganic aerosol is determined
by using the calculated ERH based on the pre-trained neu-
ral network mathematical equation (Yu et al., 2021a) and
the inorganic compositions (sulfate, ammonium, nitrate, and
protons) predicted from the inorganic thermodynamic model,

ISORROPIA (Fountoukis and Nenes, 2007). When inorganic
aerosol is wet, the aerosol liquid water content is calculated
by using the inorganic thermodynamic model.

As described in Sect. 2.2, dialkylsulfate formed in the
presence of acidic sulfate is neutral and subtracted from sul-
fates in the inorganic thermodynamic model. However, dur-
ing the KORUS-AQ campaign periods, ammonia was abun-
dant at the four observation sites, which neutralized acidic
aerosol. The low aerosol acidity during the KORUS-AQ cam-
paign has been reported in prior studies (Yu et al., 2020;
Nault et al., 2021). Under these circumstances, neither SOA
formation via acid-catalyzed aqueous reactions nor dialkyl-
sulfate formation is effective. Evidently, the predicted sul-
fate concentrations with CAMx–UNIPAR are comparable to
those with CAMx–SOAP.

As seen in Fig. 5, temperature at nighttime considerably
decreased, and this influenced the diurnal pattern of RH. The
time profile of the predicted phase state of inorganic aerosols
at the four observation sites is shown in Fig. S7. When RH
is higher than deliquescence relative humidity (DRH) of in-
organic salts, the aerosol is wet and can process heteroge-
neous reactions of organics in the aqueous phase (Witkowski
et al., 2018). The inorganic aerosols were wet for the obser-
vation periods for 10–18 May, 23–31 May, and 7–10 June.
The time profiles of POM, OMH, and the OM produced by
multiphase partitioning (OMP) are shown in Fig. 6. The con-
centration of POM is insensitive to RH while OMH and OMP
are strongly impacted by the inorganic aerosol phase state.
For example, OMH and OMP are significantly increased dur-
ing the wet period (24–28 May) compared to those in the dry
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Figure 5. The observation of hourly averaged OM concentrations vs. CAMx simulation results by using the SOAP SOA module at the (a)
Bulkwang, (b) Olympic Park, (c) Daejeon, and (d) Gwangju supersites and the results by using the UNIPAR SOA module at the (e) Bulkwang,
(f) Olympic Park, (g) Daejeon, and (h) Gwangju supersites. “mean_x” and “mean_y” are the averaged OM concentrations of observations
and predictions, respectively. “MBE” is the estimated mean bias error. “PCC” is the Pearson correlation coefficient. “MFB” and “MFE” are
the mean fractional bias and mean fractional error, respectively.

period (18–22 May). During the wet period, the concentra-
tion of anthropogenic HC increased. However, the increased
OM during the wet period cannot be explained solely by the
increased HC emissions. When the mass concentrations of
both wet inorganic salts and preexisting OM (POM+OMH)
are high, OMP increases. In addition, the observed RH val-
ues at the Daejeon (Fig. S7c) and Gwangju sites (Fig. S7d)
are generally higher than those at the Bulkwang (Fig. S7a)
and Olympic Park sites (Fig. S7b). Consequently, the simu-
lated OMH fraction of the total OM is greater at the Daejeon
and Gwangju sites than those at the two other sites in Seoul
(Fig. 6).

The observed OM concentrations at the Bulkwang and
Olympic Park sites was plotted vs. the predicted OM con-
centrations for the wet period (Fig. S9a and c) and dry pe-
riod (Fig. S9b and d). The date and the duration for dry
and wet periods can be found in Fig. S7. Overall, the es-
timated MFB and MFE values were similar between wet
and dry aerosols. All simulations met the best model per-
formance goal as described in Sect. 3.1 (MFB≤±30 % with
MFE≤±50 %). For the Bulkwang site, the deviation of pre-
dicted OM from observations was less with wet aerosol than
with dry aerosol, yielding a smaller MBE and a greater PCC
in wet periods than in dry periods. The POM fraction to total
OM is high during dry periods, and thus, the contribution of
POM uncertainties to total OM can be high, leading to the
small PCC (0.2). During wet time, the simulated SOA frac-

tion of total OM is large due to salted aqueous phase, and this
can reduce the influence of POM uncertainties on total OM
(PCC= 0.66). This difference in PCC values between the dry
period and the wet period at the Bulkwang site clearly shows
the essential role of aqueous reactions on OM prediction. For
the Olympic Park site, no significant difference in PCC was
calculated between the wet and dry periods within 5 %.

