Articles | Volume 22, issue 3
https://doi.org/10.5194/acp-22-1761-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-1761-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
NO3 chemistry of wildfire emissions: a kinetic study of the gas-phase reactions of furans with the NO3 radical
Mike J. Newland
CORRESPONDING AUTHOR
ICARE-CNRS, 1C, avenue de la Recherche Scientifique, 45071 Orléans CEDEX 2,
France
Yangang Ren
ICARE-CNRS, 1C, avenue de la Recherche Scientifique, 45071 Orléans CEDEX 2,
France
now at: Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
now at: University of Chinese Academy of Sciences, Beijing 100049, China
Max R. McGillen
ICARE-CNRS, 1C, avenue de la Recherche Scientifique, 45071 Orléans CEDEX 2,
France
Lisa Michelat
ICARE-CNRS, 1C, avenue de la Recherche Scientifique, 45071 Orléans CEDEX 2,
France
Véronique Daële
ICARE-CNRS, 1C, avenue de la Recherche Scientifique, 45071 Orléans CEDEX 2,
France
Abdelwahid Mellouki
CORRESPONDING AUTHOR
ICARE-CNRS, 1C, avenue de la Recherche Scientifique, 45071 Orléans CEDEX 2,
France
Related authors
No articles found.
Chaoyang Xue, Can Ye, Jörg Kleffmann, Chenglong Zhang, Valéry Catoire, Fengxia Bao, Abdelwahid Mellouki, Likun Xue, Jianmin Chen, Keding Lu, Yong Zhao, Hengde Liu, Zhaoxin Guo, and Yujing Mu
Atmos. Chem. Phys., 22, 3149–3167, https://doi.org/10.5194/acp-22-3149-2022, https://doi.org/10.5194/acp-22-3149-2022, 2022
Short summary
Short summary
Summertime measurements of nitrous acid (HONO) and related parameters were conducted at the foot and the summit of Mt. Tai (1534 m above sea level). We proposed a rapid vertical air mass exchange between the foot and the summit level, which enhances the role of HONO in the oxidizing capacity of the upper boundary layer. Kinetics for aerosol-derived HONO sources were constrained. HONO formation from different paths was quantified and discussed.
Chaoyang Xue, Can Ye, Jörg Kleffmann, Wenjin Zhang, Xiaowei He, Pengfei Liu, Chenglong Zhang, Xiaoxi Zhao, Chengtang Liu, Zhuobiao Ma, Junfeng Liu, Jinhe Wang, Keding Lu, Valéry Catoire, Abdelwahid Mellouki, and Yujing Mu
Atmos. Chem. Phys., 22, 1035–1057, https://doi.org/10.5194/acp-22-1035-2022, https://doi.org/10.5194/acp-22-1035-2022, 2022
Short summary
Short summary
Nitrous acid (HONO) and related parameters were measured at the foot and the summit of Mt. Tai in the summer of 2018. Based on measurements at the foot station, we utilized a box model to explore the roles of different sources in the HONO budget. We also studied radical chemistry in this high-ozone region.
Yangang Ren, Li Zhou, Abdelwahid Mellouki, Véronique Daële, Mahmoud Idir, Steven S. Brown, Branko Ruscic, Robert S. Paton, Max R. McGillen, and A. R. Ravishankara
Atmos. Chem. Phys., 21, 13537–13551, https://doi.org/10.5194/acp-21-13537-2021, https://doi.org/10.5194/acp-21-13537-2021, 2021
Short summary
Short summary
Aromatic aldehydes are a family of compounds emitted into the atmosphere from both anthropogenic and biogenic sources that are formed from the degradation of aromatic hydrocarbons. Their atmospheric degradation may impact air quality. We report on their atmospheric degradation through reaction with NO3, which is useful to estimate their atmospheric lifetimes. We have also attempted to elucidate the mechanism of these reactions via studies of isotopic substitution and quantum chemistry.
Abdelwahid Mellouki, Markus Ammann, R. Anthony Cox, John N. Crowley, Hartmut Herrmann, Michael E. Jenkin, V. Faye McNeill, Jürgen Troe, and Timothy J. Wallington
Atmos. Chem. Phys., 21, 4797–4808, https://doi.org/10.5194/acp-21-4797-2021, https://doi.org/10.5194/acp-21-4797-2021, 2021
Short summary
Short summary
Volatile organic compounds play an important role in atmospheric chemistry. This article, the eighth in the series, presents kinetic and photochemical data sheets evaluated by the IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation. It covers the gas-phase reactions of organic species with four, or more, carbon atoms (≥ C4) including thermal reactions of closed-shell organic species with HO and NO3 radicals and their photolysis. These data are important for atmospheric models.
R. Anthony Cox, Markus Ammann, John N. Crowley, Hartmut Herrmann, Michael E. Jenkin, V. Faye McNeill, Abdelwahid Mellouki, Jürgen Troe, and Timothy J. Wallington
Atmos. Chem. Phys., 20, 13497–13519, https://doi.org/10.5194/acp-20-13497-2020, https://doi.org/10.5194/acp-20-13497-2020, 2020
Short summary
Short summary
Criegee intermediates, formed from alkene–ozone reactions, play a potentially important role as tropospheric oxidants. Evaluated kinetic data are provided for reactions governing their formation and removal for use in atmospheric models. These include their formation from reactions of simple and complex alkenes and removal by decomposition and reaction with a number of atmospheric species (e.g. H2O, SO2). An overview of the tropospheric chemistry of Criegee intermediates is also provided.
Yangang Ren, Bastian Stieger, Gerald Spindler, Benoit Grosselin, Abdelwahid Mellouki, Thomas Tuch, Alfred Wiedensohler, and Hartmut Herrmann
Atmos. Chem. Phys., 20, 13069–13089, https://doi.org/10.5194/acp-20-13069-2020, https://doi.org/10.5194/acp-20-13069-2020, 2020
Short summary
Short summary
We present HONO measurements from the TROPOS research site in Melpitz, Germany. Investigations of HONO sources and sinks revealed the nighttime formation by heterogeneous conversion of NO2 to HONO followed by a significant surface deposition at night. The evaporation of dew was identified as the main HONO source in the morning. In the following, dew measurements with a self-made dew collector were performed to estimate the amount of evaporated HONO from dew in the atmospheric HONO distribution.
Manuela van Pinxteren, Khanneh Wadinga Fomba, Nadja Triesch, Christian Stolle, Oliver Wurl, Enno Bahlmann, Xianda Gong, Jens Voigtländer, Heike Wex, Tiera-Brandy Robinson, Stefan Barthel, Sebastian Zeppenfeld, Erik Hans Hoffmann, Marie Roveretto, Chunlin Li, Benoit Grosselin, Veronique Daële, Fabian Senf, Dominik van Pinxteren, Malena Manzi, Nicolás Zabalegui, Sanja Frka, Blaženka Gašparović, Ryan Pereira, Tao Li, Liang Wen, Jiarong Li, Chao Zhu, Hui Chen, Jianmin Chen, Björn Fiedler, Wolf von Tümpling, Katie Alana Read, Shalini Punjabi, Alastair Charles Lewis, James Roland Hopkins, Lucy Jane Carpenter, Ilka Peeken, Tim Rixen, Detlef Schulz-Bull, María Eugenia Monge, Abdelwahid Mellouki, Christian George, Frank Stratmann, and Hartmut Herrmann
Atmos. Chem. Phys., 20, 6921–6951, https://doi.org/10.5194/acp-20-6921-2020, https://doi.org/10.5194/acp-20-6921-2020, 2020
Short summary
Short summary
An introduction to a comprehensive field campaign performed at the Cape Verde Atmospheric Observatory regarding ocean–atmosphere interactions is given. Chemical, physical, biological and meteorological techniques were applied, and measurements of bulk water, the sea surface microlayer, cloud water and ambient aerosol particles took place. Oceanic compounds were found to be transferred to atmospheric aerosol and to the cloud level; however, sea spray contributions to CCN and INPs were limited.
Ganglin Lv, Xiao Sui, Jianmin Chen, Rohan Jayaratne, and Abdelwahid Mellouki
Atmos. Chem. Phys., 18, 2243–2258, https://doi.org/10.5194/acp-18-2243-2018, https://doi.org/10.5194/acp-18-2243-2018, 2018
Short summary
Short summary
We conducted an investigation of new particle formation (NPF) at the summit of Mt. Tai, eastern China, based on simultaneous measurements of particle size distribution, meteorological parameters, gaseous species, mass concentration, and chemical composition of PM2.5. The general characteristics, favorable conditions, and potential precursor species of NPF events are discussed. An in-depth study of NPF on Mt. Tai is important for understanding the effect of particles on air quality.
Caihong Xu, Min Wei, Jianmin Chen, Chao Zhu, Jiarong Li, Ganglin Lv, Xianmang Xu, Lulu Zheng, Guodong Sui, Weijun Li, Bing Chen, Wenxing Wang, Qingzhu Zhang, Aijun Ding, and Abdelwahid Mellouki
Atmos. Chem. Phys., 17, 11247–11260, https://doi.org/10.5194/acp-17-11247-2017, https://doi.org/10.5194/acp-17-11247-2017, 2017
Short summary
Short summary
Fungi are ubiquitous throughout the near-surface atmosphere, where they represent an important component of primary biological aerosol particles. The diversity and composition of the fungal communities varied over the different seasons between the fine (PM2.5) and submicron (PM1) particles at the summit of Mt. Tai located in the North China Plain, China. This work may serve as an important reference for the fungal contribution to primary biological aerosol particles.
Sebastian Laufs, Mathieu Cazaunau, Patrick Stella, Ralf Kurtenbach, Pierre Cellier, Abdelwahid Mellouki, Benjamin Loubet, and Jörg Kleffmann
Atmos. Chem. Phys., 17, 6907–6923, https://doi.org/10.5194/acp-17-6907-2017, https://doi.org/10.5194/acp-17-6907-2017, 2017
Short summary
Short summary
Sources of nitrous acid (HONO), a major precursor of the OH radical, are still under controversial discussion. Since mainly ground surface sources have been proposed, HONO fluxes were measured above an agricultural field. Positive daytime fluxes were observed which showed strong correlation with the product of the NO2 concentration and J(NO2). These results indicate HONO formation by photosensitized heterogeneous conversion of NO2 on soil surfaces as observed in recent laboratory studies.
Chunlin Li, Yunjie Hu, Fei Zhang, Jianmin Chen, Zhen Ma, Xingnan Ye, Xin Yang, Lin Wang, Xingfu Tang, Renhe Zhang, Mu Mu, Guihua Wang, Haidong Kan, Xinming Wang, and Abdelwahid Mellouki
Atmos. Chem. Phys., 17, 4957–4988, https://doi.org/10.5194/acp-17-4957-2017, https://doi.org/10.5194/acp-17-4957-2017, 2017
Short summary
Short summary
Detailed emission factors for smoke particulate species in PM2.5 and PM1.0 were derived from laboratory simulation of crop straw burning using aerosol chamber systems. Based on this, emissions for crop residue field burning in China were calculated and characterized with respect to five different burning scenarios. Moreover, health effects and health-related economic loss from smoke particle exposure were assessed; a practical emission control policy for agricultural field burning was proposed.
