Articles | Volume 22, issue 24
https://doi.org/10.5194/acp-22-15685-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-15685-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development and application of a multi-scale modeling framework for urban high-resolution NO2 pollution mapping
Zhaofeng Lv
State Key Joint Laboratory of ESPC, School of Environment, Tsinghua
University, Beijing 100084, China
Zhenyu Luo
State Key Joint Laboratory of ESPC, School of Environment, Tsinghua
University, Beijing 100084, China
Fanyuan Deng
State Key Joint Laboratory of ESPC, School of Environment, Tsinghua
University, Beijing 100084, China
Xiaotong Wang
State Key Joint Laboratory of ESPC, School of Environment, Tsinghua
University, Beijing 100084, China
Junchao Zhao
State Key Joint Laboratory of ESPC, School of Environment, Tsinghua
University, Beijing 100084, China
Lucheng Xu
State Key Joint Laboratory of ESPC, School of Environment, Tsinghua
University, Beijing 100084, China
Tingkun He
State Key Joint Laboratory of ESPC, School of Environment, Tsinghua
University, Beijing 100084, China
Yingzhi Zhang
College of Ecology and Environment, Chengdu University of Technology,
Chengdu 610059, China
State Key Joint Laboratory of ESPC, School of Environment, Tsinghua
University, Beijing 100084, China
Kebin He
State Key Joint Laboratory of ESPC, School of Environment, Tsinghua
University, Beijing 100084, China
Related authors
Zhenyu Luo, Li Peng, Zhaofeng Lv, Tingkun He, Wen Yi, Yongyue Wang, Kebin He, and Huan Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2027, https://doi.org/10.5194/egusphere-2025-2027, 2025
Short summary
Short summary
This study explores how shipping emissions affect ozone pollution in China. By combining atmospheric simulation and machine learning, we show that ship emissions increase ozone levels by an average of 3.5 ppb nationwide, with large differences depending on location and season. Our findings highlight that controlling ship emissions together with land-based sources is critical for improving air quality and protecting public health.
Wen Yi, Xiaotong Wang, Tingkun He, Huan Liu, Zhenyu Luo, Zhaofeng Lv, and Kebin He
Earth Syst. Sci. Data, 17, 277–292, https://doi.org/10.5194/essd-17-277-2025, https://doi.org/10.5194/essd-17-277-2025, 2025
Short summary
Short summary
This study presents a detailed global dataset on ship emissions, covering the years 2013 and 2016–2021, using advanced modeling techniques. The dataset includes emissions data for four types of greenhouse gases and five types of air pollutants. The data, available for research, offer valuable insights into ship emission spatiotemporal patterns by vessel type and age, providing a solid data foundation for fine-scale scientific research and shipping emission mitigation.
Zhenyu Luo, Li Peng, Zhaofeng Lv, Tingkun He, Wen Yi, Yongyue Wang, Kebin He, and Huan Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2027, https://doi.org/10.5194/egusphere-2025-2027, 2025
Short summary
Short summary
This study explores how shipping emissions affect ozone pollution in China. By combining atmospheric simulation and machine learning, we show that ship emissions increase ozone levels by an average of 3.5 ppb nationwide, with large differences depending on location and season. Our findings highlight that controlling ship emissions together with land-based sources is critical for improving air quality and protecting public health.
Ruochong Xu, Hanchen Ma, Jingxian Li, Dan Tong, Liu Yan, Lanyuan Wang, Xinying Qin, Qingyang Xiao, Xizhe Yan, Hanwen Hu, Yujia Fu, Nana Wu, Huaxuan Wang, Yuexuanzi Wang, Xiaodong Liu, Guannan Geng, Kebin He, and Qiang Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1085, https://doi.org/10.5194/egusphere-2025-1085, 2025
Short summary
Short summary
In this study, we developed a new global emission inventory for non-methane volatile organic compounds (NMVOC) for the period of 1970–2020, with a focus on improving the representation of NMVOC-emission-related technologies. Our analysis revealed that activity growth, technology advancements, and policy-driven emission controls were key driving forces of NMVOC emission changes, but their roles were different across sectors and regions.