3.3 SOA compositions and spatial distribution

Figure S14 displays the spatial distribution of the aver-
aged OM concentrations (Fig. S14a) for each SOA species
(Fig. S14b–h) for 1 month (10 May to 10 June 2016) dur-
ing the KORUS campaign period. The averaged OM ranged
from 0 to 10 µg m−3 (Fig. S14a). Notably, the relatively high
OM concentrations in the range of 4–10 µg m−3 were ob-
served in southeastern China as well as the China’s coastal
regions along the Yellow Sea. The high OM concentrations
in southeastern China are associated with the large quantity
of biogenic VOCs emitted in the region (Fig. S14e and f)
in the presence of anthropogenic NOx . POM is high near
China’s east coastal zone because anthropogenic emissions
are high from industrial areas of Shandong Province. Evi-
dently, the contribution of aromatic SOA (Fig. S14c and d) is
also high near the Yellow Sea due to long-range transport of
anthropogenic pollution. Of aromatic SOA, the OMP fraction
(Fig. S14d) is significantly greater than OMH (Fig. S14c)
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Figure 6. Time profiles of the predicted hourly averaged concentrations of primary organic matter (POM), OM formed via heterogeneous
reactions (OMH), and OM formed via the gas–particle partitioning process at the (a) Bulkwang, (b) Olympic Park, (c) Daejeon, and (d)
Gwangju supersites.

due to the hygroscopic sea spray aerosol under high humid-
ity levels over the Yellow Sea. The overall isoprene SOA
contribution is relatively small within the simulated domain
(<0.5 µg m−3) (Fig. S14g and h).

The observations gathered at the four sampling sites of this
study can be impacted by both local and long-range trans-
port from China’s industrial areas. In particular, light south-
westerly winds were found within the boundary layer behind
the front, facilitating steady transport of air pollution from
China into the study regions during the low-level transport/-
haze period (24–31 May 2016) (Crawford et al., 2021). The
previous analysis of data collected by a high-resolution time-
of-flight aerosol mass spectrometer (HR-ToF-AMS) (Kim et
al., 2018) showed that the stagnant period (17–22 May 2016)
was found to be driven by OM, whereas particulate matter
during the low-level transport/haze period was dominated
by the inorganic aerosol components due to a combination
of transport and the metrological conditions to form haze.
The CAMx–UNIPAR simulation results are supported by
this field analysis, revealing the increased SOA mass in the
presence of the high concentration of wet inorganic aerosol
during the low-level transport/haze period. The SOA precur-
sors in this study include aromatics, terpenes, and isoprene

as shown in Table 2. Figure 7 illustrates the time profile of
the hourly averaged concentrations of SOA species for the
four observation sites. In the CAMx–UNIPAR prediction,
the high POM (Fig. 6) during the period of the low-range
transport/haze development increases OMP and sequentially
elevates OMH. In a similar manner, the high POM can in-
crease SOA mass with CAMx–SOAP. Additionally, the aro-
matic SOA fractions, predicted by the UNIPAR model, were
high during this time period across all four sites. The con-
tribution of biogenic SOA to local OM burden varies by lo-
cation. For example, the biogenic SOA mass fractions of to-
tal SOA at the Gwangju site are obviously higher than those
present at the other three sites because the Gwangju site is in
a suburban environment surrounded by farming and forested
areas.

