Articles | Volume 22, issue 12
https://doi.org/10.5194/acp-22-8403-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-8403-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Observation-based analysis of ozone production sensitivity for two persistent ozone episodes in Guangdong, China
Kaixiang Song
Institute for Environmental and Climate Research, Jinan University,
Guangzhou, 511443, China
Institute for Environmental and Climate Research, Jinan University,
Guangzhou, 511443, China
Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation
for Environmental Quality, Guangzhou, 511443, China
Yu Wang
Institute for Environmental and Climate Research, Jinan University,
Guangzhou, 511443, China
Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation
for Environmental Quality, Guangzhou, 511443, China
Tao Liu
Institute for Environmental and Climate Research, Jinan University,
Guangzhou, 511443, China
Liyan Wei
Institute for Environmental and Climate Research, Jinan University,
Guangzhou, 511443, China
Yanxing Wu
Institute for Environmental and Climate Research, Jinan University,
Guangzhou, 511443, China
Junyu Zheng
Institute for Environmental and Climate Research, Jinan University,
Guangzhou, 511443, China
Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation
for Environmental Quality, Guangzhou, 511443, China
Boguang Wang
Institute for Environmental and Climate Research, Jinan University,
Guangzhou, 511443, China
Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation
for Environmental Quality, Guangzhou, 511443, China
Shaw Chen Liu
CORRESPONDING AUTHOR
Institute for Environmental and Climate Research, Jinan University,
Guangzhou, 511443, China
Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation
for Environmental Quality, Guangzhou, 511443, China
Related authors
No articles found.
Shanshan Ouyang, Tao Deng, Jingyang Chen, Run Liu, Xiaoyang Chen, Jinnan Yuan, Yanyan Huang, and Shaw Chen Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-5765, https://doi.org/10.5194/egusphere-2025-5765, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Northward tropical cyclones (TCs) with intensities reaching typhoon level (TY) elevate ozone concentration in southeastern China via stronger solar radiation, higher boundary layer height, lower relative humidity, and more stagnant air, with ozone remaining high but not rising further when TC intensity exceeds TY. Numerical simulations with TC intensity sensitivity experiments reveal that these TCs can increase ozone by over 10 ppb, with changes in biogenic emissions contributing 1–3 ppb.
Sihang Wang, Bin Yuan, Xianjun He, Ru Cui, Xin Song, Yubin Chen, Caihong Wu, Chaomin Wang, Yibo Huangfu, Xiao-Bing Li, Boguang Wang, and Min Shao
Atmos. Chem. Phys., 24, 7101–7121, https://doi.org/10.5194/acp-24-7101-2024, https://doi.org/10.5194/acp-24-7101-2024, 2024
Short summary
Short summary
Emissions of reactive organic gases from industrial volatile chemical product sources are measured. There are large differences among these industrial sources. We show that oxygenated species account for significant contributions to reactive organic gas emissions, especially for industrial sources utilizing water-borne chemicals.
Tingting Hu, Yu Lin, Run Liu, Yuepeng Xu, Shanshan Ouyang, Boguang Wang, Yuanhang Zhang, and Shaw Chen Liu
Atmos. Chem. Phys., 24, 1607–1626, https://doi.org/10.5194/acp-24-1607-2024, https://doi.org/10.5194/acp-24-1607-2024, 2024
Short summary
Short summary
We hypothesize that the cause of the worsening O3 trends in the Beijing–Tianjin–Hebei region, the Yangtze River Delta, and Pearl River Delta from 2015 to 2020 is attributable to the increased occurrence of meteorological conditions of high solar radiation and a positive temperature anomaly under the influence of West Pacific subtropical high, tropical cyclones, and mid–high-latitude wave activities.
Jiangyong Li, Chunlin Zhang, Wenlong Zhao, Shijie Han, Yu Wang, Hao Wang, and Boguang Wang
Geosci. Model Dev., 16, 6049–6066, https://doi.org/10.5194/gmd-16-6049-2023, https://doi.org/10.5194/gmd-16-6049-2023, 2023
Short summary
Short summary
Photochemical box models, crucial for understanding tropospheric chemistry, face challenges due to slow computational efficiency with large chemical equations. The model introduced in this study, ROMAC, boosts efficiency by up to 96 % using an advanced atmospheric solver and an adaptive optimization algorithm. Moreover, ROMAC exceeds traditional box models in evaluating the impact of physical processes on pollutant concentrations.