Xiaolin Duan, Guangjie Zheng, Chuchu Chen, Qiang Zhang, and Kebin He
Atmos. Chem. Phys., 25, 3919–3928, https://doi.org/10.5194/acp-25-3919-2025, https://doi.org/10.5194/acp-25-3919-2025, 2025
Short summary
Short summary
Aerosol acidity is an important parameter in atmospheric chemistry, while its driving factors, especially chemical profiles versus meteorological conditions, are not yet fully understood. Here, we established a hierarchical quantitative analysis framework to understand the driving factors of aerosol acidity on different timescales. Its application in Changzhou, China, revealed distinct driving factors and corresponding mechanisms of aerosol acidity from annual trends to random residuals.
Wen Yi, Xiaotong Wang, Tingkun He, Huan Liu, Zhenyu Luo, Zhaofeng Lv, and Kebin He
Earth Syst. Sci. Data, 17, 277–292, https://doi.org/10.5194/essd-17-277-2025, https://doi.org/10.5194/essd-17-277-2025, 2025
Short summary
Short summary
This study presents a detailed global dataset on ship emissions, covering the years 2013 and 2016–2021, using advanced modeling techniques. The dataset includes emissions data for four types of greenhouse gases and five types of air pollutants. The data, available for research, offer valuable insights into ship emission spatiotemporal patterns by vessel type and age, providing a solid data foundation for fine-scale scientific research and shipping emission mitigation.
Zhaojin An, Rujing Yin, Xinyan Zhao, Xiaoxiao Li, Yuyang Li, Yi Yuan, Junchen Guo, Yiqi Zhao, Xue Li, Dandan Li, Yaowei Li, Dongbin Wang, Chao Yan, Kebin He, Douglas R. Worsnop, Frank N. Keutsch, and Jingkun Jiang
Atmos. Chem. Phys., 24, 13793–13810, https://doi.org/10.5194/acp-24-13793-2024, https://doi.org/10.5194/acp-24-13793-2024, 2024
Short summary
Short summary
Online Vocus-PTR measurements show the compositions and seasonal variations in organic vapors in urban Beijing. With enhanced sensitivity and mass resolution, various species at a level of sub-parts per trillion (ppt) and organics with multiple oxygens (≥ 3) were observed. The fast photooxidation process in summer leads to an increase in both concentration and proportion of organics with multiple oxygens, while, in other seasons, the variations in them could be influenced by mixed sources.
Liu Yan, Qiang Zhang, Bo Zheng, and Kebin He
Earth Syst. Sci. Data, 16, 4497–4509, https://doi.org/10.5194/essd-16-4497-2024, https://doi.org/10.5194/essd-16-4497-2024, 2024
Short summary
Short summary
A new database of fuel-, vehicle-type-, and age-specific CO2 emissions from global on-road vehicles from 1970 to 2020 is developed with the fleet turnover model built in this study. Based on this database, the evolution of the global vehicle stock over 50 years is analyzed, the dominant emission contributors by vehicle and fuel type are identified, and the age distribution of on-road CO2 emissions is characterized further.
Nana Wu, Guannan Geng, Ruochong Xu, Shigan Liu, Xiaodong Liu, Qinren Shi, Ying Zhou, Yu Zhao, Huan Liu, Yu Song, Junyu Zheng, Qiang Zhang, and Kebin He
Earth Syst. Sci. Data, 16, 2893–2915, https://doi.org/10.5194/essd-16-2893-2024, https://doi.org/10.5194/essd-16-2893-2024, 2024
Short summary
Short summary
The commonly used method for developing large-scale air pollutant emission datasets for China faces challenges due to limited availability of detailed parameter information. In this study, we develop an efficient integrated framework to gather such information by harmonizing seven heterogeneous inventories from five research institutions. Emission characterizations are analyzed and validated, demonstrating that the dataset provides more accurate emission magnitudes and spatiotemporal patterns.