In Fig. 7a–d (UNIPAR), OMH attributes to 22 % to 48 %
of aromatic SOA, showing the importance of heterogeneous
reactions of aromatic products to form SOA during the
KORUS-AQ campaign. A large fraction of OMP predicted
by CAMx–UNIPAR during the wet period is attributed to the
partitioning of mass to the salted inorganic aqueous phase.
Based on the internal calculation of the UNIPAR simula-
tion, the OMP associated with the aqueous phase comprises
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Figure 7. Time profiles of stacked OM concentrations predicted by CAMx–UNIPAR at the (a) Bulkwang, (b) Olympic Park, (c) Daejeon,
and (d) Gwangju supersites and by CAMx–SOAP at the (e) Bulkwang, (f) Olympic Park, (g) Daejeon, and (h) Gwangju supersites. “OMH”
and “OMP” represent the OM formed through heterogeneous reactions and the gas–particle partitioning process, respectively. “ar”, “te”, and
“is” represent the SOA formed from aromatic hydrocarbons, terpenes, and isoprene, respectively.

higher than 80 % of the total OMP. In general, aromatic SOA
is more sensitive to aqueous reactions than terpene SOA. In
particular, hydrophilic aromatic products (O : C ratios: 0.65–
0.95) greatly contribute to OMP during the haze period (24–
31 May). Terpene-derived SOA is relatively less polar (O : C
ratios: 0.45–0.65) and less volatile than oxygenated aromatic
products. Therefore, terpene SOA is minimally impacted by
the aqueous phase due to its poor solubility in salted aqueous
solution. The OMP fraction of terpene SOA is significantly
less compared to that in aromatic SOA. Isoprene SOA is neg-
ligible at all sites due to low isoprene emissions. An estima-
tion of biogenic hydrocarbon emissions on the global scale,
simulated by Sindelarova et al. (2014) by using MEGAN for
30 years, showed that the relative significance of isoprene
emission is little in South Korea. Isoprene SOA is known
to be highly sensitive to aerosol acidity that can accelerate
SOA formation (Pye et al., 2013; Lewandowski et al., 2015;
Beardsley and Jang, 2016). During the KORUS-AQ cam-
paign (Sect. 3.2) period of this study, inorganic acids were
nearly neutralized, and thus, the effect of acid catalyzed re-
actions on SOA may be trivial. The SOA mass simulated by
SOAP (Fig. 7e–h) is mainly attributed to partitioning mass
originating from SOA1, SOA2, SOA3, and SOA4. The con-
tribution of nonvolatile SOA mass (SOPA+SOPB) to total

SOA mass in the SOAP model is small compared to that
(OMH to SOA mass) predicted by the UNIPAR model.

3.4 Simulated concentrations of gaseous species

Figure S10 illustrates the correlation between the 8 h aver-
aged observations and the 8 h averaged predictions of O3,
NOx , SO2, and toluene at the Olympic Park supersite. In
general, the model prediction slightly underestimates O3
(Fig. S10a), SO2 (Fig. S10c), and toluene (Fig. S10d) but
overestimates NOx (Fig. S10b). Similarly, underestimation
of O3 appeared in the onboard data (Fig. S12a). This underes-
timation could be explained by missing O3 precursors or the
underestimation of them (i.e., toluene as shown in Fig. S12d)
in the current emission inventories.

Figure S13 shows the correlation between aerosol mass
spectrometer (AMS) data and the simulated primary organic
aerosol (POA) or the simulated secondary organic aerosol
(SOA). A higher correlation coefficient appears between the
AMS data collected during the DC-8 flight missions and the
simulated SOA (PCC= 0.57) than that between AMS data
and the simulated POA (PCC= 0.38), indicating that ob-
served OC at high altitude is more influenced by secondary
pollutants.
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4 Atmospheric implications and uncertainties

There is no feature in the two-product model (SOAP) to pro-
cess aqueous reactions in the presence of the salted aque-
ous phase. Thus, the CAMx–SOAP simulation may lead to
OM underestimation. For example, OM was underpredicted
in Europe during winter seasons, which caused frequent fog
developments to form wet aerosol (Meroni et al., 2017; Jiang
et al., 2021). SOA formation has also been underestimated
in the southeast United States where isoprene emissions are
high during wet summer seasons (Marais et al., 2016). In
particular, isoprene SOA formation is known to be largely
influenced by aerosol acidity and aerosol water content (Pye
et al., 2013; Lewandowski et al., 2015; Beardsley and Jang,
2016). In this study, the amount of OM was simulated by
using both the newly derived CAMx–UNIPAR and preexist-
ing CAMx–SOAP models. The simulated results were com-
pared to the ground-based observations at four observation
sites during the KORUS-AQ campaign (Fig. 3). Under the
dry period (Fig. 3), the predicted SOA mass by the UNIPAR
model is dominated by gas–particle partitioning into the or-
ganic phase and oligomerization in organic aerosol. During
the wet period, SOA production forms mainly through gas–
aqueous partitioning and aqueous reactions. The KORUS-
AQ campaign took place during the wet period of the typical
summer climate in South Korea. Thus, SOA formation can
be considerably promoted by aqueous reactions as discussed
in Sect. 3.2.