Tingting Hu, Yu Lin, Run Liu, Yuepeng Xu, Boguang Wang, Yuanhang Zhang, and Shaw Chen Liu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-781, https://doi.org/10.5194/acp-2022-781, 2023
Revised manuscript not accepted
Short summary
Short summary
We hypothesize that the cause of the worsening O3 trends in the Beijing-Tianjin-Hebei region, the Yangtze River Delta, and the Pearl River Delta from 2015 to 2020 is attributable to the increased occurrence of meteorological conditions of high solar radiation and positive temperature anomaly under the influence of West Pacific Subtropical High, tropical cyclones as well as mid-high latitude wave activities.
Yanxing Wu, Run Liu, Yanzi Li, Junjie Dong, Zhijiong Huang, Junyu Zheng, and Shaw Chen Liu
Atmos. Chem. Phys., 22, 11945–11955, https://doi.org/10.5194/acp-22-11945-2022, https://doi.org/10.5194/acp-22-11945-2022, 2022
Short summary
Short summary
Multiple linear regression (MLR) analyses often interpret the correlation coefficient (r2) as the contribution of an independent variable to the dependent variable. Since a good correlation does not imply a causal relationship, we propose that r2 should be interpreted as the maximum possible contribution. Moreover, MLR results are sensitive to the length of time analyzed; long-term analysis gives a more accurate assessment because of its additional constraints.
Shanshan Ouyang, Tao Deng, Run Liu, Jingyang Chen, Guowen He, Jeremy Cheuk-Hin Leung, Nan Wang, and Shaw Chen Liu
Atmos. Chem. Phys., 22, 10751–10767, https://doi.org/10.5194/acp-22-10751-2022, https://doi.org/10.5194/acp-22-10751-2022, 2022
Short summary
Short summary
A record-breaking severe O3 pollution episode occurred under the influence of a Pacific subtropical high followed by Typhoon Mitag in the Pearl River Delta (PRD) in early Autumn 2019. Through WRF-CMAQ model simulations, we propose that the enhanced photochemical production of O3 during the episode is a major cause of the most severe O3 pollution year since the official O3 observation started in the PRD in 2006.
Sihang Wang, Bin Yuan, Caihong Wu, Chaomin Wang, Tiange Li, Xianjun He, Yibo Huangfu, Jipeng Qi, Xiao-Bing Li, Qing'e Sha, Manni Zhu, Shengrong Lou, Hongli Wang, Thomas Karl, Martin Graus, Zibing Yuan, and Min Shao
Atmos. Chem. Phys., 22, 9703–9720, https://doi.org/10.5194/acp-22-9703-2022, https://doi.org/10.5194/acp-22-9703-2022, 2022
Short summary
Short summary
Volatile organic compound (VOC) emissions from vehicles are measured using online mass spectrometers. Differences between gasoline and diesel vehicles are observed with higher emission factors of most oxygenated VOCs (OVOCs) and heavier aromatics from diesel vehicles. A higher aromatics / toluene ratio could provide good indicators to distinguish emissions from both vehicle types. We show that OVOCs account for significant contributions to VOC emissions from vehicles, especially diesel vehicles.
Suxia Yang, Bin Yuan, Yuwen Peng, Shan Huang, Wei Chen, Weiwei Hu, Chenglei Pei, Jun Zhou, David D. Parrish, Wenjie Wang, Xianjun He, Chunlei Cheng, Xiao-Bing Li, Xiaoyun Yang, Yu Song, Haichao Wang, Jipeng Qi, Baolin Wang, Chen Wang, Chaomin Wang, Zelong Wang, Tiange Li, E Zheng, Sihang Wang, Caihong Wu, Mingfu Cai, Chenshuo Ye, Wei Song, Peng Cheng, Duohong Chen, Xinming Wang, Zhanyi Zhang, Xuemei Wang, Junyu Zheng, and Min Shao
Atmos. Chem. Phys., 22, 4539–4556, https://doi.org/10.5194/acp-22-4539-2022, https://doi.org/10.5194/acp-22-4539-2022, 2022
Short summary
Short summary
We use a model constrained using observations to study the formation of nitrate aerosol in and downwind of a representative megacity. We found different contributions of various chemical reactions to ground-level nitrate concentrations between urban and suburban regions. We also show that controlling VOC emissions are effective for decreasing nitrate formation in both urban and regional environments, although VOCs are not direct precursors of nitrate aerosol.