Jingyu An, Cheng Huang, Dandan Huang, Momei Qin, Huan Liu, Rusha Yan, Liping Qiao, Min Zhou, Yingjie Li, Shuhui Zhu, Qian Wang, and Hongli Wang
Atmos. Chem. Phys., 23, 323–344, https://doi.org/10.5194/acp-23-323-2023, https://doi.org/10.5194/acp-23-323-2023, 2023
Short summary
Short summary
This paper aims to build up an approach to establish a high-resolution emission inventory of intermediate-volatility and semi-volatile organic compounds in city-scale and detailed source categories and incorporate it into the CMAQ model. We believe this approach can be widely applied to improve the simulation of secondary organic aerosol and its source contributions.
Yawen Kong, Bo Zheng, Qiang Zhang, and Kebin He
Atmos. Chem. Phys., 22, 10769–10788, https://doi.org/10.5194/acp-22-10769-2022, https://doi.org/10.5194/acp-22-10769-2022, 2022
Short summary
Short summary
We developed a Bayesian atmospheric inversion system based on the 4D local ensemble transform Kalman filter (4D-LETKF) algorithm coupled with GEOS-Chem from the latest Orbiting Carbon Observatory-2 (OCO-2) V10r XCO2 retrievals. This is the first adaptation of 4D-LETKF to an OCO-2-based global carbon inversion system. We inferred global gridded carbon fluxes and investigated their magnitudes, variations, and partitioning schemes to understand the global and regional carbon budgets for 2015–2020.
Xiaotong Wang, Wen Yi, Zhaofeng Lv, Fanyuan Deng, Songxin Zheng, Hailian Xu, Junchao Zhao, Huan Liu, and Kebin He
Atmos. Chem. Phys., 21, 13835–13853, https://doi.org/10.5194/acp-21-13835-2021, https://doi.org/10.5194/acp-21-13835-2021, 2021
Short summary
Short summary
This study updates our previous Ship Emission Inventory Model to version 2.0 (SEIM v2.0) and develops high-spatiotemporal ship emission inventories of China’s inland rivers and a 200 nautical mile coastal zone in 2016–2019. The 4-year consecutive daily ship emissions and emission structure changes are analyzed from the national to port levels. The results of this study can provide high-quality datasets for air quality modeling and observation experiment verifications.
Qingyang Xiao, Yixuan Zheng, Guannan Geng, Cuihong Chen, Xiaomeng Huang, Huizheng Che, Xiaoye Zhang, Kebin He, and Qiang Zhang
Atmos. Chem. Phys., 21, 9475–9496, https://doi.org/10.5194/acp-21-9475-2021, https://doi.org/10.5194/acp-21-9475-2021, 2021
Short summary
Short summary
We used both statistical methods and a chemical transport model to assess the contribution of meteorology and emissions to PM2.5 during 2000–2018. Both methods revealed that emissions dominated the long-term PM2.5 trend with notable meteorological effects ranged up to 37.9 % of regional annual average PM2.5. The meteorological contribution became more beneficial to PM2.5 control in southern China but more unfavorable in northern China during the studied period.
Shaojie Song, Tao Ma, Yuzhong Zhang, Lu Shen, Pengfei Liu, Ke Li, Shixian Zhai, Haotian Zheng, Meng Gao, Jonathan M. Moch, Fengkui Duan, Kebin He, and Michael B. McElroy
Atmos. Chem. Phys., 21, 457–481, https://doi.org/10.5194/acp-21-457-2021, https://doi.org/10.5194/acp-21-457-2021, 2021
Short summary
Short summary
We simulate the atmospheric chemical processes of an important sulfur-containing organic aerosol species, which is produced by the reaction between sulfur dioxide and formaldehyde. We can predict its distribution on a global scale. We find it is particularly rich in East Asia. This aerosol species is more abundant in the colder season partly because of weaker sunlight.
Cited articles
Aleksankina, K., Reis, S., Vieno, M., and Heal, M. R.: Advanced methods for uncertainty assessment and global sensitivity analysis of an Eulerian atmospheric chemistry transport model, Atmos. Chem. Phys., 19, 2881–2898, https://doi.org/10.5194/acp-19-2881-2019, 2019.
