Articles | Volume 22, issue 3
https://doi.org/10.5194/acp-22-1669-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-1669-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Distinct evolutions of haze pollution from winter to the following spring over the North China Plain: role of the North Atlantic sea surface temperature anomalies
Linye Song
Institute of Urban Meteorology, China Meteorological Administration, Beijing, China
Shangfeng Chen
CORRESPONDING AUTHOR
Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Wen Chen
Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Jianping Guo
State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
Conglan Cheng
Institute of Urban Meteorology, China Meteorological Administration, Beijing, China
Yong Wang
Department of forecasting models, ZAMG, Central Institute for Meteorology and Geodynamics, Vienna, Austria
Related authors
No articles found.
Deli Meng, Jianping Guo, Juan Chen, Xiaoran Guo, Ning Li, Yuping Sun, Zhen Zhang, Na Tang, Hui Xu, Tianmeng Chen, Rongfang Yang, and Jiajia Hua
Earth Syst. Sci. Data, 17, 4023–4037, https://doi.org/10.5194/essd-17-4023-2025, https://doi.org/10.5194/essd-17-4023-2025, 2025
Short summary
Short summary
This study provides a high-resolution dataset of low-level atmospheric turbulence across China, using radar and weather balloon observations. It reveals regional and seasonal variations in turbulence, with stronger activity in spring and summer. The dataset supports weather forecasting, aviation safety, and low-altitude flight planning, aiding China's growing low-altitude economy, and is accessible at https://doi.org/10.5281/zenodo.14959025.
Xiaoran Guo, Jianping Guo, Deli Meng, Yuping Sun, Zhen Zhang, Hui Xu, Liping Zeng, Juan Chen, Ning Li, and Tianmeng Chen
Earth Syst. Sci. Data, 17, 3541–3552, https://doi.org/10.5194/essd-17-3541-2025, https://doi.org/10.5194/essd-17-3541-2025, 2025
Short summary
Short summary
Optimal atmospheric dynamic conditions are essential for convective storms. This study generates a dataset of high-resolution divergence and vorticity profiles using the measurements of a radar wind profiler mesonet in Beijing. The negative divergence and positive vorticity are present ahead of rainfall events. This suggests that this dataset can help improve our understanding of the pre-storm environment and has the potential to be applied in weather forecasting.
Juan Zhao, Jianping Guo, and Xiaohui Zheng
Geosci. Model Dev., 18, 4075–4101, https://doi.org/10.5194/gmd-18-4075-2025, https://doi.org/10.5194/gmd-18-4075-2025, 2025
Short summary
Short summary
A series of observing system simulation experiments are conducted to assess the impact of multiple radar wind profiler (RWP) networks on convective-scale numerical weather prediction. Results from three southwest-type heavy rainfall cases in the Beijing–Tianjin–Hebei region suggest the added forecast skill of ridge and foothill networks associated with the Taihang Mountains over the existing RWP network. This research provides valuable guidance for designing optimal RWP networks in the region.
Xiaozhong Cao, Qiyun Guo, Haowen Luo, Rongkang Yang, Peng Zhang, Jianping Guo, Jincheng Wang, Die Xiao, Jianping Du, Zhongliang Sun, Shijun Liu, Sijie Chen, and Anfan Huang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2012, https://doi.org/10.5194/egusphere-2025-2012, 2025
Short summary
Short summary
This study aims to introduce in-situ profiling techniques and cost-effective technology for upper-air observation—the Round-trip Drifting Sounding System (RDSS)—which reduces costs relative to intensive sounding and achieves three sounding phases: Ascent-Drift-Descent (ADD). The RDSS not only provides additional data for weather analysis and numerical prediction models but also makes substantial contributions to targeted observations.
Yanwei Zhu, Aitor Atencia, Markus Dabernig, and Yong Wang
Geosci. Model Dev., 18, 1545–1559, https://doi.org/10.5194/gmd-18-1545-2025, https://doi.org/10.5194/gmd-18-1545-2025, 2025
Short summary
Short summary
Most works have delved into convective weather nowcasting, and only a few works have discussed the nowcasting uncertainty for variables at the surface level. Hence, we proposed a method to estimate uncertainty. Generating appropriate noises associated with the characteristic of the error in analysis can simulate the uncertainty of nowcasting. This method can contribute to the estimation of near–surface analysis uncertainty in both nowcasting applications and ensemble nowcasting development.
Seoung Soo Lee, Chang Hoon Jung, Jinho Choi, Young Jun Yoon, Junshik Um, Youtong Zheng, Jianping Guo, Manguttathil G. Manoj, Sang-Keun Song, and Kyung-Ja Ha
Atmos. Chem. Phys., 25, 705–726, https://doi.org/10.5194/acp-25-705-2025, https://doi.org/10.5194/acp-25-705-2025, 2025
Short summary
Short summary
This study attempts to test a general factor that explains differences in the properties of different mixed-phase clouds using a modeling tool. Although this attempt is not to identify a factor that can perfectly explain and represent the properties of different mixed-phase clouds, we believe that this attempt acts as a valuable stepping stone towards a more complete, general way of using climate models to better predict climate change.
Zhiqi Xu, Jianping Guo, Guwei Zhang, Yuchen Ye, Haikun Zhao, and Haishan Chen
Earth Syst. Sci. Data, 16, 5753–5766, https://doi.org/10.5194/essd-16-5753-2024, https://doi.org/10.5194/essd-16-5753-2024, 2024
Short summary
Short summary
Tropical cyclones (TCs) are powerful weather systems that can cause extreme disasters. Here we generate a global long-term TC size and intensity reconstruction dataset, covering a time period from 1959 to 2022, with a 3 h temporal resolution, using machine learning models. These can be valuable for filling observational data gaps and advancing our understanding of TC climatology, thereby facilitating risk assessments and defenses against TC-related disasters.