Wenjie Wang, Bin Yuan, Yuwen Peng, Hang Su, Yafang Cheng, Suxia Yang, Caihong Wu, Jipeng Qi, Fengxia Bao, Yibo Huangfu, Chaomin Wang, Chenshuo Ye, Zelong Wang, Baolin Wang, Xinming Wang, Wei Song, Weiwei Hu, Peng Cheng, Manni Zhu, Junyu Zheng, and Min Shao
Atmos. Chem. Phys., 22, 4117–4128, https://doi.org/10.5194/acp-22-4117-2022, https://doi.org/10.5194/acp-22-4117-2022, 2022
Short summary
Short summary
From thorough measurements of numerous oxygenated volatile organic compounds, we show that their photodissociation can be important for radical production and ozone formation in the atmosphere. This effect was underestimated in previous studies, as measurements of them were lacking.
Xiang Zhong, Shaw Chen Liu, Run Liu, Xinlu Wang, Jiajia Mo, and Yanzi Li
Atmos. Chem. Phys., 21, 4899–4913, https://doi.org/10.5194/acp-21-4899-2021, https://doi.org/10.5194/acp-21-4899-2021, 2021
Short summary
Short summary
The distributions of linear trends in total cloud cover and precipitation in 1983–2009 are both characterized by a broadening of the major ascending zone of Hadley circulation around the Maritime Continent. The broadening is driven primarily by the moisture–convection–latent-heat feedback cycle under global warming conditions. Contribution by other climate oscillations is secondary. The reduction of total cloud cover in China in 1957–2005 is driven by the same mechanism.
Cited articles
Atkinson, R.: Gas-phase tropospheric chemistry of organic compounds: a
review, Atmos. Environ., 24, 1–41,
https://doi.org/10.1016/0960-1686(90)90438-S, 1990.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006.
Calvert, J. G.: Test of the theory of ozone generation in Los Angeles
atmosphere, Environ. Sci. Technol., 10, 248–256,
https://doi.org/10.1021/es60114a002, 1976.
Chang, C.-C., Yak, H.-K., and Wang, J.-L.: Consumption of hydrocarbons and
its relationship with ozone formation in two Chinese megacities, Atmosphere,
11, 326, https://doi.org/10.3390/atmos11040326, 2020.
Cheng, H., Guo, H., Wang, X., Saunders, S. M., Lam, S. H., Jiang, F., Wang,
T., Ding, A., Lee, S., and Ho, K. F.: On the relationship between ozone and
its precursors in the Pearl River Delta: application of an observation-based
model (OBM), Environ. Sci. Pollut. R., 17, 547–560,
https://doi.org/10.1007/s11356-009-0247-9, 2010.
Chin, M., Jacob, D. J., Munger, J. W., Parrish, D. D., and Doddridge, B. G.:
Relationship of ozone and carbon monoxide over North America, J. Geophys.
Res.-Atmos., 99, 14565–14573, https://doi.org/10.1029/94JD00907, 1994.
CNEMC: China National Environmental Centre, http://www.cnemc.cn/en/, last access: 10 November 2021.
Coates, J. and Butler, T. M.: A comparison of chemical mechanisms using tagged ozone production potential (TOPP) analysis, Atmos. Chem. Phys., 15, 8795–8808, https://doi.org/10.5194/acp-15-8795-2015, 2015.
Daum, P. H., Kleinman, L., Imre, D. G., Nunnermacker, L. J., Lee, Y. N.,
Springston, S. R., Newman, L., and Weinstein-Lloyd, J.: Analysis of the
processing of Nashville urban emissions on July 3 and July 18, 1995, J.
Geophys. Res.-Atmos., 105, 9155–9164, https://doi.org/10.1029/1999jd900997,
2000.
Department of Ecology and Environment of Guangdong Province: 2015 Report on
the state of Guangdong provincial environment, 38 pp., http://gdee.gd.gov.cn/attachment/0/484/484303/2335528.pdf (last access: 29 June 2022), 2016 (in Chinese).
Department of Ecology and Environment of Guangdong Province: 2020 Report on
the state of Guangdong provincial ecology and environment, 56 pp., http://gdee.gd.gov.cn/attachment/0/483/483983/3266052.pdf (last access: 29 June 2022), 2021 (in Chinese).