Overall, the statistical parameters (Fig. 5) to predict OM
showed a better model performance with CAMx–UNIPAR
compared to CAMx–SOAP. The predicted POM concen-
trations were relatively steady during the campaign period
while the simulated SOA concentrations varied with environ-
mental conditions and emission profiles (Fig. 6). The SOA
mass predicted by CAMx–UNIPAR was sensitive to humid-
ity levels and emission profiles and contributed to the accu-
rate prediction of OM (Figs. 3 and 4). For example, the con-
tribution of aromatic SOA to total OM increased (Fig. 7) dur-
ing haze episodes (24–31 May 2016) owing to aqueous reac-
tions and partitioning of polar aromatic products into salted
aqueous solution.

The major SOA precursors included in CAMx–UNIPAR
of this study were aromatics, terpenes, and isoprene. These
precursors are major contributors of urban SOA, but other
precursors such as sesquiterpene, alkanes, and polyaro-
matic hydrocarbons are missing in the current simulation of
CAMx–UNIPAR. For example, long-chain alkanes or inter-
mediate VOCs are often found in the urban air associated
with incomplete combustion and diesel exhaust (Worton et
al., 2014; Perrone et al., 2014; Alam et al., 2018). In the fu-
ture, the UNIPAR model would benefit from an update to
include the model parameters of missing precursors. The in-
clusion of missing precursors in CAMx–UNIPAR can ad-
dress the underestimation of OM compared to field observa-
tions. In addition, the recent study by McDonald et al. (2018)

showed that volatile chemical products (>53 % of total an-
thropogenic VOC emissions in Los Angeles, USA) origi-
nating from consumer and industrial products, which are
currently unaccounted for in models, can significantly con-
tribute to SOA burden in the urban atmosphere. In addition,
the deposition of SOA was estimated with the one particle
size bin. The different particle sizes can have different sink
fluxes, causing uncertainty in the lifetime of OM. The UNI-
PAR model is capable of predicting aging of gas products but
currently has no feature for OM aging.

During the KORUS-AQ campaign period, particle-phase
inorganic nitrate was high when RH was high, or tempera-
tures dropped in the afternoon (Figs. S6 and S7). Synergisti-
cally, high particulate nitrate can modify aerosol hygroscop-
icity and increases aerosol water content, consequently ele-
vating SOA formation through aqueous reactions. The cur-
rent UNIPAR model is capable of processing multiphase
partitioning of organic species and determining phase state
in the presence of ammonium–sulfate–nitrate aerosol. The
degree of gas aging is also encompassed in the UNIPAR
model as a function of the quantity of atmospheric radicals
(HO2 and RO2), which are simulated in the gas mechanism.
However, the prediction of these radicals varies with differ-
ent gas mechanisms (i.e., carbon bond mechanisms (Tanaka
et al., 2003; Yarwood et al., 2005; Yarwood et al., 2010),
SAPRC mechanisms (Carter, 2010), and master chemical
mechanism (Jenkin et al., 2012; Jenkin, 2004)) and thus vari-
ably influences SOA prediction. The accuracy of the predic-
tion of aerosol acidity can also affect the prediction of SOA
formation, because of acid-catalyzed oligomerization of or-
ganic species. In general, aerosol acidity tends to be under-
predicted in ammonia-rich aerosol (Li et al., 2015; M. Jang et
al., 2020). In the future, the performance of CAMx–UNIPAR
needs to be evaluated by simulating various episodes com-
pared to field studies.
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