Deli Meng, Jianping Guo, Xiaoran Guo, Yinjun Wang, Ning Li, Yuping Sun, Zhen Zhang, Na Tang, Haoran Li, Fan Zhang, Bing Tong, Hui Xu, and Tianmeng Chen
Atmos. Chem. Phys., 24, 8703–8720, https://doi.org/10.5194/acp-24-8703-2024, https://doi.org/10.5194/acp-24-8703-2024, 2024
Short summary
Short summary
The turbulence in the planetary boundary layer (PBL) over the Tibetan Plateau (TP) remains unclear. Here we elucidate the vertical profile of and temporal variation in the turbulence dissipation rate in the PBL over the TP based on a radar wind profiler (RWP) network. To the best of our knowledge, this is the first time that the turbulence profile over the whole TP has been revealed. Furthermore, the possible mechanisms of clouds acting on the PBL turbulence structure are investigated.
Xiaoran Guo, Jianping Guo, Tianmeng Chen, Ning Li, Fan Zhang, and Yuping Sun
Atmos. Chem. Phys., 24, 8067–8083, https://doi.org/10.5194/acp-24-8067-2024, https://doi.org/10.5194/acp-24-8067-2024, 2024
Short summary
Short summary
The prediction of downhill thunderstorms (DSs) remains elusive. We propose an objective method to identify DSs, based on which enhanced and dissipated DSs are discriminated. A radar wind profiler (RWP) mesonet is used to derive divergence and vertical velocity. The mid-troposphere divergence and prevailing westerlies enhance the intensity of DSs, whereas low-level divergence is observed when the DS dissipates. The findings highlight the key role that an RWP mesonet plays in the evolution of DSs.
Kaixu Bai, Ke Li, Liuqing Shao, Xinran Li, Chaoshun Liu, Zhengqiang Li, Mingliang Ma, Di Han, Yibing Sun, Zhe Zheng, Ruijie Li, Ni-Bin Chang, and Jianping Guo
Earth Syst. Sci. Data, 16, 2425–2448, https://doi.org/10.5194/essd-16-2425-2024, https://doi.org/10.5194/essd-16-2425-2024, 2024
Short summary
Short summary
A global gap-free high-resolution air pollutant dataset (LGHAP v2) was generated to provide spatially contiguous AOD and PM2.5 concentration maps with daily 1 km resolution from 2000 to 2021. This gap-free dataset has good data accuracies compared to ground-based AOD and PM2.5 concentration observations, which is a reliable database to advance aerosol-related studies and trigger multidisciplinary applications for environmental management, health risk assessment, and climate change analysis.
Boming Liu, Xin Ma, Jianping Guo, Renqiang Wen, Hui Li, Shikuan Jin, Yingying Ma, Xiaoran Guo, and Wei Gong
Atmos. Chem. Phys., 24, 4047–4063, https://doi.org/10.5194/acp-24-4047-2024, https://doi.org/10.5194/acp-24-4047-2024, 2024
Short summary
Short summary
Accurate wind profile estimation, especially for the lowest few hundred meters of the atmosphere, is of great significance for the weather, climate, and renewable energy sector. We propose a novel method that combines the power-law method with the random forest algorithm to extend wind profiles beyond the surface layer. Compared with the traditional algorithm, this method has better stability and spatial applicability and can be used to obtain the wind profiles on different land cover types.
Jianping Guo, Jian Zhang, Jia Shao, Tianmeng Chen, Kaixu Bai, Yuping Sun, Ning Li, Jingyan Wu, Rui Li, Jian Li, Qiyun Guo, Jason B. Cohen, Panmao Zhai, Xiaofeng Xu, and Fei Hu
Earth Syst. Sci. Data, 16, 1–14, https://doi.org/10.5194/essd-16-1-2024, https://doi.org/10.5194/essd-16-1-2024, 2024
Short summary
Short summary
A global continental merged high-resolution (PBLH) dataset with good accuracy compared to radiosonde is generated via machine learning algorithms, covering the period from 2011 to 2021 with 3-hour and 0.25º resolution in space and time. The machine learning model takes parameters derived from the ERA5 reanalysis and GLDAS product as input, with PBLH biases between radiosonde and ERA5 as the learning targets. The merged PBLH is the sum of the predicted PBLH bias and the PBLH from ERA5.
Hui Xu, Jianping Guo, Bing Tong, Jinqiang Zhang, Tianmeng Chen, Xiaoran Guo, Jian Zhang, and Wenqing Chen
Atmos. Chem. Phys., 23, 15011–15038, https://doi.org/10.5194/acp-23-15011-2023, https://doi.org/10.5194/acp-23-15011-2023, 2023
Short summary
Short summary
The radiative effect of cloud remains one of the largest uncertain factors in climate change, largely due to the lack of cloud vertical structure (CVS) observations. The study presents the first near-global CVS climatology using high-vertical-resolution soundings. Single-layer cloud mainly occurs over arid regions. As the number of cloud layers increases, clouds tend to have lower bases and thinner layer thicknesses. The occurrence frequency of cloud exhibits a pronounced seasonal diurnal cycle.
Boming Liu, Xin Ma, Jianping Guo, Hui Li, Shikuan Jin, Yingying Ma, and Wei Gong
Atmos. Chem. Phys., 23, 3181–3193, https://doi.org/10.5194/acp-23-3181-2023, https://doi.org/10.5194/acp-23-3181-2023, 2023
Short summary
Short summary
Wind energy is one of the most essential clean and renewable forms of energy in today’s world. However, the traditional power law method generally estimates the hub-height wind speed by assuming a constant exponent between surface and hub-height wind speeds. This inevitably leads to significant uncertainties in estimating the wind speed profile. To minimize the uncertainties, we here use a machine learning algorithm known as random forest to estimate the wind speed at hub height.