Dodge, M. C.: Combined use of modeling techniques and smog chamber data to
derive ozone precursor relationships, in: Proceedings
of the International Conference on Photochemical Oxidant Pollution and its
Control, edited by: Dimitriades, B., Vol. II, EPA-600/3-77-0016, Health & Environmental Research Online ID 38646, US EPA, RTP, NC, 881–889, 1977.
Heald, C. L., Jacob, D. J., Fiore, A. M., Emmons, L. K., Gille, J. C.,
Deeter, M. N., Warner, J., Edwards, D. P., Crawford, J. H., Hamlin, A. J.,
Sachse, G. W., Browell, E. V., Avery, M. A., Vay, S. A., Westberg, D. J.,
Blake, D. R., Singh, H. B., Sandholm, S. T., Talbot, R. W., and Fuelberg, H.
E.: Asian outflow and trans-Pacific transport of carbon monoxide and ozone
pollution: An integrated satellite, aircraft, and model perspective, J.
Geophys. Res.-Atmos., 108, 4804, https://doi.org/10.1029/2003jd003507, 2003.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J.-N.: ERA5 hourly data on single levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018.
Hsu, Y.-K., VanCuren, T., Park, S., Jakober, C., Herner, J., FitzGibbon, M.,
Blake, D. R., and Parrish, D. D.: Methane emissions inventory verification
in southern California, Atmos. Environ., 44, 1–7,
https://doi.org/10.1016/j.atmosenv.2009.10.002, 2010.
Huang, Z., Zhong, Z., Sha, Q., Xu, Y., Zhang, Z., Wu, L., Wang, Y., Zhang,
L., Cui, X., Tang, M., Shi, B., Zheng, C., Li, Z., Hu, M., Bi, L., Zheng,
J., and Yan, M.: An updated model-ready emission inventory for Guangdong
Province by incorporating big data and mapping onto multiple chemical
mechanisms, Sci. Total Environ., 769, 144535,
https://doi.org/10.1016/j.scitotenv.2020.144535, 2021.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner,
G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V.,
and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom
and New York, NY, USA, 1535 pp., https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_all_final.pdf (last access: 29 June 2022), 2013.
Jacob, D. J.: Introduction to Atmospheric Chemistry, Princeton University
Press, Princeton, NJ, http://www.jstor.org/stable/j.ctt7t8hg (last access: 29 June 2022), 1999.
Jiang, M., Lu, K., Su, R., Tan, Z., Wang, H., Li, L., Fu, Q., Zhai, C., Tan,
Q., Yue, D., Chen, D., Wang, Z., Xie, S., Zeng, L., and Zhang, Y.: Ozone
formation and key VOCs in typical Chinese city clusters, Chinese Sci. Bull.,
63, 1130–1141, 2018 (in Chinese).
Kleinman, L. I.: The dependence of tropospheric ozone production rate on
ozone precursors, Atmos. Environ., 39, 575–586,
https://doi.org/10.1016/j.atmosenv.2004.08.047, 2005.
Kleinman, L. I., Lee, Y.-N., Springston, S. R., Nunnermacker, L., Zhou, X.,
Brown, R., Hallock, K., Klotz, P., Leahy, D., Lee, J. H., and Newman, L.:
Ozone formation at a rural site in the southeastern United States, J.
Geophys. Res.-Atmos., 99, 3469–3482, https://doi.org/10.1029/93JD02991,
1994.
Kleinman, L. I., Daum, P. H., Lee, Y.-N., Nunnermacker, L. J., Springston,
S. R., Weinstein-Lloyd, J., and Rudolph, J.: Sensitivity of ozone production
rate to ozone precursors, Geophys. Res. Lett., 28, 2903–2906,
https://doi.org/10.1029/2000gl012597, 2001.
Kleinman, L. I., Daum, P. H., Lee, Y.-N., Nunnermacker, L. J., Springston,
S. R., Weinstein-Lloyd, J., and Rudolph, J.: Ozone production efficiency in
an urban area, J. Geophys. Res.-Atmos., 107, ACH 23-1–ACH 23-12,
https://doi.org/10.1029/2002jd002529, 2002.
Lei, W., Zhang, R., Tie, X., and Hess, P.: Chemical characterization of
ozone formation in the Houston-Galveston area: A chemical transport model
study, J. Geophys. Res.-Atmos., 109, D12301, https://doi.org/10.1029/2003jd004219,
2004.