Likun Xue, Rongrong Gu, Tao Wang, Xinfeng Wang, Sandra Saunders, Donald Blake, Peter K. K. Louie, Connie W. Y. Luk, Isobel Simpson, Zheng Xu, Zhe Wang, Yuan Gao, Shuncheng Lee, Abdelwahid Mellouki, and Wenxing Wang
Atmos. Chem. Phys., 16, 9891–9903, https://doi.org/10.5194/acp-16-9891-2016, https://doi.org/10.5194/acp-16-9891-2016, 2016
Short summary
Short summary
The chemical budgets and principal sources of ROx and NO3 radicals during a multi-day photochemical smog episode in Hong Kong are elucidated by an observation-constrained MCM model. NO3 was shown to be an important oxidant even during daytime in a pollution case when high aerosol loading attenuated the solar irradiation. This study suggests the potential important role of daytime NO3 chemistry in polluted atmospheres under conditions with the co-existence of abundant O3, NO2, VOCs, and aerosols.
Wei Deng, Qihou Hu, Tengyu Liu, Xinming Wang, Yanli Zhang, Xiang Ding, Yele Sun, Xinhui Bi, Jianzhen Yu, Weiqiang Yang, Xinyu Huang, Zhou Zhang, Zhonghui Huang, Quanfu He, A. Mellouki, and Christian George
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-50, https://doi.org/10.5194/acp-2016-50, 2016
Revised manuscript not accepted
M. Ammann, R. A. Cox, J. N. Crowley, M. E. Jenkin, A. Mellouki, M. J. Rossi, J. Troe, and T. J. Wallington
Atmos. Chem. Phys., 13, 8045–8228, https://doi.org/10.5194/acp-13-8045-2013, https://doi.org/10.5194/acp-13-8045-2013, 2013
Related subject area
Subject: Gases | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Selective deuteration as a tool for resolving autoxidation mechanisms in α-pinene ozonolysis
Comparison of isoprene chemical mechanisms under atmospheric night-time conditions in chamber experiments: evidence of hydroperoxy aldehydes and epoxy products from NO3 oxidation
Measurement of Henry's law and liquid-phase loss rate constants of peroxypropionic nitric anhydride (PPN) in deionized water and in n-octanol
Product distribution, kinetics, and aerosol formation from the OH oxidation of dimethyl sulfide under different RO2 regimes
Atmospheric breakdown chemistry of the new “green” solvent 2,2,5,5-tetramethyloxolane via gas-phase reactions with OH and Cl radicals
On the formation of highly oxidized pollutants by autoxidation of terpenes under low temperature combustion conditions: the case of limonene and α-pinene
Impact of cooking style and oil on semi-volatile and intermediate volatility organic compound emissions from Chinese domestic cooking
Observations of gas-phase products from the nitrate-radical-initiated oxidation of four monoterpenes
Investigation of the limonene photooxidation by OH at different NO concentrations in the atmospheric simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber)
Kinetic study of the atmospheric oxidation of a series of epoxy compounds by OH radicals
An experimental study of the reactivity of terpinolene and β-caryophyllene with the nitrate radical
Oxidation product characterization from ozonolysis of the diterpene ent-kaurene
Kinetics of OH + SO2 + M: temperature-dependent rate coefficients in the fall-off regime and the influence of water vapour
Formation of organic sulfur compounds through SO2-initiated photochemistry of PAHs and dimethylsulfoxide at the air-water interface
Stable carbon isotopic composition of biomass burning emissions – implications for estimating the contribution of C3 and C4 plants
Evaluation of the daytime tropospheric loss of 2-methylbutanal
Investigations into the gas-phase photolysis and OH radical kinetics of nitrocatechols: implications of intramolecular interactions on their atmospheric behaviour
Reproducing Arctic springtime tropospheric ozone and mercury depletion events in an outdoor mesocosm sea ice facility
N2O5 uptake onto saline mineral dust: a potential missing source of tropospheric ClNO2 in inland China
Marine gas-phase sulfur emissions during an induced phytoplankton bloom
Biomass burning plume chemistry: OH-radical-initiated oxidation of 3-penten-2-one and its main oxidation product 2-hydroxypropanal
Atmospheric photo-oxidation of myrcene: OH reaction rate constant, gas-phase oxidation products and radical budgets
Characterization of ambient volatile organic compounds, source apportionment, and the ozone–NOx–VOC sensitivities in a heavily polluted megacity of central China: effect of sporting events and emission reductions
Atmospheric oxidation of α,β-unsaturated ketones: kinetics and mechanism of the OH radical reaction
Reactions of NO3 with aromatic aldehydes: gas-phase kinetics and insights into the mechanism of the reaction
Atmospheric photooxidation and ozonolysis of Δ3-carene and 3-caronaldehyde: rate constants and product yields
Measurement report: Biogenic volatile organic compound emission profiles of rapeseed leaf litter and its secondary organic aerosol formation potential
Highly oxygenated organic molecules produced by the oxidation of benzene and toluene in a wide range of OH exposure and NOx conditions
Molecular composition and volatility of multi-generation products formed from isoprene oxidation by nitrate radical
Highly oxygenated organic molecule (HOM) formation in the isoprene oxidation by NO3 radical
Volatile organic compound emissions from solvent- and water-borne coatings – compositional differences and tracer compound identifications
Evaluated kinetic and photochemical data for atmospheric chemistry: volume VIII – gas-phase reactions of organic species with four, or more, carbon atoms ( ≥ C4)
Chemical characterisation of benzene oxidation products under high- and low-NOx conditions using chemical ionisation mass spectrometry
Emissions of non-methane volatile organic compounds from combustion of domestic fuels in Delhi, India
A comparative and experimental study of the reactivity with nitrate radical of two terpenes: α-terpinene and γ-terpinene
Photooxidation of pinonaldehyde at ambient conditions investigated in the atmospheric simulation chamber SAPHIR
Reaction between CH3C(O)OOH (peracetic acid) and OH in the gas phase: a combined experimental and theoretical study of the kinetics and mechanism
Snow heterogeneous reactivity of bromide with ozone lost during snow metamorphism
Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VII – Criegee intermediates
Technical Note: Effect of varying the λ = 185 and 254 nm photon flux ratio on radical generation in oxidation flow reactors
Kinetics of dimethyl sulfide (DMS) reactions with isoprene-derived Criegee intermediates studied with direct UV absorption
Determination of the absorption cross sections of higher-order iodine oxides at 355 and 532 nm
Evolution of NO3 reactivity during the oxidation of isoprene
Rate coefficients for reactions of OH with aromatic and aliphatic volatile organic compounds determined by the multivariate relative rate technique
Atmospheric fate of two relevant unsaturated ketoethers: kinetics, products and mechanisms for the reaction of hydroxyl radicals with (E)-4-methoxy-3-buten-2-one and (1E)-1-methoxy-2-methyl-1-penten-3-one
The nitrogen budget of laboratory-simulated western US wildfires during the FIREX 2016 Fire Lab study
Importance of isomerization reactions for OH radical regeneration from the photo-oxidation of isoprene investigated in the atmospheric simulation chamber SAPHIR
Kinetics of the OH + NO2 reaction: effect of water vapour and new parameterization for global modelling
Kinetic and mechanistic study of the reaction between methane sulfonamide (CH3S(O)2NH2) and OH
Dimensionality-reduction techniques for complex mass spectrometric datasets: application to laboratory atmospheric organic oxidation experiments
Melissa Meder, Otso Peräkylä, Jonathan G. Varelas, Jingyi Luo, Runlong Cai, Yanjun Zhang, Theo Kurtén, Matthieu Riva, Matti Rissanen, Franz M. Geiger, Regan J. Thomson, and Mikael Ehn
Atmos. Chem. Phys., 23, 4373–4390, https://doi.org/10.5194/acp-23-4373-2023, https://doi.org/10.5194/acp-23-4373-2023, 2023
Short summary
Short summary
We discuss and show the viability of a method where multiple isotopically labelled precursors are used for probing the formation pathways of highly oxygenated organic molecules (HOMs) from the oxidation of the monoterpene a-pinene. HOMs are very important for secondary organic aerosol (SOA) formation in forested regions, and monoterpenes are the single largest source of SOA globally. The fast reactions forming HOMs have thus far remained elusive despite considerable efforts over the last decade.
Philip T. M. Carlsson, Luc Vereecken, Anna Novelli, François Bernard, Steven S. Brown, Bellamy Brownwood, Changmin Cho, John N. Crowley, Patrick Dewald, Peter M. Edwards, Nils Friedrich, Juliane L. Fry, Mattias Hallquist, Luisa Hantschke, Thorsten Hohaus, Sungah Kang, Jonathan Liebmann, Alfred W. Mayhew, Thomas Mentel, David Reimer, Franz Rohrer, Justin Shenolikar, Ralf Tillmann, Epameinondas Tsiligiannis, Rongrong Wu, Andreas Wahner, Astrid Kiendler-Scharr, and Hendrik Fuchs
Atmos. Chem. Phys., 23, 3147–3180, https://doi.org/10.5194/acp-23-3147-2023, https://doi.org/10.5194/acp-23-3147-2023, 2023
Short summary
Short summary
The investigation of the night-time oxidation of the most abundant hydrocarbon, isoprene, in chamber experiments shows the importance of reaction pathways leading to epoxy products, which could enhance particle formation, that have so far not been accounted for. The chemical lifetime of organic nitrates from isoprene is long enough for the majority to be further oxidized the next day by daytime oxidants.
Kevin D. Easterbrook, Mitchell A. Vona, Kiana Nayebi-Astaneh, Amanda M. Miller, and Hans D. Osthoff
Atmos. Chem. Phys., 23, 311–322, https://doi.org/10.5194/acp-23-311-2023, https://doi.org/10.5194/acp-23-311-2023, 2023
Short summary
Short summary
The trace gas peroxypropionyl nitrate (PPN) is generated in photochemical smog, phytotoxic, a strong eye irritant, and possibly mutagenic. Here, its solubility and reactivity in water and in octanol were investigated using a bubble flow apparatus, yielding its Henry's law constant and octanol–water partition coefficient (Kow). The results allow the fate of PPN to be more accurately constrained in atmospheric chemical transport models, including its uptake on clouds, organic aerosol, and leaves.