Seoung Soo Lee, Junshik Um, Won Jun Choi, Kyung-Ja Ha, Chang Hoon Jung, Jianping Guo, and Youtong Zheng
Atmos. Chem. Phys., 23, 273–286, https://doi.org/10.5194/acp-23-273-2023, https://doi.org/10.5194/acp-23-273-2023, 2023
Short summary
Short summary
This paper elaborates on process-level mechanisms regarding how the interception of radiation by aerosols interacts with the surface heat fluxes and atmospheric instability in warm cumulus clouds. This paper elucidates how these mechanisms vary with the location or altitude of an aerosol layer. This elucidation indicates that the location of aerosol layers should be taken into account for parameterizations of aerosol–cloud interactions.
Seoung Soo Lee, Jinho Choi, Goun Kim, Kyung-Ja Ha, Kyong-Hwan Seo, Chang Hoon Jung, Junshik Um, Youtong Zheng, Jianping Guo, Sang-Keun Song, Yun Gon Lee, and Nobuyuki Utsumi
Atmos. Chem. Phys., 22, 9059–9081, https://doi.org/10.5194/acp-22-9059-2022, https://doi.org/10.5194/acp-22-9059-2022, 2022
Short summary
Short summary
This study investigates how aerosols affect clouds and precipitation and how the aerosol effects vary with varying types of clouds that are characterized by cloud depth in two metropolitan areas in East Asia. As cloud depth increases, the enhancement of precipitation amount transitions to no changes in precipitation amount with increasing aerosol concentrations. This indicates that cloud depth needs to be considered for a comprehensive understanding of aerosol-cloud interactions.
Chen Schwartz, Chaim I. Garfinkel, Priyanka Yadav, Wen Chen, and Daniela I. V. Domeisen
Weather Clim. Dynam., 3, 679–692, https://doi.org/10.5194/wcd-3-679-2022, https://doi.org/10.5194/wcd-3-679-2022, 2022
Short summary
Short summary
Eleven operational forecast models that run on subseasonal timescales (up to 2 months) are examined to assess errors in their simulated large-scale stationary waves in the Northern Hemisphere winter. We found that models with a more finely resolved stratosphere generally do better in simulating the waves in both the stratosphere (10–50 km) and troposphere below. Moreover, a connection exists between errors in simulated time-mean convection in tropical regions and errors in the simulated waves.
Peilin Song, Yongqiang Zhang, Jianping Guo, Jiancheng Shi, Tianjie Zhao, and Bing Tong
Earth Syst. Sci. Data, 14, 2613–2637, https://doi.org/10.5194/essd-14-2613-2022, https://doi.org/10.5194/essd-14-2613-2022, 2022
Short summary
Short summary
Soil moisture information is crucial for understanding the earth surface, but currently available satellite-based soil moisture datasets are imperfect either in their spatiotemporal resolutions or in ensuring image completeness from cloudy weather. In this study, therefore, we developed one soil moisture data product over China that has tackled most of the above problems. This data product has the potential to promote the investigation of earth hydrology and be extended to the global scale.
Xiadong An, Wen Chen, Peng Hu, Shangfeng Chen, and Lifang Sheng
Atmos. Chem. Phys., 22, 6507–6521, https://doi.org/10.5194/acp-22-6507-2022, https://doi.org/10.5194/acp-22-6507-2022, 2022
Short summary
Short summary
The intraseasonal NAAA usually establishes quickly on day −3 with a life span of 8 days. Further results revealed that the probability of regional PM2.5 pollution related to the NAAA for at least 2 days in the NCP is 80% in NDJ period 2000–2021. Particularly, air quality in the NCP tends to deteriorate on day 2 prior to the peak day of the NAAA and reaches a peak on day −1 with a life cycle of 4 days. The corresponding meteorological conditions support these conclusions.
Kaixu Bai, Ke Li, Mingliang Ma, Kaitao Li, Zhengqiang Li, Jianping Guo, Ni-Bin Chang, Zhuo Tan, and Di Han
Earth Syst. Sci. Data, 14, 907–927, https://doi.org/10.5194/essd-14-907-2022, https://doi.org/10.5194/essd-14-907-2022, 2022
Short summary
Short summary
The Long-term Gap-free High-resolution Air Pollutant concentration dataset, providing gap-free aerosol optical depth (AOD) and PM2.5 and PM10 concentration with a daily 1 km resolution for 2000–2020 in China, is generated and made publicly available. This is the first long-term gap-free high-resolution aerosol dataset in China and has great potential to trigger multidisciplinary applications in Earth observations, climate change, public health, ecosystem assessment, and environment management.
Boming Liu, Jianping Guo, Wei Gong, Yong Zhang, Lijuan Shi, Yingying Ma, Jian Li, Xiaoran Guo, Ad Stoffelen, Gerrit de Leeuw, and Xiaofeng Xu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-26, https://doi.org/10.5194/amt-2022-26, 2022
Publication in AMT not foreseen
Short summary
Short summary
Aeolus is the first satellite mission to directly observe wind profile information on a global scale. However, Aeolus wind products over China were thus far not evaluated by in-situ comparison. This work is the comparison of wind speed on a large scale between the Aeolus, ERA5 and RS , shedding important light on the data application of Aeolus wind products.