Li, K., Chen, L., Ying, F., White, S. J., Jang, C., Wu, X., Gao, X., Hong,
S., Shen, J., Azzi, M., and Cen, K.: Meteorological and chemical impacts on
ozone formation: A case study in Hangzhou, China, Atmos. Res., 196, 40–52,
https://doi.org/10.1016/j.atmosres.2017.06.003, 2017.
Lin, Y., Jiang, F., Zhao, J., Zhu, G., He, X., Ma, X., Li, S., Sabel, C. E.,
and Wang, H.: Impacts of O3 on premature mortality and crop yield loss
across China, Atmos. Environ., 194, 41–47,
https://doi.org/10.1016/j.atmosenv.2018.09.024, 2018.
Liu, J., Wu, D., Fan, S., Liao, Z., and Deng, T.: Impacts of precursors and
meteorological factors on ozone pollution in Pearl River Delta, China
Environ. Sci., 37, 813–820, 2017 (in Chinese).
Liu, S. C., Trainer, M., Fehsenfeld, F. C., Parrish, D. D., Williams, E. J.,
Fahey, D. W., Hübler, G., and Murphy, P. C.: Ozone production in the
rural troposphere and the implications for regional and global ozone
distributions, J. Geophys. Res.-Atmos., 92, 4191–4207,
https://doi.org/10.1029/JD092iD04p04191, 1987.
Lu, K. D., Zhang, Y., Su, H., Brauers, T., Chou, C. C., Hofzumahaus, A.,
Liu, S. C., Kita, K., Kondo, Y., Shao, M., Wahner, A., Wang, J., Wang, X.,
and Zhu, T.: Oxidant (O3 + NO2) production processes and formation
regimes in Beijing, J. Geophys. Res.-Atmos., 115, D07303,
https://doi.org/10.1029/2009jd012714, 2010a.
Lu, K., Zhang, Y., Su, H., Shao, M., Zeng, L., Zhong, L., Xiang, Y., Chang,
C. C., Chou, C. K. C., and Andreas, W.: Regional ozone pollution and key
controlling factors of photochemical ozone production in Pearl River Delta
during summer time, Sci. China Chem., 53, 651–663,
https://doi.org/10.1007/s11426-010-0055-6, 2010b.
Lu, K. D., Rohrer, F., Holland, F., Fuchs, H., Bohn, B., Brauers, T., Chang, C. C., Häseler, R., Hu, M., Kita, K., Kondo, Y., Li, X., Lou, S. R., Nehr, S., Shao, M., Zeng, L. M., Wahner, A., Zhang, Y. H., and Hofzumahaus, A.: Observation and modelling of OH and HO2 concentrations in the Pearl River Delta 2006: a missing OH source in a VOC rich atmosphere, Atmos. Chem. Phys., 12, 1541–1569, https://doi.org/10.5194/acp-12-1541-2012, 2012.
Mao, J., Ren, X., Chen, S., Brune, W. H., Chen, Z., Martinez, M., Harder,
H., Lefer, B., Rappenglück, B., Flynn, J., and Leuchner, M.: Atmospheric
oxidation capacity in the summer of Houston 2006: Comparison with summer
measurements in other metropolitan studies, Atmos. Environ., 44, 4107–4115,
https://doi.org/10.1016/j.atmosenv.2009.01.013, 2010.
Sander, S. P., Friedl, R. R., Ravishankara, A. R., Golden, D. M., Kolb, C.
E., Kurylo, M. J., Huie, R. E., Orkin, V. L., Molina, M. J., Moortgat, G.
K., and Finlayson-Pitts, B. J.: Chemical Kinetics and Photochemical Data for
Use in Atmospheric Studies Evaluation Number 14, JPL Publication 02-25,
2003.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From
Air Pollution to Climate Change, John Wiley & Sons, Inc., 1998.
Shao, M., Zhang, Y., Zeng, L., Tang, X., Zhang, J., Zhong, L., and Wang, B.:
Ground-level ozone in the Pearl River Delta and the roles of VOC and NOx in
its production, J. Environ. Manage., 90, 512–518,
https://doi.org/10.1016/j.jenvman.2007.12.008, 2009.
Shao, M., Huang, D., Gu, D., Lu, S., Chang, C., and Wang, J.: Estimate of anthropogenic halocarbon emission based on measured ratio relative to CO in the Pearl River Delta region, China, Atmos. Chem. Phys., 11, 5011–5025, https://doi.org/10.5194/acp-11-5011-2011, 2011.