An, Z., Huang, R.-J., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi,
Z., Han, Y., Gu, Z., and Ji, Y.: Severe haze in northern China: A synergy of
anthropogenic emissions and atmospheric processes, P.
Natl. Acad. Sci. USA, 116,
8657–8666, https://doi.org/10.1073/pnas.1900125116, 2019.
Beddows, A. V., Kitwiroon, N., Williams, M. L., and Beevers, S. D.:
Emulation and Sensitivity Analysis of the Community Multiscale Air Quality
Model for a UK Ozone Pollution Episode, Environ. Sci.
Technol., 51, 6229–6236, https://doi.org/10.1021/acs.est.6b05873, 2017.
Benavides, J., Snyder, M., Guevara, M., Soret, A., Pérez García-Pando, C., Amato, F., Querol, X., and Jorba, O.: CALIOPE-Urban v1.0: coupling R-LINE with a mesoscale air quality modelling system for urban air quality forecasts over Barcelona city (Spain), Geosci. Model Dev., 12, 2811–2835, https://doi.org/10.5194/gmd-12-2811-2019, 2019.
Berchet, A., Zink, K., Muller, C., Oettl, D., Brunner, J., Emmenegger, L.,
and Brunner, D.: A cost-effective method for simulating city-wide air flow
and pollutant dispersion at building resolving scale, Atmos.
Environ., 158, 181–196,
https://doi.org/10.1016/j.atmosenv.2017.03.030, 2017.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Brown, M., Lawson, R., DeCroix, D., and Lee, R.: Comparison of centerline velocity measurements obtained around 2D
and 3D buildings arrays in a wind tunnel, Report LA-UR-01-4138, Los Alamos National Laboratory,
Los Alamos,
Science, 2001.
Byun, D. and Schere, K. L.: Review of the Governing Equations, Computational
Algorithms, and Other Components of the Models-3 Community Multiscale Air
Quality (CMAQ) Modeling System, Appl. Mech. Rev., 59, 51–77, https://doi.org/10.1115/1.2128636, 2006.
Chang, S. Y., Vizuete, W., Valencia, A., Naess, B., Isakov, V., Palma, T.,
Breen, M., and Arunachalam, S.: A modeling framework for characterizing
near-road air pollutant concentration at community scales, Sci.
Total Environ., 538, 905–921, 2015.
Chen, G., Li, S., Knibbs, L. D., Hamm, N. A., Cao, W., Li, T., Guo, J., Ren,
H., Abramson, M. J., and Guo, Y.: A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land
use information, Sci. Total Environ., 636, 52–60, 2018.
Cheng, J., Su, J., Cui, T., Li, X., Dong, X., Sun, F., Yang, Y., Tong, D., Zheng, Y., Li, Y., Li, J., Zhang, Q., and He, K.: Dominant role of emission reduction in PM2.5 air quality improvement in Beijing during 2013–2017: a model-based decomposition analysis, Atmos. Chem. Phys., 19, 6125–6146, https://doi.org/10.5194/acp-19-6125-2019, 2019.
Cimorelli, A. J., Perry, S. G., Venkatram, A., Weil, J. C., Paine, R. J.,
Wilson, R. B., Lee, R. F., Peters, W. D., and Brode, R. W.: AERMOD: A
Dispersion Model for Industrial Source Applications. Part I: General Model
Formulation and Boundary Layer Characterization, J. Appl. Meteorol., 44, 682–693, https://doi.org/10.1175/JAM2227.1, 2005.
Conibear, L., Reddington, C. L., Silver, B. J., Chen, Y., Knote, C., Arnold,
S. R., and Spracklen, D. V.: Statistical Emulation of Winter Ambient Fine
Particulate Matter Concentrations From Emission Changes in China, GeoHealth,
5, e2021GH000391, https://doi.org/10.1029/2021GH000391, 2021.