Qing Ye, Matthew B. Goss, Jordan E. Krechmer, Francesca Majluf, Alexander Zaytsev, Yaowei Li, Joseph R. Roscioli, Manjula Canagaratna, Frank N. Keutsch, Colette L. Heald, and Jesse H. Kroll
Atmos. Chem. Phys., 22, 16003–16015, https://doi.org/10.5194/acp-22-16003-2022, https://doi.org/10.5194/acp-22-16003-2022, 2022
Short summary
Short summary
The atmospheric oxidation of dimethyl sulfide (DMS) is a major natural source of sulfate particles in the atmosphere. However, its mechanism is poorly constrained. In our work, laboratory measurements and mechanistic modeling were conducted to comprehensively investigate DMS oxidation products and key reaction rates. We find that the peroxy radical (RO2) has a controlling effect on product distribution and aerosol yield, with the isomerization of RO2 leading to the suppression of aerosol yield.
Caterina Mapelli, Juliette V. Schleicher, Alex Hawtin, Conor D. Rankine, Fiona C. Whiting, Fergal Byrne, C. Rob McElroy, Claudiu Roman, Cecilia Arsene, Romeo I. Olariu, Iustinian G. Bejan, and Terry J. Dillon
Atmos. Chem. Phys., 22, 14589–14602, https://doi.org/10.5194/acp-22-14589-2022, https://doi.org/10.5194/acp-22-14589-2022, 2022
Short summary
Short summary
Solvents represent an important source of pollution from the chemical industry. New "green" solvents aim to replace toxic solvents with new molecules made from renewable sources and designed to be less harmful. Whilst these new molecules are selected according to toxicity and other characteristics, no consideration has yet been included on air quality. Studying the solvent breakdown in air, we found that TMO has a lower impact on air quality than traditional solvents with similar properties.
Roland Benoit, Nesrine Belhadj, Zahraa Dbouk, Maxence Lailliau, and Philippe Dagaut
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-635, https://doi.org/10.5194/acp-2022-635, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
This study compares different modes of oxidation of alpha-pinene and limonene (ozonolysis, photooxidation and cool flame) based on literature articles and present experimental results. Although the oxidation conditions are totally different, the data show great similitude in terms of detected chemical formulas, but also specificities related to autoxidation. These results are presented using graphical tools adapted to the processing of large datasets.
Kai Song, Song Guo, Yuanzheng Gong, Daqi Lv, Yuan Zhang, Zichao Wan, Tianyu Li, Wenfei Zhu, Hui Wang, Ying Yu, Rui Tan, Ruizhe Shen, Sihua Lu, Shuangde Li, Yunfa Chen, and Min Hu
Atmos. Chem. Phys., 22, 9827–9841, https://doi.org/10.5194/acp-22-9827-2022, https://doi.org/10.5194/acp-22-9827-2022, 2022
Short summary
Short summary
Emissions from four typical Chinese domestic cooking and fried chicken using four kinds of oils were investigated to illustrate the impact of cooking style and oil. Of the estimated SOA, 10.2 %–32.0 % could be explained by S/IVOC oxidation. Multiway principal component analysis (MPCA) emphasizes the importance of the unsaturated fatty acid-alkadienal volatile product mechanism (oil autoxidation) accelerated by the cooking and heating procedure.
Michelia Dam, Danielle C. Draper, Andrey Marsavin, Juliane L. Fry, and James N. Smith
Atmos. Chem. Phys., 22, 9017–9031, https://doi.org/10.5194/acp-22-9017-2022, https://doi.org/10.5194/acp-22-9017-2022, 2022
Short summary
Short summary
We performed chamber experiments to measure the composition of the gas-phase reaction products of nitrate-radical-initiated oxidation of four monoterpenes. The total organic yield, effective oxygen-to-carbon ratio, and dimer-to-monomer ratio were correlated with the observed particle formation for the monoterpene systems with some exceptions. The Δ-carene system produced the most particles, followed by β-pinene, with the α-pinene and α-thujene systems producing no particles.
Jacky Yat Sing Pang, Anna Novelli, Martin Kaminski, Ismail-Hakki Acir, Birger Bohn, Philip T. M. Carlsson, Changmin Cho, Hans-Peter Dorn, Andreas Hofzumahaus, Xin Li, Anna Lutz, Sascha Nehr, David Reimer, Franz Rohrer, Ralf Tillmann, Robert Wegener, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 22, 8497–8527, https://doi.org/10.5194/acp-22-8497-2022, https://doi.org/10.5194/acp-22-8497-2022, 2022
Short summary
Short summary
This study investigates the radical chemical budget during the limonene oxidation at different atmospheric-relevant NO concentrations in chamber experiments under atmospheric conditions. It is found that the model–measurement discrepancies of HO2 and RO2 are very large at low NO concentrations that are typical for forested environments. Possible additional processes impacting HO2 and RO2 concentrations are discussed.
Carmen Maria Tovar, Ian Barnes, Iustinian Gabriel Bejan, and Peter Wiesen
Atmos. Chem. Phys., 22, 6989–7004, https://doi.org/10.5194/acp-22-6989-2022, https://doi.org/10.5194/acp-22-6989-2022, 2022
Short summary
Short summary
This work explores the kinetics and reactivity of epoxides towards the OH radical using two different simulation chambers. Estimation of the rate coefficients has also been made using different structure–activity relationship (SAR) approaches. The results indicate a direct influence of the structural and geometric properties of the epoxides not considered in SAR estimations, influencing the reactivity of these compounds. The outcomes of this work are in very good agreement with previous studies.
Axel Fouqueau, Manuela Cirtog, Mathieu Cazaunau, Edouard Pangui, Jean-François Doussin, and Bénédicte Picquet-Varrault
Atmos. Chem. Phys., 22, 6411–6434, https://doi.org/10.5194/acp-22-6411-2022, https://doi.org/10.5194/acp-22-6411-2022, 2022
Short summary
Short summary
Biogenic volatile organic compounds are intensely emitted by forests and crops and react with the nitrate radical during the nighttime to form functionalized products. The purpose of this study is to furnish kinetic and mechanistic data for terpinolene and β-caryophyllene, using simulation chamber experiments. Rate constants have been measured using both relative and absolute methods, and mechanistic studies have been conducted in order to identify and quantify the main reaction products.
Yuanyuan Luo, Olga Garmash, Haiyan Li, Frans Graeffe, Arnaud P. Praplan, Anssi Liikanen, Yanjun Zhang, Melissa Meder, Otso Peräkylä, Josep Peñuelas, Ana María Yáñez-Serrano, and Mikael Ehn
Atmos. Chem. Phys., 22, 5619–5637, https://doi.org/10.5194/acp-22-5619-2022, https://doi.org/10.5194/acp-22-5619-2022, 2022
Short summary
Short summary
Diterpenes were only recently observed in the atmosphere, and little is known of their atmospheric fates. We explored the ozonolysis of the diterpene kaurene in a chamber, and we characterized the oxidation products for the first time using chemical ionization mass spectrometry. Our findings highlight similarities and differences between diterpenes and smaller terpenes during their atmospheric oxidation.
Wenyu Sun, Matias Berasategui, Andrea Pozzer, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 22, 4969–4984, https://doi.org/10.5194/acp-22-4969-2022, https://doi.org/10.5194/acp-22-4969-2022, 2022
Short summary
Short summary
The reaction between OH and SO2 is a termolecular process that in the atmosphere results in the formation of H2SO4 and thus aerosols. We present the first temperature- and pressure-dependent measurements of the rate coefficients in N2. This is also the first study to examine the effects of water vapour on the kinetics of this reaction. Our results indicate the rate coefficient is larger than that recommended by evaluation panels, with deviations of up to 30 % in some parts of the atmosphere.
Haoyu Jiang, Yingyao He, Yiqun Wang, Sheng Li, Bin Jiang, Luca Carena, Xue Li, Lihua Yang, Tiangang Luan, Davide Vione, and Sasho Gligorovski
Atmos. Chem. Phys., 22, 4237–4252, https://doi.org/10.5194/acp-22-4237-2022, https://doi.org/10.5194/acp-22-4237-2022, 2022
Short summary
Short summary
Heterogeneous oxidation of SO2 is suggested to be one of the most important pathways for sulfate formation during extreme haze events in China, yet the exact mechanism remains highly uncertain. Our study reveals that ubiquitous compounds at the sea surface PAHS and DMSO, when exposed to SO2 under simulated sunlight irradiation, generate abundant organic sulfur compounds, providing implications for air-sea interaction and secondary organic aerosols formation processes.
Roland Vernooij, Ulrike Dusek, Maria Elena Popa, Peng Yao, Anupam Shaikat, Chenxi Qiu, Patrik Winiger, Carina van der Veen, Thomas Callum Eames, Natasha Ribeiro, and Guido R. van der Werf
Atmos. Chem. Phys., 22, 2871–2890, https://doi.org/10.5194/acp-22-2871-2022, https://doi.org/10.5194/acp-22-2871-2022, 2022
Short summary
Short summary
Landscape fires are a major source of greenhouse gases and aerosols, particularly in sub-tropical savannas. Stable carbon isotopes in emissions can be used to trace the contribution of C3 plants (e.g. trees or shrubs) and C4 plants (e.g. savanna grasses) to greenhouse gases and aerosols if the process is well understood. This helps us to link individual vegetation types to emissions, identify biomass burning emissions in the atmosphere, and improve the reconstruction of historic fire regimes.
María Asensio, María Antiñolo, Sergio Blázquez, José Albaladejo, and Elena Jiménez
Atmos. Chem. Phys., 22, 2689–2701, https://doi.org/10.5194/acp-22-2689-2022, https://doi.org/10.5194/acp-22-2689-2022, 2022
Short summary
Short summary
The diurnal atmospheric degradation of 2-methylbutanal, 2 MB, emitted by sources like vegetation or the poultry industry is evaluated in this work. Sunlight and oxidants like hydroxyl (OH) radicals and chlorine (Cl) atoms initiate this degradation. Measurements of how fast 2 MB is degraded and what products are generated are presented. The lifetime of 2 MB is around 1 h at noon, when the OH reaction dominates. Thus, 2 MB will not be transported far, affecting only local air quality.
Claudiu Roman, Cecilia Arsene, Iustinian Gabriel Bejan, and Romeo Iulian Olariu
Atmos. Chem. Phys., 22, 2203–2219, https://doi.org/10.5194/acp-22-2203-2022, https://doi.org/10.5194/acp-22-2203-2022, 2022
Short summary
Short summary
Gas-phase reaction rate coefficients of OH radicals with four nitrocatechols have been investigated for the first time by using ESC-Q-UAIC chamber facilities. The reactivity of all investigated nitrocatechols is influenced by the formation of the intramolecular H-bonds that are connected to the deactivating electromeric effect of the NO2 group. For the 3-nitrocatechol compounds, the electromeric effect of the
freeOH group is diminished by the deactivating E-effect of the NO2 group.