Shiu, C.-J., Liu, S. C., Chang, C.-C., Chen, J.-P., Chou, C. C. K., Lin,
C.-Y., and Young, C.-Y.: Photochemical production of ozone and control
strategy for Southern Taiwan, Atmos. Environ., 41, 9324–9340,
https://doi.org/10.1016/j.atmosenv.2007.09.014, 2007.
Sillman, S., He, D., Pippin, M. R., Daum, P. H., Imre, D. G., Kleinman, L.
I., Lee, J. H., and Weinstein-Lloyd, J.: Model correlations for ozone,
reactive nitrogen, and peroxides for Nashville in comparison with
measurements: Implications for O3-NOx-hydrocarbon chemistry, J.
Geophys. Res.-Atmos., 103, 22629–22644, https://doi.org/10.1029/98jd00349,
1998.
Sillman, S., Vautard, R., Menut, L., and Kley, D.: O3-NOx-VOC
sensitivity and NOx-VOC indicators in Paris: Results from models and
atmospheric pollution over the Paris area (ESQUIF) measurements, J. Geophys.
Res.-Atmos., 108, 8563, https://doi.org/10.1029/2002jd001561, 2003.
Singh, H. B.: Atmospheric halocarbons: evidence in favor of reduced average
hydroxyl radical concentration in the troposphere, Geophys. Res. Lett., 4,
101–104, https://doi.org/10.1029/GL004i003p00101, 1977.
Song, C., Wu, L., Xie, Y., He, J., Chen, X., Wang, T., Lin, Y., Jin, T.,
Wang, A., Liu, Y., Dai, Q., Liu, B., Wang, Y.-N., and Mao, H.: Air
pollution in China: Status and spatiotemporal variations, Environ. Pollut.,
227, 334–347, https://doi.org/10.1016/j.envpol.2017.04.075, 2017.
Song, K., Liu, R., Wang, Y., Liu, T., Wei, L., Wu, Y., Zheng, J., Wang, B., and Liu, S. C.: Ozone, Figshare [data set],
https://doi.org/10.6084/m9.figshare.20055221, 2022.
Tan, Z., Lu, K., Hofzumahaus, A., Fuchs, H., Bohn, B., Holland, F., Liu, Y., Rohrer, F., Shao, M., Sun, K., Wu, Y., Zeng, L., Zhang, Y., Zou, Q., Kiendler-Scharr, A., Wahner, A., and Zhang, Y.: Experimental budgets of OH, HO2, and RO2 radicals and implications for ozone formation in the Pearl River Delta in China 2014, Atmos. Chem. Phys., 19, 7129–7150, https://doi.org/10.5194/acp-19-7129-2019, 2019.
Tang, X., Wang, Z., Zhu, J., Gbaguidi, A. E., Wu, Q., Li, J., and Zhu, T.:
Sensitivity of ozone to precursor emissions in urban Beijing with a Monte
Carlo scheme, Atmos. Environ., 44, 3833–3842,
https://doi.org/10.1016/j.atmosenv.2010.06.026, 2010.
Tang, X., Zhu, J., Wang, Z. F., Wang, M., Gbaguidi, A., Li, J., Shao, M.,
Tang, G. Q., and Ji, D. S.: Inversion of CO emissions over Beijing and its
surrounding areas with ensemble Kalman filter, Atmos. Environ., 81,
676–686, https://doi.org/10.1016/j.atmosenv.2013.08.051, 2013.
Thielmann, A., Prévôt, A. S., and Staehelin, J.: Sensitivity of
ozone production derived from field measurements in the Italian Po basin, J.
Geophys. Res.-Atmos., 107, LOP 7-1–LOP 7-10, https://doi.org/10.1029/2000jd000119, 2002.
Trainer, M., Ridley, B. A., Buhr, M. P., Kok, G., Walega, J., Hübler,
G., Parrish, D. D., and Fehsenfeld, F. C.: Regional ozone and urban plumes
in the southeastern United States: Birmingham, A case study, J. Geophys.
Res.-Atmos., 100, 18823–18834, https://doi.org/10.1029/95JD01641, 1995.
Trainer, M., Parrish, D. D., Goldan, P. D., Roberts, J., and Fehsenfeld, F.
C.: Review of observation-based analysis of the regional factors influencing
ozone concentrations, Atmos. Environ., 34, 2045–2061,
https://doi.org/10.1016/S1352-2310(99)00459-8, 2000.