Cui, Y., Wang, L., Jiang, L., Liu, M., Wang, J., Shi, K., and Duan, X.:
Dynamic spatial analysis of NO2 pollution over China: Satellite observations
and spatial convergence models, Atmos. Pollut. Res., 12, 89–99,
https://doi.org/10.1016/j.apr.2021.02.003, 2021.
Dejoan, A., Santiago, J., Martilli, A., Martin, F., and Pinelli, A.:
Comparison between large-eddy simulation and Reynolds-averaged
Navier–Stokes computations for the MUST field experiment. Part II: effects
of incident wind angle deviation on the mean flow and plume dispersion,
Bound.-Lay. Meteorol., 135, 133–150, 2010.
Fang, K.-T., Li, R., and Sudjianto, A.: Design and Modeling for
Computer Experiments, Chapman and Hall/CRC,
https://doi.org/10.1201/9781420034899, 2005.
fanyuandeng and claus0224: claus0224/MLSCF-RF-MARS: First release (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.7418097, 2022.
Filigrana, P., Milando, C., Batterman, S., Levy, J. I., Mukherjee, B., and
Adar, S. D.: Spatiotemporal variations in traffic activity and their
influence on air pollution levels in communities near highways, Atmos.
Environ., 242, 117758,
https://doi.org/10.1016/j.atmosenv.2020.117758, 2020.
FLUENT: FLUENT V6.3. User's Manual,
http://www.fluent.com (last access: 20 August 2017), 2006.
Foken, T.: 50 Years of the Monin–Obukhov Similarity Theory, Bound.-Lay.
Meteorol., 119, 431–447, https://doi.org/10.1007/s10546-006-9048-6, 2006.
Franke, J., Hellsten, A., Schlunzen, K. H., and Carissimo, B.: The COST 732
Best Practice Guideline for CFD simulation of flows in the urban
environment: a summary, Int. J. Environ. Pollut.,
44, 419–427, https://doi.org/10.1504/IJEP.2011.038443, 2011.
Friedman, J. H.: Multivariate adaptive regression splines, Ann.
Stat., 19, 1–67, 1991.
Fu, X., Liu, J., Ban-Weiss, G. A., Zhang, J., Huang, X., Ouyang, B.,
Popoola, O., and Tao, S.: Effects of canyon geometry on the distribution of
traffic-related air pollution in a large urban area: Implications of a
multi-canyon air pollution dispersion model, Atmos. Environ., 165,
111–121, https://doi.org/10.1016/j.atmosenv.2017.06.031, 2017.
Geng, G., Meng, X., He, K., and Liu, Y.: Random forest models for PM2.5
speciation concentrations using MISR fractional AODs, Environ. Res.
Lett., 15, 034056, https://doi.org/10.1088/1748-9326/ab76df, 2020.
Greenwell, B. M.: pdp: An R Package for Constructing Partial Dependence Plots,
R J., 9, 421, 2017.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G.,
Skamarock, W. C., and Eder, B.: Fully coupled “online” chemistry within
the WRF model, Atmos. Environ., 39, 6957–6975,
https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005.
Hagler, G. S. W., Thoma, E. D., and Baldauf, R. W.: High-Resolution Mobile
Monitoring of Carbon Monoxide and Ultrafine Particle Concentrations in a
Near-Road Environment, J. Air Waste Ma.,
60, 328–336, https://doi.org/10.3155/1047-3289.60.3.328, 2012.
Hang, J., Sandberg, M., Li, Y., and Claesson, L.: Flow mechanisms and flow
capacity in idealized long-street city models, Build. Environ., 45,
1042–1053, https://doi.org/10.1016/j.buildenv.2009.10.014,
2010.
Heist, D., Isakov, V., Perry, S., Snyder, M., Venkatram, A., Hood, C.,
Stocker, J., Carruthers, D., Arunachalam, S., and Owen, R. C.: Estimating
near-road pollutant dispersion: A model inter-comparison, Transport.
Res. D-Tr. E., 25, 93–105, 2013.