Zhiyuan Gao, Nicolas-Xavier Geilfus, Alfonso Saiz-Lopez, and Feiyue Wang
Atmos. Chem. Phys., 22, 1811–1824, https://doi.org/10.5194/acp-22-1811-2022, https://doi.org/10.5194/acp-22-1811-2022, 2022
Short summary
Short summary
Every spring in the Arctic, a series of photochemical events occur over the ice-covered ocean, known as bromine explosion events, ozone depletion events, and mercury depletion events. Here we report the re-creation of these events at an outdoor sea ice facility in Winnipeg, Canada, far away from the Arctic. The success provides a new platform with new opportunities to uncover fundamental mechanisms of these Arctic springtime phenomena and how they may change in a changing climate.
Haichao Wang, Chao Peng, Xuan Wang, Shengrong Lou, Keding Lu, Guicheng Gan, Xiaohong Jia, Xiaorui Chen, Jun Chen, Hongli Wang, Shaojia Fan, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 22, 1845–1859, https://doi.org/10.5194/acp-22-1845-2022, https://doi.org/10.5194/acp-22-1845-2022, 2022
Short summary
Short summary
Via combining laboratory and modeling work, we found that heterogeneous reaction of N2O5 with saline mineral dust aerosol could be an important source of tropospheric ClNO2 in inland regions.
Delaney B. Kilgour, Gordon A. Novak, Jon S. Sauer, Alexia N. Moore, Julie Dinasquet, Sarah Amiri, Emily B. Franklin, Kathryn Mayer, Margaux Winter, Clare K. Morris, Tyler Price, Francesca Malfatti, Daniel R. Crocker, Christopher Lee, Christopher D. Cappa, Allen H. Goldstein, Kimberly A. Prather, and Timothy H. Bertram
Atmos. Chem. Phys., 22, 1601–1613, https://doi.org/10.5194/acp-22-1601-2022, https://doi.org/10.5194/acp-22-1601-2022, 2022
Short summary
Short summary
We report measurements of gas-phase volatile organosulfur molecules made during a mesocosm phytoplankton bloom experiment. Dimethyl sulfide (DMS), methanethiol (MeSH), and benzothiazole accounted for on average over 90 % of total gas-phase sulfur emissions. This work focuses on factors controlling the production and emission of DMS and MeSH and the role of non-DMS molecules (such as MeSH and benzothiazole) in secondary sulfate formation in coastal marine environments.
Niklas Illmann, Iulia Patroescu-Klotz, and Peter Wiesen
Atmos. Chem. Phys., 21, 18557–18572, https://doi.org/10.5194/acp-21-18557-2021, https://doi.org/10.5194/acp-21-18557-2021, 2021
Short summary
Short summary
Understanding the chemistry of biomass burning plumes is of global interest. Within this work we investigated the OH radical reaction of 3-penten-2-one, which has been identified in biomass burning emissions. We observed the primary formation of peroxyacetyl nitrate (PAN), a key NOx reservoir species. Besides, PAN precursors were also identified as main oxidation products. 3-Penten-2-one is shown to be an example explaining rapid PAN formation within young biomass burning plumes.
Zhaofeng Tan, Luisa Hantschke, Martin Kaminski, Ismail-Hakki Acir, Birger Bohn, Changmin Cho, Hans-Peter Dorn, Xin Li, Anna Novelli, Sascha Nehr, Franz Rohrer, Ralf Tillmann, Robert Wegener, Andreas Hofzumahaus, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 21, 16067–16091, https://doi.org/10.5194/acp-21-16067-2021, https://doi.org/10.5194/acp-21-16067-2021, 2021
Short summary
Short summary
The photo-oxidation of myrcene, a monoterpene species emitted by plants, was investigated at atmospheric conditions in the outdoor simulation chamber SAPHIR. The chemical structure of myrcene is partly similar to isoprene. Therefore, it can be expected that hydrogen shift reactions could play a role as observed for isoprene. In this work, their potential impact on the regeneration efficiency of hydroxyl radicals is investigated.
Shijie Yu, Fangcheng Su, Shasha Yin, Shenbo Wang, Ruixin Xu, Bing He, Xiangge Fan, Minghao Yuan, and Ruiqin Zhang
Atmos. Chem. Phys., 21, 15239–15257, https://doi.org/10.5194/acp-21-15239-2021, https://doi.org/10.5194/acp-21-15239-2021, 2021
Short summary
Short summary
This study measured 106 VOC species using a GC-MS/FID. Meanwhile, the WRF-CMAQ model was used to investigate the nonlinearity of the O3 response to precursor reductions. This study highlights the effectiveness of stringent emission controls in relation to solvent utilization and coal combustion. However, unreasonable emission reduction may aggravate ozone pollution during control periods. It is suggested that emission-reduction ratios of the precursors (VOC : NOx) should be more than 2.
Niklas Illmann, Rodrigo Gastón Gibilisco, Iustinian Gabriel Bejan, Iulia Patroescu-Klotz, and Peter Wiesen
Atmos. Chem. Phys., 21, 13667–13686, https://doi.org/10.5194/acp-21-13667-2021, https://doi.org/10.5194/acp-21-13667-2021, 2021
Short summary
Short summary
Within this work we determined the rate coefficients and products of the reaction of unsaturated ketones with OH radicals in an effort to complete the gaps in the knowledge needed for modelling chemistry in the atmosphere. Both substances are potentially emitted by biomass burning, industrial activities or formed in the troposphere by oxidation of terpenes. As products we identified aldehydes and ketones which in turn are known to be responsible for the transportation of NOx species.
Yangang Ren, Li Zhou, Abdelwahid Mellouki, Véronique Daële, Mahmoud Idir, Steven S. Brown, Branko Ruscic, Robert S. Paton, Max R. McGillen, and A. R. Ravishankara
Atmos. Chem. Phys., 21, 13537–13551, https://doi.org/10.5194/acp-21-13537-2021, https://doi.org/10.5194/acp-21-13537-2021, 2021
Short summary
Short summary
Aromatic aldehydes are a family of compounds emitted into the atmosphere from both anthropogenic and biogenic sources that are formed from the degradation of aromatic hydrocarbons. Their atmospheric degradation may impact air quality. We report on their atmospheric degradation through reaction with NO3, which is useful to estimate their atmospheric lifetimes. We have also attempted to elucidate the mechanism of these reactions via studies of isotopic substitution and quantum chemistry.
Luisa Hantschke, Anna Novelli, Birger Bohn, Changmin Cho, David Reimer, Franz Rohrer, Ralf Tillmann, Marvin Glowania, Andreas Hofzumahaus, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 21, 12665–12685, https://doi.org/10.5194/acp-21-12665-2021, https://doi.org/10.5194/acp-21-12665-2021, 2021
Short summary
Short summary
The reactions of Δ3-carene with ozone and the hydroxyl radical (OH) and the photolysis and OH reaction of caronaldehyde were investigated in the simulation chamber SAPHIR. Reaction rate constants of these reactions were determined. Caronaldehyde yields of the ozonolysis and OH reaction were determined. The organic nitrate yield of the reaction of Δ3-carene and caronaldehyde-derived peroxy radicals with NO was determined. The ROx budget (ROx = OH+HO2+RO2) was also investigated.
Letizia Abis, Carmen Kalalian, Bastien Lunardelli, Tao Wang, Liwu Zhang, Jianmin Chen, Sébastien Perrier, Benjamin Loubet, Raluca Ciuraru, and Christian George
Atmos. Chem. Phys., 21, 12613–12629, https://doi.org/10.5194/acp-21-12613-2021, https://doi.org/10.5194/acp-21-12613-2021, 2021
Short summary
Short summary
Biogenic volatile organic compound (BVOC) emissions from rapeseed leaf litter have been investigated by means of a controlled atmospheric simulation chamber. The diversity of emitted VOCs increased also in the presence of UV light irradiation. SOA formation was observed when leaf litter was exposed to both UV light and ozone, indicating a potential contribution to particle formation or growth at local scales.
Xi Cheng, Qi Chen, Yong Jie Li, Yan Zheng, Keren Liao, and Guancong Huang
Atmos. Chem. Phys., 21, 12005–12019, https://doi.org/10.5194/acp-21-12005-2021, https://doi.org/10.5194/acp-21-12005-2021, 2021
Short summary
Short summary
In this study, we conducted laboratory studies to investigate the formation of gas-phase highly oxygenated organic molecules (HOMs). We provide a thorough analysis on the importance of multistep auto-oxidation and multigeneration OH reactions. We also give an intensive investigation on the roles of high-NO2 conditions that represent a wide range of anthropogenically influenced environments.
Rongrong Wu, Luc Vereecken, Epameinondas Tsiligiannis, Sungah Kang, Sascha R. Albrecht, Luisa Hantschke, Defeng Zhao, Anna Novelli, Hendrik Fuchs, Ralf Tillmann, Thorsten Hohaus, Philip T. M. Carlsson, Justin Shenolikar, François Bernard, John N. Crowley, Juliane L. Fry, Bellamy Brownwood, Joel A. Thornton, Steven S. Brown, Astrid Kiendler-Scharr, Andreas Wahner, Mattias Hallquist, and Thomas F. Mentel
Atmos. Chem. Phys., 21, 10799–10824, https://doi.org/10.5194/acp-21-10799-2021, https://doi.org/10.5194/acp-21-10799-2021, 2021
Short summary
Short summary
Isoprene is the biogenic volatile organic compound with the largest emissions rates. The nighttime reaction of isoprene with the NO3 radical has a large potential to contribute to SOA. We classified isoprene nitrates into generations and proposed formation pathways. Considering the potential functionalization of the isoprene nitrates we propose that mainly isoprene dimers contribute to SOA formation from the isoprene NO3 reactions with at least a 5 % mass yield.
Defeng Zhao, Iida Pullinen, Hendrik Fuchs, Stephanie Schrade, Rongrong Wu, Ismail-Hakki Acir, Ralf Tillmann, Franz Rohrer, Jürgen Wildt, Yindong Guo, Astrid Kiendler-Scharr, Andreas Wahner, Sungah Kang, Luc Vereecken, and Thomas F. Mentel
Atmos. Chem. Phys., 21, 9681–9704, https://doi.org/10.5194/acp-21-9681-2021, https://doi.org/10.5194/acp-21-9681-2021, 2021
Short summary
Short summary
The reaction of isoprene, a biogenic volatile organic compound with the globally largest emission rates, with NO3, an nighttime oxidant influenced heavily by anthropogenic emissions, forms a large number of highly oxygenated organic molecules (HOM). These HOM are formed via one or multiple oxidation steps, followed by autoxidation. Their total yield is much higher than that in the daytime oxidation of isoprene. They may play an important role in nighttime organic aerosol formation and growth.