Jianping Guo, Jian Zhang, Kun Yang, Hong Liao, Shaodong Zhang, Kaiming Huang, Yanmin Lv, Jia Shao, Tao Yu, Bing Tong, Jian Li, Tianning Su, Steve H. L. Yim, Ad Stoffelen, Panmao Zhai, and Xiaofeng Xu
Atmos. Chem. Phys., 21, 17079–17097, https://doi.org/10.5194/acp-21-17079-2021, https://doi.org/10.5194/acp-21-17079-2021, 2021
Short summary
Short summary
The planetary boundary layer (PBL) is the lowest part of the troposphere, and boundary layer height (BLH) is the depth of the PBL and is of critical importance to the dispersion of air pollution. The study presents the first near-global BLH climatology by using high-resolution (5-10 m) radiosonde measurements. The variations in BLH exhibit large spatial and temporal dependence, with a peak at 17:00 local solar time. The most promising reanalysis product is ERA-5 in terms of modeling BLH.
Seoung Soo Lee, Kyung-Ja Ha, Manguttathil Gopalakrishnan Manoj, Mohammad Kamruzzaman, Hyungjun Kim, Nobuyuki Utsumi, Youtong Zheng, Byung-Gon Kim, Chang Hoon Jung, Junshik Um, Jianping Guo, Kyoung Ock Choi, and Go-Un Kim
Atmos. Chem. Phys., 21, 16843–16868, https://doi.org/10.5194/acp-21-16843-2021, https://doi.org/10.5194/acp-21-16843-2021, 2021
Short summary
Short summary
Using a modeling framework, a midlatitude stratocumulus cloud system is simulated. It is found that cloud mass in the system becomes very low due to interactions between ice and liquid particles compared to that in the absence of ice particles. It is also found that interactions between cloud mass and aerosols lead to a reduction in cloud mass in the system, and this is contrary to an aerosol-induced increase in cloud mass in the absence of ice particles.
Ifeanyichukwu C. Nduka, Chi-Yung Tam, Jianping Guo, and Steve Hung Lam Yim
Atmos. Chem. Phys., 21, 13443–13454, https://doi.org/10.5194/acp-21-13443-2021, https://doi.org/10.5194/acp-21-13443-2021, 2021
Short summary
Short summary
This study analyzed the nature, mechanisms and drivers for hot-and-polluted episodes (HPEs) in the Pearl River Delta, China. A total of eight HPEs were identified and can be grouped into three clusters of HPEs that were respectively driven (1) by weak subsidence and convection induced by approaching tropical cyclones, (2) by calm conditions with low wind speed in the lower atmosphere and (3) by the combination of both aforementioned conditions.
Tianmeng Chen, Zhanqing Li, Ralph A. Kahn, Chuanfeng Zhao, Daniel Rosenfeld, Jianping Guo, Wenchao Han, and Dandan Chen
Atmos. Chem. Phys., 21, 6199–6220, https://doi.org/10.5194/acp-21-6199-2021, https://doi.org/10.5194/acp-21-6199-2021, 2021
Short summary
Short summary
A convective cloud identification process is developed using geostationary satellite data from Himawari-8.
Convective cloud fraction is generally larger before noon and smaller in the afternoon under polluted conditions, but megacities and complex topography can influence the pattern.
A robust relationship between convective cloud and aerosol loading is found. This pattern varies with terrain height and is modulated by varying thermodynamic, dynamical, and humidity conditions during the day.
Andrey V. Koval, Wen Chen, Ksenia A. Didenko, Tatiana S. Ermakova, Nikolai M. Gavrilov, Alexander I. Pogoreltsev, Olga N. Toptunova, Ke Wei, Anna N. Yarusova, and Anton S. Zarubin
Ann. Geophys., 39, 357–368, https://doi.org/10.5194/angeo-39-357-2021, https://doi.org/10.5194/angeo-39-357-2021, 2021
Short summary
Short summary
Numerical modelling is used to simulate atmospheric circulation and calculate residual mean meridional circulation (RMC) during sudden stratospheric warming (SSW) events. Calculating the RMC is used to take into account wave effects on the transport of atmospheric quantities and gas species in the meridional plane. The results show that RMC undergoes significant changes at different stages of SSW and contributes to SSW development.
Jianping Guo, Boming Liu, Wei Gong, Lijuan Shi, Yong Zhang, Yingying Ma, Jian Zhang, Tianmeng Chen, Kaixu Bai, Ad Stoffelen, Gerrit de Leeuw, and Xiaofeng Xu
Atmos. Chem. Phys., 21, 2945–2958, https://doi.org/10.5194/acp-21-2945-2021, https://doi.org/10.5194/acp-21-2945-2021, 2021
Short summary
Short summary
Vertical wind profiles are crucial to a wide range of atmospheric disciplines. Aeolus is the first satellite mission to directly observe wind profile information on a global scale. However, Aeolus wind products over China have thus far not been evaluated by in situ comparison. This work is expected to let the public and science community better know the Aeolus wind products and to encourage use of these valuable data in future research and applications.
Boming Liu, Jianping Guo, Wei Gong, Yong Zhang, Lijuan Shi, Yingying Ma, Jian Li, Xiaoran Guo, Ad Stoffelen, Gerrit de Leeuw, and Xiaofeng Xu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-41, https://doi.org/10.5194/acp-2021-41, 2021
Revised manuscript not accepted
Short summary
Short summary
Vertical wind profiles are crucial to a wide range of atmospheric disciplines. Aeolus is the first satellite mission to directly observe wind profile information on a global scale. However, Aeolus wind products over China were thus far not evaluated by in-situ comparison. This work is expected to let the public and science community better know the Aeolus wind products and to encourage use of these valuable data in future researches and applications.