Hood, C., MacKenzie, I., Stocker, J., Johnson, K., Carruthers, D., Vieno, M., and Doherty, R.: Air quality simulations for London using a coupled regional-to-local modelling system, Atmos. Chem. Phys., 18, 11221–11245, https://doi.org/10.5194/acp-18-11221-2018, 2018.
Hu, X., Belle, J. H., Meng, X., Wildani, A., Waller, L. A., Strickland, M.
J., and Liu, Y.: Estimating PM2.5 concentrations in the conterminous United
States using the random forest approach, Environ. Sci.
Technol., 51, 6936–6944, 2017.
Jensen, S. S., Ketzel, M., Becker, T., Christensen, J., Brandt, J.,
Plejdrup, M., Winther, M., Nielsen, O.-K., Hertel, O., and Ellermann, T.:
High resolution multi-scale air quality modelling for all streets in
Denmark, Transport. Res. Part D-Tr. E., 52,
322–339, https://doi.org/10.1016/j.trd.2017.02.019, 2017.
Jin, Y., Andersson, H., and Zhang, S.: Air Pollution Control Policies in
China: A Retrospective and Prospects, Int. J. Environ.
Res. Pub. He., 13, 1219, https://doi.org/10.3390/ijerph13121219, 2016.
Kakosimos, K. E., Hertel, O., Ketzel, M., and Berkowicz, R.: Operational
Street Pollution Model (OSPM) – a review of performed application and
validation studies, and future prospects, Environ. Chem., 7,
485–503, https://doi.org/10.1071/EN10070, 2010.
Kamińska, J. A.: A random forest partition model for predicting NO2
concentrations from traffic flow and meteorological conditions, Sci.
Total Environ., 651, 475–483, 2019.
Ke, W., Zhang, S., Wu, Y., Zhao, B., Wang, S., and Hao, J.: Assessing the
Future Vehicle Fleet Electrification: The Impacts on Regional and Urban Air
Quality, Environ. Sci. Technol., 51, 1007–1016, https://doi.org/10.1021/acs.est.6b04253, 2017.
Keller, C. A. and Evans, M. J.: Application of random forest regression to the calculation of gas-phase chemistry within the GEOS-Chem chemistry model v10, Geosci. Model Dev., 12, 1209–1225, https://doi.org/10.5194/gmd-12-1209-2019, 2019.
Ketzel, M., Jensen, S., Brandt, J., Ellermann, T., Berkowicz, R., and
Hertel, O.: Evaluation of the street pollution model OSPM for measurement at
12 street stations using using newly developed and freely available
evaluation tool, J. Civil. Environ. Eng.,
01, 004, https://doi.org/10.4172/2165-784X.S1-004, 2012.
Khaniabadi, Y. O., Goudarzi, G., Daryanoosh, S. M., Borgini, A., Tittarelli,
A., and De Marco, A.: Exposure to PM10, NO2, and O3 and impacts on human
health, Environ. Sci. Pollut. R., 24, 2781–2789, https://doi.org/10.1007/s11356-016-8038-6, 2017.
Kheirbek, I., Haney, J., Douglas, S., Ito, K., and Matte, T.: The
contribution of motor vehicle emissions to ambient fine particulate matter
public health impacts in New York City: a health burden assessment,
Environ. Health, 15, 89, https://doi.org/10.1186/s12940-016-0172-6, 2016.
Kikumoto, H., Ooka, R., Sugawara, H., and Lim, J.: Observational study of
power-law approximation of wind profiles within an urban boundary layer for
various wind conditions, J. Wind Eng. Ind.
Aerod., 164, 13–21, https://doi.org/10.1016/j.jweia.2017.02.003, 2017.
Kim, Y., Wu, Y., Seigneur, C., and Roustan, Y.: Multi-scale modeling of urban air pollution: development and application of a Street-in-Grid model (v1.0) by coupling MUNICH (v1.0) and Polair3D (v1.8.1), Geosci. Model Dev., 11, 611–629, https://doi.org/10.5194/gmd-11-611-2018, 2018.
Lefebvre, W., Van Poppel, M., Maiheu, B., Janssen, S., and Dons, E.:
Evaluation of the RIO-IFDM-street canyon model chain, Atmos.