Chelsea E. Stockwell, Matthew M. Coggon, Georgios I. Gkatzelis, John Ortega, Brian C. McDonald, Jeff Peischl, Kenneth Aikin, Jessica B. Gilman, Michael Trainer, and Carsten Warneke
Atmos. Chem. Phys., 21, 6005–6022, https://doi.org/10.5194/acp-21-6005-2021, https://doi.org/10.5194/acp-21-6005-2021, 2021
Short summary
Short summary
Volatile chemical products are emerging as a large source of petrochemical organics in urban environments. We identify markers for the coatings category by linking ambient observations to laboratory measurements, investigating volatile organic compound (VOC) composition, and quantifying key VOC emissions via controlled evaporation experiments. Ingredients and sales surveys are used to confirm the prevalence and usage trends to support the assignment of water and solvent-borne coating tracers.
Abdelwahid Mellouki, Markus Ammann, R. Anthony Cox, John N. Crowley, Hartmut Herrmann, Michael E. Jenkin, V. Faye McNeill, Jürgen Troe, and Timothy J. Wallington
Atmos. Chem. Phys., 21, 4797–4808, https://doi.org/10.5194/acp-21-4797-2021, https://doi.org/10.5194/acp-21-4797-2021, 2021
Short summary
Short summary
Volatile organic compounds play an important role in atmospheric chemistry. This article, the eighth in the series, presents kinetic and photochemical data sheets evaluated by the IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation. It covers the gas-phase reactions of organic species with four, or more, carbon atoms (≥ C4) including thermal reactions of closed-shell organic species with HO and NO3 radicals and their photolysis. These data are important for atmospheric models.
Michael Priestley, Thomas J. Bannan, Michael Le Breton, Stephen D. Worrall, Sungah Kang, Iida Pullinen, Sebastian Schmitt, Ralf Tillmann, Einhard Kleist, Defeng Zhao, Jürgen Wildt, Olga Garmash, Archit Mehra, Asan Bacak, Dudley E. Shallcross, Astrid Kiendler-Scharr, Åsa M. Hallquist, Mikael Ehn, Hugh Coe, Carl J. Percival, Mattias Hallquist, Thomas F. Mentel, and Gordon McFiggans
Atmos. Chem. Phys., 21, 3473–3490, https://doi.org/10.5194/acp-21-3473-2021, https://doi.org/10.5194/acp-21-3473-2021, 2021
Short summary
Short summary
A significant fraction of emissions from human activity consists of aromatic hydrocarbons, e.g. benzene, which oxidise to form new compounds important for particle growth. Characterisation of benzene oxidation products highlights the range of species produced as well as their chemical properties and contextualises them within relevant frameworks, e.g. MCM. Cluster analysis of the oxidation product time series distinguishes behaviours of CHON compounds that could aid in identifying functionality.
Gareth J. Stewart, W. Joe F. Acton, Beth S. Nelson, Adam R. Vaughan, James R. Hopkins, Rahul Arya, Arnab Mondal, Ritu Jangirh, Sakshi Ahlawat, Lokesh Yadav, Sudhir K. Sharma, Rachel E. Dunmore, Siti S. M. Yunus, C. Nicholas Hewitt, Eiko Nemitz, Neil Mullinger, Ranu Gadi, Lokesh K. Sahu, Nidhi Tripathi, Andrew R. Rickard, James D. Lee, Tuhin K. Mandal, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 21, 2383–2406, https://doi.org/10.5194/acp-21-2383-2021, https://doi.org/10.5194/acp-21-2383-2021, 2021
Short summary
Short summary
Biomass burning is a major source of trace gases to the troposphere; however, the composition and quantity of emissions vary greatly between different fuel types. This work provided near-total quantitation of non-methane volatile organic compounds from combustion of biofuels from India. Emissions from cow dung cake combustion were significantly larger than conventional fuelwood combustion, potentially indicating that this source has a disproportionately large impact on regional air quality.
Axel Fouqueau, Manuela Cirtog, Mathieu Cazaunau, Edouard Pangui, Jean-François Doussin, and Bénédicte Picquet-Varrault
Atmos. Chem. Phys., 20, 15167–15189, https://doi.org/10.5194/acp-20-15167-2020, https://doi.org/10.5194/acp-20-15167-2020, 2020
Michael Rolletter, Marion Blocquet, Martin Kaminski, Birger Bohn, Hans-Peter Dorn, Andreas Hofzumahaus, Frank Holland, Xin Li, Franz Rohrer, Ralf Tillmann, Robert Wegener, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 20, 13701–13719, https://doi.org/10.5194/acp-20-13701-2020, https://doi.org/10.5194/acp-20-13701-2020, 2020
Short summary
Short summary
The photooxidation of pinonaldehyde is investigated in a chamber study under natural sunlight and low NO conditions with and without an added hydroxyl radical (OH) scavenger. The experimentally determined pinonaldehyde photolysis frequency is faster by a factor of 3.5 than currently used parameterizations in atmospheric models. Yields of degradation products are measured in the presence and absence of OH. Measurements are compared to current atmospheric models and a theory-based mechanism.
Matias Berasategui, Damien Amedro, Luc Vereecken, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 20, 13541–13555, https://doi.org/10.5194/acp-20-13541-2020, https://doi.org/10.5194/acp-20-13541-2020, 2020
Short summary
Short summary
Peracetic acid is one of the most abundant organic peroxides in the atmosphere. We combine experiments and theory to show that peracetic acid reacts orders of magnitude more slowly with OH than presently accepted, which results in a significant extension of its atmospheric lifetime.
Jacinta Edebeli, Jürg C. Trachsel, Sven E. Avak, Markus Ammann, Martin Schneebeli, Anja Eichler, and Thorsten Bartels-Rausch
Atmos. Chem. Phys., 20, 13443–13454, https://doi.org/10.5194/acp-20-13443-2020, https://doi.org/10.5194/acp-20-13443-2020, 2020
Short summary
Short summary
Earth’s snow cover is very dynamic and can change its physical properties within hours, as is well known by skiers. Snow is also a well-known host of chemical reactions – the products of which impact air composition and quality. Here, we present laboratory experiments that show how the dynamics of snow make snow essentially inert with respect to gas-phase ozone with time despite its content of reactive chemicals. Impacts on polar atmospheric chemistry are discussed.
R. Anthony Cox, Markus Ammann, John N. Crowley, Hartmut Herrmann, Michael E. Jenkin, V. Faye McNeill, Abdelwahid Mellouki, Jürgen Troe, and Timothy J. Wallington
Atmos. Chem. Phys., 20, 13497–13519, https://doi.org/10.5194/acp-20-13497-2020, https://doi.org/10.5194/acp-20-13497-2020, 2020
Short summary
Short summary
Criegee intermediates, formed from alkene–ozone reactions, play a potentially important role as tropospheric oxidants. Evaluated kinetic data are provided for reactions governing their formation and removal for use in atmospheric models. These include their formation from reactions of simple and complex alkenes and removal by decomposition and reaction with a number of atmospheric species (e.g. H2O, SO2). An overview of the tropospheric chemistry of Criegee intermediates is also provided.
Jake P. Rowe, Andrew T. Lambe, and William H. Brune
Atmos. Chem. Phys., 20, 13417–13424, https://doi.org/10.5194/acp-20-13417-2020, https://doi.org/10.5194/acp-20-13417-2020, 2020
Short summary
Short summary
We conducted a series of experiments in which the 185 to 254 nm photon flux ratio (I185 : I254) emitted by low-pressure mercury lamps installed in an oxidation flow reactor (OFR) was systematically varied using multiple novel lamp configurations. Integrated OH exposure values achieved for each lamp type were obtained as a function of OFR operating conditions. A photochemical box model was used to develop a generalized OH exposure estimation equation as a function of [H2O], [O3], and OH reactivity.
Mei-Tsan Kuo, Isabelle Weber, Christa Fittschen, Luc Vereecken, and Jim Jr-Min Lin
Atmos. Chem. Phys., 20, 12983–12993, https://doi.org/10.5194/acp-20-12983-2020, https://doi.org/10.5194/acp-20-12983-2020, 2020
Short summary
Short summary
Dimethyl sulfide (DMS) is the major sulfur-containing species in the troposphere. Previous work by Newland et al. (2015) reported very high reactivity of isoprene-derived Criegee intermediates (CIs) towards DMS. By monitoring CIs with direct UV absorption, we found CI + DMS reactions are very slow, in contrast to the results of Newland et al. (2015), suggesting these CIs would not oxidize atmospheric DMS at any substantial level.
Thomas R. Lewis, Juan Carlos Gómez Martín, Mark A. Blitz, Carlos A. Cuevas, John M. C. Plane, and Alfonso Saiz-Lopez
Atmos. Chem. Phys., 20, 10865–10887, https://doi.org/10.5194/acp-20-10865-2020, https://doi.org/10.5194/acp-20-10865-2020, 2020
Short summary
Short summary
Iodine-bearing gasses emitted from the sea surface are chemically processed in the atmosphere, leading to iodine accumulation in aerosol and transport to continental ecosystems. Such processing involves light-induced break-up of large, particle-forming iodine oxides into smaller, ozone-depleting molecules. We combine experiments and theory to report the photolysis efficiency of iodine oxides required to assess the impact of iodine on ozone depletion and particle formation.
Patrick Dewald, Jonathan M. Liebmann, Nils Friedrich, Justin Shenolikar, Jan Schuladen, Franz Rohrer, David Reimer, Ralf Tillmann, Anna Novelli, Changmin Cho, Kangming Xu, Rupert Holzinger, François Bernard, Li Zhou, Wahid Mellouki, Steven S. Brown, Hendrik Fuchs, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 20, 10459–10475, https://doi.org/10.5194/acp-20-10459-2020, https://doi.org/10.5194/acp-20-10459-2020, 2020
Short summary
Short summary
We present direct measurements of NO3 reactivity resulting from the oxidation of isoprene by NO3 during an intensive simulation chamber study. Measurements were in excellent agreement with values calculated from measured isoprene amounts and the rate coefficient for the reaction of NO3 with isoprene. Comparison of the measurement with NO3 reactivities from non-steady-state and model calculations suggests that isoprene-derived RO2 and HO2 radicals account to ~ 50 % of overall NO3 losses.
Jacob T. Shaw, Andrew R. Rickard, Mike J. Newland, and Terry J. Dillon
Atmos. Chem. Phys., 20, 9725–9736, https://doi.org/10.5194/acp-20-9725-2020, https://doi.org/10.5194/acp-20-9725-2020, 2020
Short summary
Short summary
This work expands upon the recently developed multivariate relative rate technique, presented in Shaw et al. (2019), for the measurement of rates of reaction between aromatic and aliphatic volatile organic compounds (VOCs) and OH. Knowledge of the rates of such reactions are important for understanding air quality in urban environments. This work also provides a key validation of structure–activity relationship models, which provide a theoretical method for estimating OH + VOC kinetics.