Kaixu Bai, Ke Li, Chengbo Wu, Ni-Bin Chang, and Jianping Guo
Earth Syst. Sci. Data, 12, 3067–3080, https://doi.org/10.5194/essd-12-3067-2020, https://doi.org/10.5194/essd-12-3067-2020, 2020
Short summary
Short summary
PM2.5 data from the national air quality monitoring network in China suffered from significant inconsistency and inhomogeneity issues. To create a coherent PM2.5 concentration dataset to advance our understanding of haze pollution and its impact on weather and climate, we homogenized this PM2.5 dataset between 2015 and 2019 after filling in the data gaps. The homogenized PM2.5 data is found to better characterize the variation of aerosol in space and time compared to the original dataset.
Yang Yang, Min Chen, Xiujuan Zhao, Dan Chen, Shuiyong Fan, Jianping Guo, and Shaukat Ali
Atmos. Chem. Phys., 20, 12527–12547, https://doi.org/10.5194/acp-20-12527-2020, https://doi.org/10.5194/acp-20-12527-2020, 2020
Short summary
Short summary
This study analyzed the impacts of aerosol–radiation interaction on radiation and meteorological forecasts using the offline coupling of WRF and high-frequency updated AOD simulated by WRF-Chem. The results revealed that aerosol–radiation interaction had a positive influence on the improvement of predictive accuracy, including 2 m temperature (~ 73.9 %) and horizontal wind speed (~ 7.8 %), showing potential prospects for its application in regional numerical weather prediction in northern China.
Ruqian Miao, Qi Chen, Yan Zheng, Xi Cheng, Yele Sun, Paul I. Palmer, Manish Shrivastava, Jianping Guo, Qiang Zhang, Yuhan Liu, Zhaofeng Tan, Xuefei Ma, Shiyi Chen, Limin Zeng, Keding Lu, and Yuanhang Zhang
Atmos. Chem. Phys., 20, 12265–12284, https://doi.org/10.5194/acp-20-12265-2020, https://doi.org/10.5194/acp-20-12265-2020, 2020
Short summary
Short summary
In this study we evaluated the model performances for simulating secondary inorganic aerosol (SIA) and organic aerosol (OA) in PM2.5 in China against comprehensive datasets. The potential biases from factors related to meteorology, emission, chemistry, and atmospheric removal are systematically investigated. This study provides a comprehensive understanding of modeling PM2.5, which is important for studies on the effectiveness of emission control strategies.
Cited articles
Cai, W. J., Li, K., Liao, H., Wang, H. J., and Wu, L. X.: Weather conditions
conducive to Beijing severe haze more frequent under climate change, Nat.
Clim. Change, 7, 257–263, 2017.
Chang, L., Xu, J., Tie, X., and Wu, J.: Impact of the 2015 El Niño event
on winter air quality in China, Sci. Rep., 6, 34275, https://doi.org/10.1038/srep34275, 2016.
Che, H., Zhang, X., Li, Y., Zhou, Z., Qu, J., and Hao, X.: Haze trends over
the capital cities of 31 provinces in China, 1981–2005, Theor. Appl.
Climatol., 97, 235–242, 2009.
Chen, G. S. and Huang, R. H.: Excitation mechanisms of the teleconnection
patterns affecting the July precipitation in Northwest China, J. Climate,
25, 7834–7851, 2012.
Chen, S., Wu, R., and Chen, W.: The changing relationship between
interannual variations of the North Atlantic Oscillation and northern
tropical Atlantic SST, J. Climate, 28, 485–504, 2015.
Chen, S., Wu, R., and Liu, Y.: Dominant modes of interannual variability in
Eurasian surface air temperature during boreal spring, J. Climate, 29,
1109–1125, 2016.
Chen, S., Guo, J., Song, L., Li, J., Liu, L., and Cohen, J.: Interannual
variation of the spring haze pollution over the North China Plain: Roles of
atmospheric circulation and sea surface temperature, Int. J. Climatol., 39,
783–798, 2019.
Chen, S., Guo, J., Song, L., Cohen, J., and Wang, Y.: Temporal disparity of
the atmospheric systems contributing to interannual variation of wintertime
haze pollution in the North China Plain, Int. J. Climatol., 40, 128–144,
2020.
Cheng, J., Su, J., Cui, T., Li, X., Dong, X., Sun, F., Yang, Y., Tong, D., Zheng, Y., Li, Y., Li, J., Zhang, Q., and He, K.: Dominant role of emission reduction in PM2.5 air quality improvement in Beijing during 2013–2017: a model-based decomposition analysis, Atmos. Chem. Phys., 19, 6125–6146, https://doi.org/10.5194/acp-19-6125-2019, 2019.
Climate Prediction Center (CPC): Climate Prediction Center atmospheric teleconnections, CPC [data set], available at: https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml, last access:
6 February 2021.
Cohen, A., Brauer, M., Burnett, R., Anderson, H., Frostad, J., Estep, K.,
Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V.,
Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y.,
Martin, R., Morawska, L., Pope, C., Shin, H., Straif, K., Shaddick, G.,
Thomas, M., Dingenen, R., Donkelaar, A., Vos, T., Murray, C., and
Forouzanfar, M.: Estimates and 25-year trends of the global burden of
disease attributable to ambient air pollution: An analysis of data from the
Global Burden of Diseases Study 2015, Lancet, 389, 1907–1918, 2017.
Craig, C. D. and Faulkenberry, G. D.: The application of ridit analysis to
detect trends in visibility, Atmos. Environ., 13, 1617–1622, 1979.
Czaja, A. and Frankignoul, C.: Influence of the North Atlantic SST on the
atmospheric circulation, Geophys. Res. Lett., 26, 2969–2972, 1999.