Environ., 77, 325–337, https://doi.org/10.1016/j.atmosenv.2013.05.026, 2013.
Liaw, A. and Wiener, M.: Classification and regression by randomForest, R
News, 2, 18–22, 2002.
Lien, F.-S. and Yee, E.: Numerical Modelling of the Turbulent Flow
Developing Within and Over a 3-D Building Array, Part I: A High-Resolution
Reynolds-Averaged Navier–Stokes Approach, Bound.-Lay. Meteorol., 112,
427–466, https://doi.org/10.1023/B:BOUN.0000030654.15263.35, 2004.
Luo, Z., Xu, H., Zhang, Z., Zheng, S., and Liu, H.: Year-round changes in
tropospheric nitrogen dioxide caused by COVID-19 in China using satellite
observation, J. Environ. Sci., https://doi.org/10.1016/j.jes.2022.01.013, 2022a.
Luo, Z., Wang, Y., Lv, Z., He, T., Zhao, J., Wang, Y., Gao, F., Zhang, Z.,
and Liu, H.: Impacts of vehicle emission on air quality and human health in
China, Sci. Total Environ., 813, 152655, https://doi.org/10.1016/j.scitotenv.2021.152655, 2022b.
Lv, Z., Wang, X., Deng, F., Ying, Q., Archibald, A. T., Jones, R. L., Ding,
Y., Cheng, Y., Fu, M., Liu, Y., Man, H., Xue, Z., He, K., Hao, J., and Liu,
H.: Source–Receptor Relationship Revealed by the Halted Traffic and
Aggravated Haze in Beijing during the COVID-19 Lockdown, Environ.
Sci. Technol., 54, 15660–15670, https://doi.org/10.1021/acs.est.0c04941, 2020.
Mallet, V., Tilloy, A., Poulet, D., Girard, S., and Brocheton, F.:
Meta-modeling of ADMS-Urban by dimension reduction and emulation,
Atmos. Environ., 184, 37–46, https://doi.org/10.1016/j.atmosenv.2018.04.009, 2018.
Manning, A. J., Nicholson, K. J., Middleton, D. R., and Rafferty, S. C.:
Field Study of Wind and Traffic to Test a Street Canyon Pollution Model,
Environ. Monit. Assess., 60, 283–313, https://doi.org/10.1023/A:1006187301966, 2000.
Masey, N., Hamilton, S., and Beverland, I. J.: Development and evaluation of
the RapidAir® dispersion model, including the use of
geospatial surrogates to represent street canyon effects, Environ.
Modell. Softw., 108, 253–263, https://doi.org/10.1016/j.envsoft.2018.05.014, 2018.
Mu, Q., Denby, B. R., Wærsted, E. G., and Fagerli, H.: Downscaling of air pollutants in Europe using uEMEP_v6, Geosci. Model Dev., 15, 449–465, https://doi.org/10.5194/gmd-15-449-2022, 2022.
Murena, F., Favale, G., Vardoulakis, S., and Solazzo, E.: Modelling
dispersion of traffic pollution in a deep street canyon: Application of CFD
and operational models, Atmos. Environ., 43, 2303–2311, https://doi.org/10.1016/j.atmosenv.2009.01.038, 2009.
Nayeb Yazdi, M., Delavarrafiee, M., and Arhami, M.: Evaluating near highway
air pollutant levels and estimating emission factors: Case study of Tehran,
Iran, Sci. Total Environ., 538, 375–384, https://doi.org/10.1016/j.scitotenv.2015.07.141, 2015.
Nguyen, C., Soulhac, L., and Salizzoni, P.: Source Apportionment and Data
Assimilation in Urban Air Quality Modelling for NO2: The Lyon Case Study,
Atmosphere, 9, 8, https://doi.org/10.3390/atmos9010008, 2018.
Oke, T. R.: Street design and urban canopy layer climate, Energ.
Buildings, 11, 103–113, https://doi.org/10.1016/0378-7788(88)90026-6, 1988.