Rodrigo Gastón Gibilisco, Ian Barnes, Iustinian Gabriel Bejan, and Peter Wiesen
Atmos. Chem. Phys., 20, 8939–8951, https://doi.org/10.5194/acp-20-8939-2020, https://doi.org/10.5194/acp-20-8939-2020, 2020
Short summary
Short summary
Environmental chamber studies were performed to evaluate atmospheric degradation initiated by OH radicals for two unsaturated methoxy ketones. The main gas-phase oxidation products identified and quantified from these reactions are carbonyls and long-lived nitrogen-containing compounds such as peroxyacetyl nitrate and peroxypropionyl nitrate. The kinetic rate constants and atmospheric lifetimes were estimated, degradation mechanisms were developed, and atmospheric implications were assessed.
James M. Roberts, Chelsea E. Stockwell, Robert J. Yokelson, Joost de Gouw, Yong Liu, Vanessa Selimovic, Abigail R. Koss, Kanako Sekimoto, Matthew M. Coggon, Bin Yuan, Kyle J. Zarzana, Steven S. Brown, Cristina Santin, Stefan H. Doerr, and Carsten Warneke
Atmos. Chem. Phys., 20, 8807–8826, https://doi.org/10.5194/acp-20-8807-2020, https://doi.org/10.5194/acp-20-8807-2020, 2020
Short summary
Short summary
We measured total reactive nitrogen, Nr, in lab fires from western North American fuels, along with measurements of individual nitrogen compounds. We measured the amount of N that gets converted to inactive compounds (avg. 70 %), and the amount that is accounted for by individual species (85 % of remaining N). We provide guidelines for how the reactive nitrogen is distributed among individual compounds such as NOx and ammonia. This will help estimates and predictions of wildfire emissions.
Anna Novelli, Luc Vereecken, Birger Bohn, Hans-Peter Dorn, Georgios I. Gkatzelis, Andreas Hofzumahaus, Frank Holland, David Reimer, Franz Rohrer, Simon Rosanka, Domenico Taraborrelli, Ralf Tillmann, Robert Wegener, Zhujun Yu, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 20, 3333–3355, https://doi.org/10.5194/acp-20-3333-2020, https://doi.org/10.5194/acp-20-3333-2020, 2020
Short summary
Short summary
Experimental evidence from a simulation chamber study shows that the regeneration efficiency of the hydroxyl radical is maintained globally at values higher than 0.5 for a wide range of nitrogen oxide concentrations as a result of isomerizations of peroxy radicals originating from the OH oxidation of isoprene. The available models were tested, and suggestions on how to improve their ability to reproduce the measured radical and oxygenated volatile organic compound concentrations are provided.
Damien Amedro, Matias Berasategui, Arne J. C. Bunkan, Andrea Pozzer, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 20, 3091–3105, https://doi.org/10.5194/acp-20-3091-2020, https://doi.org/10.5194/acp-20-3091-2020, 2020
Short summary
Short summary
Our laboratory experiments show that the rate coefficient for the termolecular reaction between OH and NO2 is enhanced in the presence of water vapour. Using a chemistry transport model we show that our new parameterization of the temperature, pressure, and bath-gas dependence of this reaction has a significant impact on, for example, NOx and the HNO2 / NO2 ratio when compared to present recommendations.
Matias Berasategui, Damien Amedro, Achim Edtbauer, Jonathan Williams, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 20, 2695–2707, https://doi.org/10.5194/acp-20-2695-2020, https://doi.org/10.5194/acp-20-2695-2020, 2020
Short summary
Short summary
We have determined the rate coefficient and mechanism for the reaction of the OH radical with methane sulphonamide, a trace gas which has recently been found in the atmosphere. The rate coefficient is 1.4 × 10−13 cm3 molec.−1 s−1, which indicates a tropospheric lifetime of > 2 months. The observation of CO, CO2, SO2, HNO3, HCOOH, and N2O products enabled us to derive a detailed reaction mechanism for the reaction, which proceeds predominantly by H abstraction from the CH3 group.
Abigail R. Koss, Manjula R. Canagaratna, Alexander Zaytsev, Jordan E. Krechmer, Martin Breitenlechner, Kevin J. Nihill, Christopher Y. Lim, James C. Rowe, Joseph R. Roscioli, Frank N. Keutsch, and Jesse H. Kroll
Atmos. Chem. Phys., 20, 1021–1041, https://doi.org/10.5194/acp-20-1021-2020, https://doi.org/10.5194/acp-20-1021-2020, 2020
Short summary
Short summary
Oxidation chemistry of organic compounds in the atmosphere produces a diverse spectrum of products. This diversity is difficult to represent in air quality and climate models, and in laboratory experiments it results in large and complex datasets. This work evaluates several methods to simplify the chemistry of oxidation systems in environmental chambers, including positive matrix factorization, hierarchical clustering analysis, and gamma kinetics parameterization.
Cited articles
Ahern, A. T., Robinson, E. S., Tkacik, D. S., Saleh, R., Hatch, L. E.,
Barsanti, K. C., Stockwell, C. E., Yokelson, R. J., Presto, A. A., Robinson,
A. L., Sullivan, R. C., and Donahue, N. M.: Production of Secondary Organic
Aerosol During Aging of Biomass Burning Smoke From Fresh Fuels and Its
Relationship to VOC Precursors, J. Geophys. Res.-Atmos., 124, 3583–3606,
2019.
Akherati, A., He, Y., Coggon, M. M., Koss, A. R., Hodshire, A. L., Sekimoto,
K., Warneke, C., de Gouw, J., Yee, L., Seinfeld, J. H., Onasch, T. B.,
Herndon, S. C., Knighton, W. B., Cappa, C. D., Kleeman, M. J., Lim, C. Y.,
Kroll, J. H., Pierce, J. R., and Jathar, S. H.: Oxygenated Aromatic
Compounds are Important Precursors of Secondary Organic Aerosol in Biomass
Burning Emissions, Environ. Sci. Technol., 54, 8568–8579,
https://doi.org/10.1021/acs.est.0c01345, 2020.
Andreae, M. O.: Emission of trace gases and aerosols from biomass burning – an updated assessment, Atmos. Chem. Phys., 19, 8523–8546, https://doi.org/10.5194/acp-19-8523-2019, 2019.
Andreae, M. O., Browell, E. V., Garstang, M,. Gregory, G. L., Harriss, R.
C., Hill, G. F., Jacob, D. J., Pereira, C., Sachse, G. W., Setzer, A. W.,
Silva Dias, P. L., Talbot, R. W., Torres, A. L., and Wofsy, S. C.:
Biomass-burning emissions and associated haze layers over Amazonia, J.
Geophys. Res.-Atmos, 93, 1509–1527, 1988.
Aschmann, S. M., Nishino, N., Arey, J., and Atkinson, R.: Kinetics of the Reactions of OH Radicals with 2- and 3-Methylfuran, 2,3- and 2,5-Dimethylfuran, and E- and Z-3-Hexene-2,5-dione, and Products of OH + 2,5-Dimethylfuran, Environ. Sci. Technol., 45, 1859–1865, 2011.
Aschmann, S. M., Nishino, N., Arey J., and Atkinson, R.: Products of the OH
radical-initiated reactions of furan, 2- and 3-methylfuran, and 2,3- and
2,5-dimethylfuran in the presence of NO, J. Phys. Chem. A, 118, 457–466,
2014.
Atkinson, R., Aschmann, S. M., and Carter, W. P. L.: Kinetics of the
reactions of O3 and OH radicals with furan and thiophene at 298 ± 2 K,
Int. J. Chem. Kinet., 15, 51–61, 1983.
Atkinson, R., Aschmann, S. M., Winer, A. M., and Carter, W. P. L.: Rate
Constants for the Gas Phase Reactions of OH Radicals and O3 with
Pyrrole at 295 ± 1 K and Atmospheric Pressure, Atmos. Environ., 18,
2105–2107, 1984a.
Atkinson, R., Aschmann, S. M., Winer, A. M., and Pitts, J. N.: Gas-phase
reactions of NO2 with alkenes and dialkenes, Int. J. Chem. Kinet., 16,
697–706, 1984b.
Atkinson, R., Aschmann, S. M., Winer, A. M., and Carter, W. P. L.: Rate
Constants for the Gas Phase Reactions of NO3 Radicals with Furan,
Thiophene and Pyrrole at 295 ± 1 K and Atmospheric Pressure, Environ.
Sci. Technol., 19, 87–90, 1985.
Ausmeel, S., Andersen, C., Nielsen, O. J., Østerstrøm, F. F., Johnson,
M. S., and Nilsson, E. J. K.: Reactions of Three Lactones with Cl, OD, and
O3: Atmospheric Impact and Trends in Furan Reactivity, J. Phys. Chem.
A, 121, 4123–4131, 2017.
Barnes, I., Bastian, V., Becker, K. H., and Tong, Z.: Kinetics and products
of the reactions of nitrate radical with monoalkenes, dialkenes, and
monoterpenes, J. Phys. Chem., 94, 2413–2419, 1990.
Bernard, F., Cazaunau, M., Mu, Y., Wang, X., Daële, V., Chen, J., and
Mellouki, A.: Reaction of NO2 with conjugated alkenes, J. Phys. Chem.
A, 117, 14132–14140, 2013.
Berndt, T., Böge, O., and Rolle, W.: Products of the Gas-Phase Reactions
of NO3 Radicals with Furan and Tetramethylfuran, Environ. Sci.
Technol., 31, 1157–1162, 1997.
Bierbach, A., Barnes, I., and Becker, K. H.: Rate coefficients for the gas-phase reactions of hydroxyl radicals with furan, 2-methylfuran, 2-ethylfuran and 2,5-dimethylfuran at 300 ± 2 K, Atmos. Environ., 26, 813–817, 1992.
Bierbach, A., Barnes, I., Becker, K. H., and Wiesen, E.: Atmospheric
Chemistry of Unsaturated Carbonyls: Butenedial, 4-Oxo-2-pentenal,
3-Hexene-2,5-dione, Maleic Anhydride, 3H-Furan-2-one, and
5-Methyl-3H-furan-2-one, Environ. Sci. Technol., 28, 715–729, 1994.
Bierbach, A., Barnes, I., and Becker, K. H.: Product and kinetic study of
the OH-initiated gas-phase oxidation of furan, 2-methylfuran and
furanaldehydes at ≈300 K, Atmos. Environ., 29, 2651–2660, 1995.
Binder, J. B. and Raines, R. T.: Simple Chemical Transformation of
Lignocellulosic Biomass into Furans for Fuels and Chemicals, J. Am. Chem.
Soc., 131, 1979–1985, 2009.
Bloss, C., Wagner, V., Jenkin, M. E., Volkamer, R., Bloss, W. J., Lee, J. D., Heard, D. E., Wirtz, K., Martin-Reviejo, M., Rea, G., Wenger, J. C., and Pilling, M. J.: Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons, Atmos. Chem. Phys., 5, 641–664, https://doi.org/10.5194/acp-5-641-2005, 2005.
