Articles | Volume 22, issue 11
https://doi.org/10.5194/acp-22-7143-2022
https://doi.org/10.5194/acp-22-7143-2022
Research article
 | 
03 Jun 2022
Research article |  | 03 Jun 2022

Evaluation of aerosol number concentrations from CALIPSO with ATom airborne in situ measurements

Goutam Choudhury, Albert Ansmann, and Matthias Tesche

Related authors

Co-variability drives the inverted-V sensitivity between liquid water path and droplet concentrations
Tom Goren, Goutam Chourdhury, Jan Kretzschmar, and Isabel McCoy
EGUsphere, https://doi.org/10.5194/egusphere-2024-2245,https://doi.org/10.5194/egusphere-2024-2245, 2024
Short summary
Pristine oceans control the uncertainty in aerosol–cloud interactions
Goutam Choudhury, Karoline Block, Mahnoosh Haghighatnasab, Johannes Quaas, Tom Goren, and Matthias Tesche
EGUsphere, https://doi.org/10.5194/egusphere-2024-1863,https://doi.org/10.5194/egusphere-2024-1863, 2024
Short summary
A cloud-by-cloud approach for studying aerosol–cloud interaction in satellite observations
Fani Alexandri, Felix Müller, Goutam Choudhury, Peggy Achtert, Torsten Seelig, and Matthias Tesche
Atmos. Meas. Tech., 17, 1739–1757, https://doi.org/10.5194/amt-17-1739-2024,https://doi.org/10.5194/amt-17-1739-2024, 2024
Short summary
A first global height-resolved cloud condensation nuclei data set derived from spaceborne lidar measurements
Goutam Choudhury and Matthias Tesche
Earth Syst. Sci. Data, 15, 3747–3760, https://doi.org/10.5194/essd-15-3747-2023,https://doi.org/10.5194/essd-15-3747-2023, 2023
Short summary
Estimating cloud condensation nuclei concentrations from CALIPSO lidar measurements
Goutam Choudhury and Matthias Tesche
Atmos. Meas. Tech., 15, 639–654, https://doi.org/10.5194/amt-15-639-2022,https://doi.org/10.5194/amt-15-639-2022, 2022
Short summary

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Fluorescence properties of long-range-transported smoke: insights from five-channel lidar observations over Moscow during the 2023 wildfire season
Igor Veselovskii, Mikhail Korenskiy, Nikita Kasianik, Boris Barchunov, Qiaoyun Hu, Philippe Goloub, and Thierry Podvin
Atmos. Chem. Phys., 25, 1603–1615, https://doi.org/10.5194/acp-25-1603-2025,https://doi.org/10.5194/acp-25-1603-2025, 2025
Short summary
Lidar estimates of birch pollen number, mass, and CCN-related concentrations
Maria Filioglou, Petri Tiitta, Xiaoxia Shang, Ari Leskinen, Pasi Ahola, Sanna Pätsi, Annika Saarto, Ville Vakkari, Uula Isopahkala, and Mika Komppula
Atmos. Chem. Phys., 25, 1639–1657, https://doi.org/10.5194/acp-25-1639-2025,https://doi.org/10.5194/acp-25-1639-2025, 2025
Short summary
Distinct effects of fine and coarse aerosols on microphysical processes of shallow-precipitation systems in summer over southern China
Fengjiao Chen, Yuanjian Yang, Lu Yu, Yang Li, Weiguang Liu, Yan Liu, and Simone Lolli
Atmos. Chem. Phys., 25, 1587–1601, https://doi.org/10.5194/acp-25-1587-2025,https://doi.org/10.5194/acp-25-1587-2025, 2025
Short summary
Increased number concentrations of small particles explain perceived stagnation in air quality over Korea
Sohee Joo, Juseon Shin, Matthias Tesche, Naghmeh Dehkhoda, Taegyeong Kim, and Youngmin Noh
Atmos. Chem. Phys., 25, 1023–1036, https://doi.org/10.5194/acp-25-1023-2025,https://doi.org/10.5194/acp-25-1023-2025, 2025
Short summary
Remote-sensing detectability of airborne Arctic dust
Norman T. O'Neill, Keyvan Ranjbar, Liviu Ivănescu, Yann Blanchard, Seyed Ali Sayedain, and Yasmin AboEl-Fetouh
Atmos. Chem. Phys., 25, 27–44, https://doi.org/10.5194/acp-25-27-2025,https://doi.org/10.5194/acp-25-27-2025, 2025
Short summary

Cited articles

Andreae, M. O. and Rosenfeld, D.: Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89, 13–41, https://doi.org/10.1016/j.earscirev.2008.03.001, 2008. a
Ansmann, A., Mamouri, R.-E., Hofer, J., Baars, H., Althausen, D., and Abdullaev, S. F.: Dust mass, cloud condensation nuclei, and ice-nucleating particle profiling with polarization lidar: updated POLIPHON conversion factors from global AERONET analysis, Atmos. Meas. Tech., 12, 4849–4865, https://doi.org/10.5194/amt-12-4849-2019, 2019. a, b, c
Ansmann, A., Ohneiser, K., Mamouri, R.-E., Knopf, D. A., Veselovskii, I., Baars, H., Engelmann, R., Foth, A., Jimenez, C., Seifert, P., and Barja, B.: Tropospheric and stratospheric wildfire smoke profiling with lidar: mass, surface area, CCN, and INP retrieval, Atmos. Chem. Phys., 21, 9779–9807, https://doi.org/10.5194/acp-21-9779-2021, 2021. a, b, c
Bohren, C. F. and Huffman, D. R.: Absorption and scattering of light by small particles, John Wiley & Sons, https://doi.org/10.1002/9783527618156, 2008. a
Brock, C. A., Williamson, C., Kupc, A., Froyd, K. D., Erdesz, F., Wagner, N., Richardson, M., Schwarz, J. P., Gao, R.-S., Katich, J. M., Campuzano-Jost, P., Nault, B. A., Schroder, J. C., Jimenez, J. L., Weinzierl, B., Dollner, M., Bui, T., and Murphy, D. M.: Aerosol size distributions during the Atmospheric Tomography Mission (ATom): methods, uncertainties, and data products, Atmos. Meas. Tech., 12, 3081–3099, https://doi.org/10.5194/amt-12-3081-2019, 2019. a, b, c
Download
Short summary
Lidars provide height-resolved type-specific aerosol properties and are key in studying vertically collocated aerosols and clouds. In this study, we compare the aerosol number concentrations derived from spaceborne lidar with the in situ flight measurements. Our results show a reasonable agreement between both datasets. Such an agreement has not been achieved yet. It shows the potential of spaceborne lidar in studying aerosol–cloud interactions, which is needed to improve our climate forecasts.
Share
Altmetrics
Final-revised paper
Preprint