Czaja, A. and Frankignoul, C.: Observed impact of Atlantic SST anomalies on
the North Atlantic oscillation, J. Climate, 15, 606–623, 2002.
Czaja, A., van der Vaart P., and Marshall, J.: A diagnostic study of the role of remote forcing in tropical Atlantic variability, J. Climate,
15, 3280–3290, https://doi.org/10.1175/1520-0442(2002)015<3280:ADSOTR>2.0.CO;2, 2002.
Czaja, A., Robertson, A. W., and Huck, T.: The role of Atlantic
ocean–atmosphere coupling in affecting North Atlantic Oscillation
variability. The North Atlantic Oscillation: Climatic Significance and
Environmental Impact, edited by: Hurrell, J. W., Geophys. Monogr., vol. 134, Amer.
Geophys. Union, 147–172, 2003.
Dang, R. and Liao, H.: Severe winter haze days in the Beijing–Tianjin–Hebei region from 1985 to 2017 and the roles of anthropogenic emissions and meteorology, Atmos. Chem. Phys., 19, 10801–10816, https://doi.org/10.5194/acp-19-10801-2019, 2019.
Ding, Y. H. and Liu, Y. J.: Analysis of long-term variations of fog and haze
in China in recent 50 years and their relations with atmospheric humidity,
Sci. China Earth Sci., 57, 36–46, 2014.
Ding, Y., Wu, P., Liu, Y., and Song, Y.: Environmental and dynamic
conditions for the occurrence of persistent haze events in North China,
Engineering, 3, 266–271, 2017.
Fu, G. Q., Xu, W. Y., Yang, R. F., Li, J. B., and Zhao, C. S.: The distribution and trends of fog and haze in the North China Plain over the past 30 years, Atmos. Chem. Phys., 14, 11949–11958, https://doi.org/10.5194/acp-14-11949-2014, 2014.
Guo, J., Liu, H., Li, Z., Rosenfeld, D., Jiang, M., Xu, W., Jiang, J. H., He, J., Chen, D., Min, M., and Zhai, P.: Aerosol-induced changes in the vertical structure of precipitation: a perspective of TRMM precipitation radar, Atmos. Chem. Phys., 18, 13329–13343, https://doi.org/10.5194/acp-18-13329-2018, 2018.
Guo, J. P., Su, T., Li, Z., Miao, Y., Li, J., Liu, H., Xu, H., Cribb, M., and
Zhai, P.: Declining frequency of summertime local-scale precipitation over
eastern China from 1970 to 2010 and its potential link to aerosols, Geophys.
Res. Lett., 44, 5700–5708, 2017.
He, C., Liu, R., Wang, X., Liu, S. C., Zhou, T., and Liao, W.: How does El
Niño-Southern Oscillation modulate the interannual variability of winter
haze days over eastern China?, Sci. Total Environ., 651, 1892–1902, 2019.
Hennigan, C. J., Bergin, M. H., Dibb, J. E., and Weber, R. J.: Enhanced secondary
organic aerosol formation due to water uptake by fine particles, Geophys.
Res. Lett., 35, L18801, https://doi.org/10.1029/2008GL035046, 2008.
Hodson, D. L. R., Sutton, R. T., Cassou, C., Keenlyside, N., Okumura, Y.,
and Zhou, T. J.: Climate impacts of recent multidecadal changes in Atlantic
Ocean sea surface temperature: A multimodel comparison, Clim. Dynam., 34,
1041–1058, 2010.
Hu, Z.-Z. and Huang, B.: On the significance of the relationship between
the North Atlantic Oscillation in early winter and Atlantic sea surface
temperature anomalies, J. Geophys. Res., 111, D12103, https://doi.org/10.1029/2005JD006339, 2006.
Huang, B. and Shukla, J.: Ocean–atmosphere interactions in the tropical
and subtropical Atlantic Ocean. J. Climate, 18, 1652–1672, 2005.
Huang B., Thorne P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H. M.: Extended reconstructed sea surface temperature,
version 5 (ERSSTv5): Upgrades, validations, and intercomparisons, J. Climate,
30, 8179–8205, https://doi.org/10.1175/JCLI-D-16-0836.1, 2017.
Hurrell, J. W.: Decadal trends in the North Atlantic Oscillation, Science,
269, 676–679, 1995.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A.,
Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo,
K. C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D.: The NCEP/NCAR
40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–471, 1996.
Kerr, R. A.: A North Atlantic climate pacemaker for the centuries, Science,
288, 1984–1986, 2000.
Koren, I., Altaratz, O., Remer, L. A., Feingold, G., Martins, J. V., and
Heiblum, R. H.: Aerosol-induced intensification of precipitation from the
Tropics to the mid-latitudes, Nat. Geosci., 5, 118–122, 2012.
Koschmieder, H.: Theorie der horizontalen Sichtweite Beit, Physics of the
Atmosphere, 12, 33–55, 1926.
Li, J., Li, C., and Zhao, C.: Different trends in extreme and median surface aerosol extinction coefficients over China inferred from quality-controlled visibility data, Atmos. Chem. Phys., 18, 3289–3298, https://doi.org/10.5194/acp-18-3289-2018, 2018.
Li, Q., Zhang, R., and Wang, Y.: Interannual variation of the wintertime
fog-haze days across central and eastern China and its relation with East
Asian winter monsoon, Int. J. Climatol., 36, 346–354, 2016.
Li, T., Wang, B., Wu, B., and Zhou, T.: Theories on formation of an
anomalous anticyclone in Western North Pacific during El Niño: a review,
J. Meteorol. Res. 31, 987–1006, 2017.
Li, X., Yu, C., Deng, X., He, D., Zhao, Z., Mo, H., Mo, J., and Wu, Y.: Mechanism for synoptic and intra-seasonal oscillation of visibility
in Beijing-Tianjin-Hebei region, Theor. Appl. Climatol., 143, 1005–1015, https://doi.org/10.1007/s00704-020-03466-z, 2021.