Brocchi, V., Krysztofiak, G., Catoire, V., Guth, J., Marécal, V., Zbinden, R., El Amraoui, L., Dulac, F., and Ricaud, P.: Intercontinental transport of biomass burning pollutants over the Mediterranean Basin during the summer 2014 ChArMEx-GLAM airborne campaign, Atmos. Chem. Phys., 18, 6887–6906, https://doi.org/10.5194/acp-18-6887-2018, 2018.
Brown, S. and Stutz, J.: Nighttime radical observations and chemistry,
Chem. Soc. Rev., 41, 6405–6447, 2012.
Cabañas, B., Baeza, M. T., Salgado, S., Martín, P., Taccone, R.,
and Martínez, E.: Oxidation of heterocycles in the atmosphere: Kinetic
study of their reactions with NO3 radical, J. Phys. Chem. A, 108,
10818–10823, 2004.
Chafe, Z., Brauer, M., Héroux, M.-E., Klimont, Z., Lanki, T., Salonen,
R. O., and Smith, K. R.: Residential heating with wood and coal: health
impacts and policy options in Europe and North America, WHO Regional Office
for Europe, available at: https://apps.who.int/iris/handle/10665/153671 (last access: 27 January 2022), 2015.
Coggon, M. M., Lim, C. Y., Koss, A. R., Sekimoto, K., Yuan, B., Gilman, J. B., Hagan, D. H., Selimovic, V., Zarzana, K. J., Brown, S. S., Roberts, J. M., Müller, M., Yokelson, R., Wisthaler, A., Krechmer, J. E., Jimenez, J. L., Cappa, C., Kroll, J. H., de Gouw, J., and Warneke, C.: OH chemistry of non-methane organic gases (NMOGs) emitted from laboratory and ambient biomass burning smoke: evaluating the influence of furans and oxygenated aromatics on ozone and secondary NMOG formation, Atmos. Chem. Phys., 19, 14875–14899, https://doi.org/10.5194/acp-19-14875-2019, 2019.
Colmenar, I., Cabañas, B., Martínez, E., Salgado, M. S., and
Martín, P.: Atmospheric fate of a series of furanaldehydes by their
NO3 reactions, Atmos. Environ., 54, 177–184, 2012.
Decker, Z. C. J., Zarzana, K. J., Coggon, M., Min, K.-E., Pollack, I.,
Ryerson, T. B., Peischl, J., Edwards, P., Dubeì, W. P., Markovic, M. Z.,
Roberts, J. M., Veres, P. R., Graus, M., Warneke, C., de Gouw, J., Hatch, L.
E., Barsanti, K. C., and Brown, S. S.: Nighttime Chemical Transformation in
Biomass Burning Plumes: A Box Model Analysis Initialized with Aircraft
Observations, Environ. Sci. Technol., 53, 2529–2538,
https://doi.org/10.1021/acs.est.8b05359, 2019.
Decker, Z. C. J., Robinson, M. A., Barsanti, K. C., Bourgeois, I., Coggon, M. M., DiGangi, J. P., Diskin, G. S., Flocke, F. M., Franchin, A., Fredrickson, C. D., Gkatzelis, G. I., Hall, S. R., Halliday, H., Holmes, C. D., Huey, L. G., Lee, Y. R., Lindaas, J., Middlebrook, A. M., Montzka, D. D., Moore, R., Neuman, J. A., Nowak, J. B., Palm, B. B., Peischl, J., Piel, F., Rickly, P. S., Rollins, A. W., Ryerson, T. B., Schwantes, R. H., Sekimoto, K., Thornhill, L., Thornton, J. A., Tyndall, G. S., Ullmann, K., Van Rooy, P., Veres, P. R., Warneke, C., Washenfelder, R. A., Weinheimer, A. J., Wiggins, E., Winstead, E., Wisthaler, A., Womack, C., and Brown, S. S.: Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data, Atmos. Chem. Phys., 21, 16293–16317, https://doi.org/10.5194/acp-21-16293-2021, 2021.
Dillon, T. J., Tucceri, M. E., Dulitz, K., Horowitz, A., Vereecken, L., and
Crowley, J.: Reaction of Hydroxyl Radicals with C4H5N (Pyrrole): Temperature
and Pressure Dependent Rate Coefficients, J. Phys. Chem. A, 116, 6051–6058,
2012.
Hamilton, J. F., Webb, P. J., Lewis, A. C., and Reviejo, M. M.: Quantifying small molecules in secondary organic aerosol formed during the photo-oxidation of toluene with hydroxyl radicals, Atmos. Environ., 39, 7263–7275, 2005.
Hamilton, J. F., Bryant, D. J., Edwards, P. E., Quyang, B., Bannan, T. J., Mehra, A., Mayhew, A. W., Hopkins, J. R., Dunmore, R. E., Squires, F. A., Lee, J. D., Newland, M. J., Worrall, S. D., Bacak, A., Coe, H., Percival, C., Whalley, L. K., Heard, D. E., Slater, E. J., Jones, R. L., Cui, T., Surratt, J. D., Reeves, C. E., Mills, G. P., Grimmond, S., Sun, Y., Xu, W., Shi, Z., and Rickard, A. R.: Key Role of NO3 Radicals in the Production of Isoprene Nitrates and Nitrooxyorganosulfates in Beijing, Environ. Sci. Technol., 55, 842–853, https://doi.org/10.1021/acs.est.0c05689, 2021.
Hartikainen, A., Yli-Pirilä, P., Tiitta, P., Leskinen, A., Kortelainen,
M., Orasche, J., Schnelle-Kreis, J., Lehtinen, K., Zimmermann, R.,
Jokiniemi, J., and Sippula, O.: Volatile Organic Compounds from Logwood
Combustion: Emissions and Transformation under Dark and Photochemical Aging
Conditions in a Smog Chamber, Environ. Sci. Technol., 52, 4979–4988, 2018.
Harvey B. J.: Human-caused climate change is now a key driver of forest fire
activity in the western United States, P. Natl. Acad. Sci. USA, 113,
11649–11650, 2016.
Hatch, L. E., Luo, W., Pankow, J. F., Yokelson, R. J., Stockwell, C. E., and Barsanti, K. C.: Identification and quantification of gaseous organic compounds emitted from biomass burning using two-dimensional gas chromatography–time-of-flight mass spectrometry, Atmos. Chem. Phys., 15, 1865–1899, https://doi.org/10.5194/acp-15-1865-2015, 2015.
Hatch, L. E., Yokelson, R. J., Stockwell, C. E., Veres, P. R., Simpson, I. J., Blake, D. R., Orlando, J. J., and Barsanti, K. C.: Multi-instrument comparison and compilation of non-methane organic gas emissions from biomass burning and implications for smoke-derived secondary organic aerosol precursors, Atmos. Chem. Phys., 17, 1471–1489, https://doi.org/10.5194/acp-17-1471-2017, 2017.
Hjorth, J., Lohse, C., Nielsen, C. J., Skov, H., and Restelli, G.: Products
and mechanism of the gas-phase reaction between NO3 and a series of
alkenes, J. Phys. Chem., 94, 7494–7500, 1990.
Huang, M. Q., Hu, C. J., Guo, X. Y., Gu, X. J., Zhao, W. X., Wang, Z. Y., Fang ,L., and Zhang, W. J.: Chemical composition of gas and particle-phase products of OH-initiated oxidation of 1,3,5-trimethylbenzene, Atmos. Pollut. Res., 5, 73–78, 2014.
Jenkin, M. E., Saunders, S. M., and Pilling, M. J.: The tropospheric
degradation of volatile organic compounds: a protocol for mechanism
development, Atmos. Environ., 31, 81–104,
https://doi.org/10.1016/S1352-2310(96)00105-7, 1997 (data available at:
http://mcm.york.ac.uk, last access: 27 January 2022).
Jenkin, M. E., Valorso, R., Aumont, B., Newland, M. J., and Rickard, A. R.: Estimation of rate coefficients for the reactions of O3 with unsaturated organic compounds for use in automated mechanism construction, Atmos. Chem. Phys., 20, 12921–12937, https://doi.org/10.5194/acp-20-12921-2020, 2020.
Johnson, M. S., Strawbridge, K., Knowland, K. E., Keller, C., and Travis,
M.: Long-range transport of Siberian biomass burning emissions to North
America during FIREX-AQ, Atmos. Environ., 252, 118241, https://doi.org/10.1016/j.atmosenv.2021.118241, 2021.
Jolly, W. M., Cochrane, M. A., Freeborn, P. H., Holden, Z. A., Brown, T. J.,
Williamson, G. J., and Bowman, D. M. J. S.: Climate-induced variations in
global wildfire danger from 1979 to 2013, Nat. Commun., 6, 7537, https://doi.org/10.1038/ncomms8537, 2015.
Joo, T., Rivera-Rios, J. C., Takeuchi, M., Alvarado, M. J., and Ng, N. L.: Secondary Organic Aerosol Formation from Reaction of 3-Methylfuran with Nitrate Radicals, ACS Earth Space Chem. 3, 922–934, 2019.
Kerdouci, J., Picquet-Varrault, B., and Doussin, J.-F.: Structure activity
relationship for the gas-phase reactions of NO3 radical with organic
compounds: Update and extension to aldehydes, Atmos. Environ., 84, 363–372,
2014.
Kind, I., Berndt, T., Böge, O., and Rolle, W.: Gas-phase rate constants
for the reaction of NO3 radicals with furan and methyl-substituted
furans, Chem. Phys. Lett., 256, 679–683, 1996.
Kodros, J., Papanastasiou, D., Paglione, M., Masiol, M., and Squizzato, S.:
Rapid dark aging of biomass burning as an overlooked source of oxidized
organic aerosol, P. Natl. Acad. Sci. USA, 117, 33028–33033, 2020.
Koss, A. R., Sekimoto, K., Gilman, J. B., Selimovic, V., Coggon, M. M., Zarzana, K. J., Yuan, B., Lerner, B. M., Brown, S. S., Jimenez, J. L., Krechmer, J., Roberts, J. M., Warneke, C., Yokelson, R. J., and de Gouw, J.: Non-methane organic gas emissions from biomass burning: identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment, Atmos. Chem. Phys., 18, 3299–3319, https://doi.org/10.5194/acp-18-3299-2018, 2018.
Krikken, F., Lehner, F., Haustein, K., Drobyshev, I., and van Oldenborgh, G. J.: Attribution of the role of climate change in the forest fires in Sweden 2018, Nat. Hazards Earth Syst. Sci., 21, 2169–2179, https://doi.org/10.5194/nhess-21-2169-2021, 2021.
Kurtén, T., Møller, K. H., Nguyen, T. B., Schwantes, R. H., Misztal,
P. K., Su, L., Wennberg, P. O., Fry J. L., and Kjaergaard, H. G.: Alkoxy
Radical Bond Scissions Explain the Anomalously Low Secondary Organic Aerosol
and Organonitrate Yields From alpha-Pinene + NO3, J. Phys. Chem.