Wang, B., Liu, Y., Shao, M., Lu, S., Wang, M., Yuan, B., Gong, Z., He, L.,
Zeng, L., Hu, M., and Zhang, Y.: The contributions of biomass burning to
primary and secondary organics: A case study in Pearl River Delta (PRD),
China, Sci. Total Environ., 569–570, 548–556,
https://doi.org/10.1016/j.scitotenv.2016.06.153, 2016.
Wang, L., Liu, D., Han, G., Wang, Y., Qing, T., and Jiang, L.: Study on the
relationship between surface ozone concentrations and meteorological
conditions in Nanjing, China, Acta Scientiae Circumstantiae, 38, 1285–1296,
2018 (in Chinese).
Wang, T., Xue, L., Brimblecombe, P., Lam, Y. F., Li, L., and Zhang, L.:
Ozone pollution in China: A review of concentrations, meteorological
influences, chemical precursors, and effects, Sci. Total Environ., 575,
1582–1596, https://doi.org/10.1016/j.scitotenv.2016.10.081, 2017.
Wang, X., Carmichael, G., Chen, D., Tang, Y., and Wang, T.: Impacts of
different emission sources on air quality during March 2001 in the Pearl
River Delta (PRD) region, Atmos. Environ., 39, 5227–5241,
https://doi.org/10.1016/j.atmosenv.2005.04.035, 2005.
Wang, Y., Wang, H., Guo, H., Lyu, X., Cheng, H., Ling, Z., Louie, P. K. K., Simpson, I. J., Meinardi, S., and Blake, D. R.: Long-term O3–precursor relationships in Hong Kong: field observation and model simulation, Atmos. Chem. Phys., 17, 10919–10935, https://doi.org/10.5194/acp-17-10919-2017, 2017.
Wang, Y., Guo, H., Zou, S., Lyu, X., Ling, Z., Cheng, H., and Zeren, Y.:
Surface O3 photochemistry over the South China Sea: Application of a
near-explicit chemical mechanism box model, Environ. Pollut., 234, 155–166,
https://doi.org/10.1016/j.envpol.2017.11.001, 2018.
Wiegand, A. N. and Bofinger, N. D.: Review of empirical methods for the
calculation of the diurnal NO2 photolysis rate coefficient, Atmos.
Environ., 34, 99–108, https://doi.org/10.1016/S1352-2310(99)00294-0, 2000.
Wei, X., Liu, Q., Lam, K. S., and Wang, T.: Impact of precursor levels and
global warming on peak ozone concentration in the Pearl River Delta region
of China, Adv. Atmos. Sci., 29, 635–645,
https://doi.org/10.1007/s00376-011-1167-4, 2012.
Wu, C., Wang, C., Wang, S., Wang, W., Yuan, B., Qi, J., Wang, B., Wang, H., Wang, C., Song, W., Wang, X., Hu, W., Lou, S., Ye, C., Peng, Y., Wang, Z., Huangfu, Y., Xie, Y., Zhu, M., Zheng, J., Wang, X., Jiang, B., Zhang, Z., and Shao, M.: Measurement report: Important contributions of oxygenated compounds to emissions and chemistry of volatile organic compounds in urban air, Atmos. Chem. Phys., 20, 14769–14785, https://doi.org/10.5194/acp-20-14769-2020, 2020.
Xu, Z., Xue, L., Wang, T., Xia, T., Gao, Y., Louie, P. K. K., and Luk, C. W.
Y.: Measurements of peroxyacetyl nitrate at a background site in the Pearl
River Delta region: Production efficiency and regional transport, Aerosol
Air Qual. Res., 15, 833–841, https://doi.org/10.4209/aaqr.2014.11.0275,
2015.
Xue, L., Wang, T., Wang, X., Blake, D. R., Gao, J., Nie, W., Gao, R., Gao,
X., Xu, Z., Ding, A., Huang, Y., Lee, S., Chen, Y., Wang, S., Chai, F.,
Zhang, Q., and Wang, W.: On the use of an explicit chemical mechanism to
dissect peroxy acetyl nitrate formation, Environ. Pollut., 195, 39–47,
https://doi.org/10.1016/j.envpol.2014.08.005, 2014.
Yang, L., Luo, H., Yuan, Z., Zheng, J., Huang, Z., Li, C., Lin, X., Louie, P. K. K., Chen, D., and Bian, Y.: Quantitative impacts of meteorology and precursor emission changes on the long-term trend of ambient ozone over the Pearl River Delta, China, and implications for ozone control strategy, Atmos. Chem. Phys., 19, 12901–12916, https://doi.org/10.5194/acp-19-12901-2019, 2019.