Liu, T., Gong, S., He, J., Yu, M., Wang, Q., Li, H., Liu, W., Zhang, J., Li, L., Wang, X., Li, S., Lu, Y., Du, H., Wang, Y., Zhou, C., Liu, H., and Zhao, Q.: Attributions of meteorological and emission factors to the 2015 winter severe haze pollution episodes in China's Jing-Jin-Ji area, Atmos. Chem. Phys., 17, 2971–2980, https://doi.org/10.5194/acp-17-2971-2017, 2017.
Lu, X., Lin, C., Li, W., Chen, Y., Huang, Y., Fung, J., and Lau, A.:
Analysis of the adverse health effects of PM2.5 from 2001 to 2017 in
China and the role of urbanization in aggravating the health burden, Sci.
Total Environ., 652, 683–695, 2019.
Ma, J. and Zhang, R.: Opposite interdecadal variations of wintertime haze
occurrence over North China Plain and Yangtze River Delta regions in
1980–2013, Sci. Total Environ., 732, 139240, https://doi.org/10.1016/j.scitotenv.2020.139240, 2020.
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. C.: A
Pacific interdecadal climate oscillation with impacts on salmon production,
B. Am. Meteorol. Soc., 78, 1069–1079, 1997.
NCEP-NCAR: Monthly and daily mean atmospheric reanalysis data, NCEP-NCAR [data set], available at: http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html, last
access: 6 February 2021.
NOAA: NOAA Extended Reconstructed Sea Surface Temperature (SST) V5 data
sets, NOAA [data set], available at:
http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.v5.html, last
access: 6 February 2021.
O'Reilly, C. H., Woollings, T., and Zanna, L.: The impact of tropical
precipitation on summertime Euro-Atlantic circulation via a circumglobal
wave train, J. Climate, 31, 6481–6504, 2018.
Pan, L.-L.: Observed positive feedback between the NAO and the North
Atlantic SSTA tripole, Geophys. Res. Lett., 32, L06707, https://doi.org/10.1029/2005GL022427, 2005.
Peng, S., Robinson, W. A., and Li, S.: Mechanisms for the NAO responses to
the North Atlantic SST tripole, J. Climate, 16, 1987–2004, 2003.
Rodwell, M. J. and Folland, C. K.: Atlantic air–sea interaction and
seasonal predictability, Q. J. Roy. Meteor. Soc., 128, 1413–1443, 2002.
Rosenfeld, D., Dai, J., Yu, X., Yao, Z., Xu, X., Yang, X., and Du, C.:
Inverse relations between amounts of air pollution and orographic
precipitation, Science, 315, 1396–1398, 2007.
Sardeshmukh, P. D. and Hoskins, B. J.: The generation of global rotational
flow by steady idealized tropical divergence, J. Atmos. Sci., 45,
1228–1251, 1988.
Takaya, K. and Nakamura, H.: A formulation of a phaseindependent wave
activity flux for stationary and migratory quasigeostrophic eddies on a
zonally varying basic flow, J. Atmos. Sci., 58, 608–627, 2001.
Tie, X., Huang, R., and Dai, W.: Effect of heavy haze and aerosol pollution
on rice and wheat productions in China, Sci. Rep., 6, 29612, https://doi.org/10.1038/srep29612, 2016.
Ting, M. F.: Steady linear response to tropical heating in barotropic and
baroclinic models, J. Atmos. Sci., 53, 1698–1709, 1996.
Visbeck, M., Chassignet, E., Curry, R., and Delworth, T.: The ocean's
response to North Atlantic variability. The North Atlantic Oscillation, edited by: Hurrell, J., Kushnir, Y., Ottersen, G., and Visbeck, M., Geophys. Monogr., 134,
113–145, 2003.
Wang, B., Wu, R. G., and Fu, X. H.: Pacific–East Asian teleconnection: how
does ENSO affect East Asian climate?, J. Climate, 13, 1517–1536, 2000.
Wang, F., Guo, J., Wu, Y., Zhang, X., Deng, M., Li, X., Zhang, J., and Zhao,
J.: Satellite observed aerosol-induced variability in warm cloud properties
under different meteorological conditions over eastern China, Atmos.
Environ., 84, 122–132, 2014.
Wang, H.-J. and Chen, H.-P.: Understanding the recent trend of haze pollution in eastern China: roles of climate change, Atmos. Chem. Phys., 16, 4205–4211, https://doi.org/10.5194/acp-16-4205-2016, 2016.
Wang, H.-J., Chen, H.-P., and Liu, J.-P.: Arctic sea ice decline intensified haze pollution in eastern China, Atmos. Ocean. Sci. Lett., 8, 1–9, https://doi.org/10.3878/AOSL20140081, 2015.
Wang, L., Liu, Y., Zhang, Y., Chen, W., and Chen, S.: Time-varying structure
of the wintertime Eurasian pattern: Role of the North Atlantic sea surface
temperature and atmospheric mean flow, Clim. Dynam., 52, 2467–2479, 2019.
Wang, X., Wei, W., Cheng, S., Li, J., Zhang, H., and Lv, Z.: Characteristics and
classification of PM2.5 pollution episodes in Beijing from 2013 to 2015,
Sci. Total Environ., 612, 170–179, 2018.
Wang, Y., Zhang, R., and Saravanan, R.: Asian pollution climatically
modulates mid-latitude cyclones following hierarchical modeling and
observational analysis, Nat. Commun., 5, 3098, https://doi.org/10.1038/ncomms4098, 2014.