Lett., 8, 2826–2834, 2017.
Kwok, E. S. C. and Atkinson, R.: Estimation of hydroxyl radical reaction
rate constants for gas-phase organic compounds using a structure-reactivity
relationship: An update, Atmos. Environ., 29, 1685–1695,
https://doi.org/10.1016/1352-2310(95)00069-b, 1995.
Lee, J. H. and Tang, I. N.: Absolute rate constants for the hydroxyl radical reactions with ethane, furan, and thiophene at room temperature, J. Chem. Phys., 77, 4459–4463, 1982.
Levy, H.: Photochemistry of the lower troposphere, Planet Space Sci., 20, 919–935, 1972.
Lohmander, P.: Forest fire expansion under global warming conditions:
Multivariate estimation, function properties, and predictions for 29
countries, Central Asian Journal of Environmental Science and Technology
Innovation, 5, 262–276, 2020.
Matsumoto, J.: Kinetics of the reactions of ozone with 2,5-dimethylfuran and
its atmospheric implications, Chem. Lett., 40, 582–583, 2011.
McGillen, M. R., Archibald, A. T., Carey, T., Leather, K. E., Shallcross, D.
E., Wenger, J. C., and Percival, C. J.: Structure-activity relationship
(SAR) for the prediction of gas-phase ozonolysis rate coefficients: an
extension towards heteroatomic unsaturated species, Phys. Chem. Chem. Phys.,
13, 2842–2849, 2011.
McGillen, M. R., Carter, W. P. L., Mellouki, A., Orlando, J. J., Picquet-Varrault, B., and Wallington, T. J.: Database for the kinetics of the gas-phase atmospheric reactions of organic compounds, Earth Syst. Sci. Data, 12, 1203–1216, https://doi.org/10.5194/essd-12-1203-2020, 2020.
Mousavipour, S. H., Ramadan, S., and Shahkolahi, Z: Multichannel RRKM-TST and Direct-Dynamics VTST Study of the Reaction of Hydroxyl Radical with Furan, J. Phys., Chem., 113, 2838–2846, 2009.
Newland, M.: Experimental datasets from Newland et al. (2021, ACP, NO3 chemistry of wildfire emissions: a kinetic study of the gas-phase reactions of furans with the NO3 radical), Zenodo [data set], https://doi.org/10.5281/zenodo.5724967, 2021a.
Newland, M.: Experimental datasets from Newland et al. (2021, ACP, NO3 chemistry of wildfire emissions: a kinetic study of the gas-phase reactions of furans with the NO3 radical), Zenodo [data set], https://doi.org/10.5281/zenodo.5721518, 2021b.
Newland, M. J., Rea, G. J., Thüner, L. P., Henderson, A. P., Golding, B.
T., Rickard, A. R., Barnes, I., and Wenger, J.: Photochemistry of
2-butenedial and 4-oxo-2-pentenal under atmospheric boundary layer
conditions, Phys. Chem. Chem. Phys., 21, 1160–1171, 2019.
Newland, M. J., Bryant, D. J., Dunmore, R. E., Bannan, T. J., Acton, W. J. F., Langford, B., Hopkins, J. R., Squires, F. A., Dixon, W., Drysdale, W. S., Ivatt, P. D., Evans, M. J., Edwards, P. M., Whalley, L. K., Heard, D. E., Slater, E. J., Woodward-Massey, R., Ye, C., Mehra, A., Worrall, S. D., Bacak, A., Coe, H., Percival, C. J., Hewitt, C. N., Lee, J. D., Cui, T., Surratt, J. D., Wang, X., Lewis, A. C., Rickard, A. R., and Hamilton, J. F.: Low-NO atmospheric oxidation pathways in a polluted megacity, Atmos. Chem. Phys., 21, 1613–1625, https://doi.org/10.5194/acp-21-1613-2021, 2021.
Novelli, A., Cho, C., Fuchs, H., Hofzumahaus, A., Rohrer, F., Tillmann, R.,
Kiendler-Scharr, A., Wahner, A., and Vereecken, L.: Experimental and
theoretical study on the impact of a nitrate group on the chemistry of
alkoxy radicals, Phys. Chem. Chem. Phys., 23, 5474–5495, 2021.
Parrish, D. D., Lamarque, J. F., Naik, V., Horowitz, L., Shindell, D. T.,
Staehelin, J., Derwent, R., Cooper, O. R., Tanimoto, H., Volz-Thomas, A.,
Gilge, S., Scheel, H. E., Steinbacher, M., and Fröhlich,
M.: Long-term changes in lower tropospheric baseline ozone concentrations:
Comparing chemistry-climate models and observations at northern
midlatitudes, J. Geophys. Res., 119, 5719–5736, https://doi.org/10.1002/2013JD021435,
2014.
Ródenas, M: Software for analysis of Infrared spectra, EUROCHAMP-2020
project, available at: https://data.eurochamp.org/anasoft (last access: 27 January 2022), 2018.
Roman-Leshkov, Y., Barrett, C. J., Liu, Z. Y., and Dumesic, J. A.:
Production of Dimethylfuran for Liquid Fuels from Biomass-derived
Carbohydrates, Nature, 447, 982–985, 2007.
Smith, D. F., McIver, C. D., and Kleindienst, T. E.: Primary product
distribution from the reaction of hydroxyl radicals with toluene at ppb NOx
mixing ratios, J. Atmos. Chem., 30, 209–228, 1998.
Smith, D. F., Kleindienst, T. E., and McIver, C. D.: Primary Product
Distributions from the Reaction of OH with m-, p-Xylene, 1,2,4- and
1,3,5-Trimethylbenzene, J. Atmos. Chem., 34, 339–364, 1999.
Sommariva, R., Cox, S., Martin, C., Borońska, K., Young, J., Jimack, P. K., Pilling, M. J., Matthaios, V. N., Nelson, B. S., Newland, M. J., Panagi, M., Bloss, W. J., Monks, P. S., and Rickard, A. R.: AtChem (version 1), an open-source box model for the Master Chemical Mechanism, Geosci. Model Dev., 13, 169–183, https://doi.org/10.5194/gmd-13-169-2020, 2020.
Stewart, G. J., Acton, W. J. F., Nelson, B. S., Vaughan, A. R., Hopkins, J. R., Arya, R., Mondal, A., Jangirh, R., Ahlawat, S., Yadav, L., Sharma, S. K., Dunmore, R. E., Yunus, S. S. M., Hewitt, C. N., Nemitz, E., Mullinger, N., Gadi, R., Sahu, L. K., Tripathi, N., Rickard, A. R., Lee, J. D., Mandal, T. K., and Hamilton, J. F.: Emissions of non-methane volatile organic compounds from combustion of domestic fuels in Delhi, India, Atmos. Chem. Phys., 21, 2383–2406, https://doi.org/10.5194/acp-21-2383-2021, 2021a.
Stewart, G. J., Nelson, B. S., Acton, W. J. F., Vaughan, A. R., Hopkins, J.
R., Yunus, S. S. M., Hewitt, C. N., Nemitz, E., Mullinger, N., Gadi, R.,
Rickard, A. R., Lee, J. D., Mandal, T. K., and Hamilton, J. F.:
Comprehensive organic emission profiles, secondary organic aerosol
production potential, and OH reactivity of domestic fuel combustion in
Delhi, India, Environ. Sci. Atmos., 1, 104–117, https://doi.org/10.1039/D0EA00009D, 2021b.
Stone, D., Whalley, L., and Heard, D.: Tropospheric OH and HO2
radicals: field measurements and model comparisons, Chem. Soc. Rev., 41,
6348–6404, 2012.
Tapia, A., Villanueva, F., Salgado, M. S., Cabañas, B., Martínez, E., and Martín, P.: Atmospheric degradation of 3-methylfuran: kinetic and products study, Atmos. Chem. Phys., 11, 3227–3241, https://doi.org/10.5194/acp-11-3227-2011, 2011.
Wang, J. J., Liu, X. H., Hu, B. C., Lu, G. Z., and Wang, Y. Q.: Efficient
Catalytic Conversion of Lignocellulosic Biomass into Renewable Liquid
Biofuels via Furan Derivatives, RSC Adv., 4, 31101–31107, 2014.
Wang, S., Newland, M. J., Deng, W., Rickard, A. R., Hamilton, J. F., Muñoz, A., Ródenas, M., Vázquez, M. M., Wang, L., and Wang, X.: Aromatic Photo-oxidation, A New Source of Atmospheric Acidity, Environ. Sci. Technol., 54, 7798–7806, https://doi.org/10.1021/acs.est.0c00526, 2020.
Whelan, C. A., Eble, J. Mir, Z. S., Blitz, M. A., Seakins, P. W., Olzmann,
M., and Stone D.: Kinetics of the Reactions of Hydroxyl Radicals with Furan
and Its Alkylated Derivatives 2-Methyl Furan and 2,5-Dimethyl Furan, J. Phys. Chem. A, 124,
7416–7426, 2020.
Wine, P. H. and Thompson, R. J.: Kinetics of OH reactions with furan, thiophene, and tetrahydrothiophene, Int. J. Chem. Kinet., 16, 867–878, 1984.
Winer, A. M., Atkinson, R., and Pitts, J. N.: Gaseous Nitrate Radical: Possible Nighttime Atmospheric Sink for Biogenic Organic Compounds, Science, 224, 156–159, 1984.
Wyche, K. P., Monks, P. S., Ellis, A. M., Cordell, R. L., Parker, A. E., Whyte, C., Metzger, A., Dommen, J., Duplissy, J., Prevot, A. S. H., Baltensperger, U., Rickard, A. R., and Wulfert, F.: Gas phase precursors to anthropogenic secondary organic aerosol: detailed observations of 1,3,5-trimethylbenzene photooxidation, Atmos. Chem. Phys., 9, 635–665, https://doi.org/10.5194/acp-9-635-2009, 2009.
Yuan, Y., Zhao, X., Wang, S., and Wang, L: Atmospheric Oxidation of Furan
and Methyl-Substituted Furans Initiated by Hydroxyl Radicals, J. Phys. Chem.
A, 121, 9306–9319, 2017.
Zhou, L., Ravishankara, A. R., Brown, S. S., Idir, M., Zarzana, K. J.,
Daële, V., and Mellouki, A.: Kinetics of the Reactions of NO3
Radical with Methacrylate Esters, J. Phys. Chem. A, 121, 4464–4474, 2017.
Short summary
Wildfires are increasing in extent and severity, driven by climate change. Such fires emit large amounts of volatile organic compounds (VOCs) to the atmosphere. Many of these, such as the furans studied here, are very reactive and are rapidly converted to other VOCs, which are expected to have negative health effects and to further impact the climate. Here, we establish the importance of the nitrate radical for removing these compounds both during the night and during the day.
Wildfires are increasing in extent and severity, driven by climate change. Such fires emit large...
Altmetrics
Final-revised paper
Preprint