Yang, Y., Shao, M., Keßel, S., Li, Y., Lu, K., Lu, S., Williams, J., Zhang, Y., Zeng, L., Nölscher, A. C., Wu, Y., Wang, X., and Zheng, J.: How the OH reactivity affects the ozone production efficiency: case studies in Beijing and Heshan, China, Atmos. Chem. Phys., 17, 7127–7142, https://doi.org/10.5194/acp-17-7127-2017, 2017.
Yao, B., Vollmer, M. K., Zhou, L. X., Henne, S., Reimann, S., Li, P. C., Wenger, A., and Hill, M.: In-situ measurements of atmospheric hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs) at the Shangdianzi regional background station, China, Atmos. Chem. Phys., 12, 10181–10193, https://doi.org/10.5194/acp-12-10181-2012, 2012.
Yarwood, G., Rao, S., Yocke, M., and Whitten, G.: Updates to the Carbon Bond
Chemical Mechanism: CB05, Technical Report, Final Report to US EPA,
RT-0400675, https://camx-wp.azurewebsites.net/Files/CB05_Final_Report_120805.pdf (last access: 29 June 2022), 2005.
Yu, D., Tan, Z., Lu, K., Ma, X., Li, X., Chen, S., Zhu, B., Lin, L., Li, Y.,
Qiu, P., Yang, X., Liu, Y., Wang, H., He, L., Huang, X., and Zhang, Y.: An
explicit study of local ozone budget and NOx-VOCs sensitivity in Shenzhen
China, Atmos. Environ., 224, 117304,
https://doi.org/10.1016/j.atmosenv.2020.117304, 2020.
Zaveri, R. A., Berkowitz, C. M., Kleinman, L. I., Springtson, S. R., Doskey,
P. V., Lonneman, W. A., and Spicer, C. W.: Ozone production efficiency and
NOx depletion in an urban plume: Interpretation of field observations and
implications for evaluating O3-NOx-VOC sensitivity, J. Geophys. Res.-Atmos., 108, 4436, https://doi.org/10.1029/2002jd003144, 2003.
Zhang, Q., Yuan, B., Shao, M., Wang, X., Lu, S., Lu, K., Wang, M., Chen, L., Chang, C.-C., and Liu, S. C.: Variations of ground-level O3 and its precursors in Beijing in summertime between 2005 and 2011, Atmos. Chem. Phys., 14, 6089–6101, https://doi.org/10.5194/acp-14-6089-2014, 2014.
Zhang, Y. H., Su, H., Zhong, L. J., Cheng, Y. F., Zeng, L. M., Wang, X. S.,
Xiang, Y. R., Wang, J. L., Gao, D. F., Shao, M., Fan, S. J., and Liu, S. C.:
Regional ozone pollution and observation-based approach for analyzing
ozone–precursor relationship during the PRIDE-PRD2004 campaign, Atmos.
Environ., 42, 6203–6218, https://doi.org/10.1016/j.atmosenv.2008.05.002,
2008.
Zhang, Y. N., Xiang, Y. R., Chan, L. Y., Chan, C. Y., Sang, X. F., Wang, R.,
and Fu, H. X.: Procuring the regional urbanization and industrialization
effect on ozone pollution in Pearl River Delta of Guangdong, China, Atmos.
Environ., 45, 4898–4906, https://doi.org/10.1016/j.atmosenv.2011.06.013,
2011.
Zhao, W., Tang, G., Yu, H., Yang, Y., Wang, Y., Wang, L., An, J., Gao, W.,
Hu, B., Cheng, M., An, X., Li, X., and Wang, Y.: Evolution of boundary layer
ozone in Shijiazhuang, a suburban site on the North China Plain, J. Environ.
Sci., 83, 152–160, https://doi.org/10.1016/j.jes.2019.02.016, 2019.
Short summary
We developed an observation-based method to investigate the sensitivity of ozone formation to precursors during two elevated ozone episodes observed at 77 stations in Guangdong, China. We found approximately 67 % of the station days exhibit ozone formation sensitivity to NOx, 20 % of the station days are in the transitional regime sensitive to both NOx and volatile organic compounds (VOCs), and only 13 % of the station days are sensitive to VOCs.
We developed an observation-based method to investigate the sensitivity of ozone formation to...
Altmetrics
Final-revised paper
Preprint