Watanabe, M.: Asian jet waveguide and a downstream extension of the North
Atlantic Oscillation, J. Climate, 17, 4674–4691, 2004.
Wu, G., Li, Z.-Q., Fu, C., Zhang, X., Zhang, R.-Y., Zhang, R., Zhou, T.,
Li, J., Li, J., Zhou, D., Wu, L., Zhou, L., He, B., and Huang, R.: Advances in
studying interactions between aerosols and monsoon in China, Sci. China
Earth Sci., 59, 1–16, https://doi.org/10.1007/s11430-015-5198-z, 2016.
Wu, L. and Liu, Z.: North Atlantic decadal variability: Air–sea coupling, oceanic memory, and potential Northern Hemisphere resonance, J. Climate, 18,
331–349, 2005.
Wu, R., Yang, S., Liu, S., Sun, L., Lian, Y., and Gao, Z.: Northeast China
summer temperature and North Atlantic SST, J. Geophys. Res., 116, D16116, https://doi.org/10.1029/2011JD015779,
2011.
Wu, Z., Wang, B., Li, J., and Jin, F.-F.: An empirical seasonal prediction
model of the East Asian summer monsoon using ENSO and NAO, J. Geophys. Res.,
114, D18120, https://doi.org/10.1029/2009JD011733, 2009.
Xiao, D., Li, Y., Fan, S., Zhang, R., Sun, J., and Wang, Y.: Plausible
influence of Atlantic Ocean SST anomalies on winter haze in China, Theor.
Appl. Climatol., 122, 249–257, 2014.
Yin, Z. and Wang, H.: The relationship between the subtropical western Pacific SST and haze over north-central North China Plain, Int. J. Climatol., 36, 3479–3491, https://doi.org/10.1002/joc.4570, 2016.
Yin, Z. and Wang, H.: Role of atmospheric circulations in haze pollution in December 2016, Atmos. Chem. Phys., 17, 11673–11681, https://doi.org/10.5194/acp-17-11673-2017, 2017.
Yin, Z. and Wang, H.: The strengthening relationship between Eurasian snow cover and December haze days in central North China after the mid-1990s, Atmos. Chem. Phys., 18, 4753–4763, https://doi.org/10.5194/acp-18-4753-2018, 2018.
Yin, Z., Wang, H., and Guo, W.: Climatic change features of fog and haze in
winter over North China and Huang-Huai Area, Sci. China Earth Sci., 58,
1370–1376, 2015.
Yu, J. Z., Huang, X. F., Xu, J., and Hu, M.: When aerosol sulfate goes up, so
does oxalate: implication for the formation mechanisms of oxalate, Environ.
Sci. Technol., 39, 128–133, 2005.
Zhang, J., Liu, J., Ren, L., Wei, J., Duan, J., Zhang, L., Zhou, X., and
Sun, Z.: PM2.5 induces male reproductive toxicity via mitochondrial
dysfunction, DNA damage and RIPK1 mediated apoptotic signaling pathway, Sci.
Total Environ., 634, 1435–1444, 2018.
Zhang, R. H., Min, Q. Y., and Su, J. Z.: Impact of El Niño on atmospheric
circulations over East Asia and rainfall in China: role of the anomalous
western North Pacific anticyclone, Sci. China Earth Sci., 60, 1124–1132,
2017.
Zhang, X., Huang, Y., Zhu, W., and Rao, R.: Aerosol characteristics during
summer haze episodes from different source regions over the coast city of
North China Plain, J. Quant. Spectrosc. Ra., 122, 180–193,
2013.
Zhang, Y., Wallace, J. M., and Battisti, D. S.: ENSO-like interdecadal
variability: 1900–93, J. Climate, 10, 1004–1020, 1997.
Zhang, Y., Yin, Z., and Wang, H.: Roles of climate variability on the rapid increases of early winter haze pollution in North China after 2010, Atmos. Chem. Phys., 20, 12211–12221, https://doi.org/10.5194/acp-20-12211-2020, 2020.
Zhang, Z., Zhang, X., Gong, D., Kim, S.-J., Mao, R., and Zhao, X.: Possible influence of atmospheric circulations on winter haze pollution in the Beijing–Tianjin–Hebei region, northern China, Atmos. Chem. Phys., 16, 561–571, https://doi.org/10.5194/acp-16-561-2016, 2016.
Zhao, S., Li, J., and Sun, C.: Decadal variability in the occurrence of
wintertime haze in central eastern China tied to the Pacific Decadal
Oscillation, Sci. Rep., 6, 27424, https://doi.org/10.1038/srep27424, 2016.
Zhao, W., Chen, S., Chen, W., Yao, S., Nath, D., and Yu, B.: Interannual
variations of the rainy season withdrawal of the monsoon transitional zone
in China, Clim. Dynam., 53, 2031–2046, 2019.
Zuo, J., Li, W., Sun, C., Xu, L., and Ren, H.: Impact of the North Atlantic
sea surface temperature tripole on the East Asian summer monsoon, Adv.
Atmos. Sci., 30, 1173–1186, 2013.
Short summary
This study shows that in most years when haze pollution (HP) over the North China Plain (NCP) is more (less) serious in winter, air conditions in the following spring are also worse (better) than normal. Conversely, there are some years when HP in the following spring is opposed to that in winter. It is found that North Atlantic sea surface temperature (SST) anomalies play important roles in HP evolution over the NCP. Thus North Atlantic SST is an important preceding signal for NCP HP evolution.
This study shows that in most years when haze pollution (HP) over the North China Plain (NCP) is...
Altmetrics
Final-revised paper
Preprint