Pandey, J. S., Kumar, R., and Devotta, S.: Health risks of NO2, SPM and SO2
in Delhi (India), Atmos. Environ., 39, 6868–6874, https://doi.org/10.1016/j.atmosenv.2005.08.004, 2005.
Patterson, R. F. and Harley, R. A.: Evaluating near-roadway concentrations
of diesel-related air pollution using RLINE, Atmos. Environ., 199,
244–251, https://doi.org/10.1016/j.atmosenv.2018.11.016, 2019.
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J.,
Carvalhais, N., and Prabhat: Deep learning and process understanding for
data-driven Earth system science, Nature, 566, 195–204, https://doi.org/10.1038/s41586-019-0912-1, 2019.
Santiago, J., Dejoan, A., Martilli, A., Martin, F., and Pinelli, A.:
Comparison between large-eddy simulation and Reynolds-averaged
Navier–Stokes computations for the MUST field experiment. Part I: study of
the flow for an incident wind directed perpendicularly to the front array of
containers, Bound.-Lay. Meteorol., 135, 109–132, 2010.
Shah, V., Jacob, D. J., Li, K., Silvern, R. F., Zhai, S., Liu, M., Lin, J., and Zhang, Q.: Effect of changing NOx lifetime on the seasonality and long-term trends of satellite-observed tropospheric NO2 columns over China, Atmos. Chem. Phys., 20, 1483–1495, https://doi.org/10.5194/acp-20-1483-2020, 2020.
Snyder, M. G., Venkatram, A., Heist, D. K., Perry, S. G., Petersen, W. B.,
and Isakov, V.: RLINE: A line source dispersion model for near-surface
releases, Atmos. Environ., 77, 748–756, https://doi.org/10.1016/j.atmosenv.2013.05.074, 2013.
Soulhac, L., Perkins, R. J., and Salizzoni, P.: Flow in a Street Canyon for
any External Wind Direction, Bound.-Lay. Meteorol., 126, 365–388, https://doi.org/10.1007/s10546-007-9238-x, 2008.
Soulhac, L., Nguyen, C., Volta, P., and Salizzoni, P.: The model SIRANE for
atmospheric urban pollutant dispersion. PART III: Validation against NO2
yearly concentration measurements in a large urban agglomeration,
Atmos. Environ., 167, 377–388, https://doi.org/10.1016/j.atmosenv.2017.08.034, 2017.
Soulhac, L., Salizzoni, P., Mejean, P., Didier, D., and Rios, I.: The model
SIRANE for atmospheric urban pollutant dispersion; PART II, validation of
the model on a real case study, Atmos. Environ., 49, 320–337,
https://doi.org/10.1016/j.atmosenv.2011.11.031, 2012.
Stocker, J., Hood, C., Carruthers, D., and McHugh, C.: ADMS-Urban:
developments in modelling dispersion from the city scale to the local scale,
Int. J. Environ. Pollut., 50, 308–316, https://doi.org/10.1504/IJEP.2012.051202, 2012.
Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M.,
and Shirasawa, T.: AIJ guidelines for practical applications of CFD to
pedestrian wind environment around buildings, J. Wind Eng.
Ind. Aerod., 96, 1749–1761, https://doi.org/10.1016/j.jweia.2008.02.058, 2008.
Valencia, A., Venkatram, A., Heist, D., Carruthers, D., and Arunachalam, S.:
Development and evaluation of the R-LINE model algorithms to account for
chemical transformation in the near-road environment, Transport.
Res. D-Tr. E., 59, 464–477, 2018.
Vara-Vela, A., Andrade, M. F., Kumar, P., Ynoue, R. Y., and Muñoz, A. G.: Impact of vehicular emissions on the formation of fine particles in the Sao Paulo Metropolitan Area: a numerical study with the WRF-Chem model, Atmos. Chem. Phys., 16, 777–797, https://doi.org/10.5194/acp-16-777-2016, 2016.
Xie, Z. and Castro, I. P.: LES and RANS for turbulent flow over arrays of
wall-mounted obstacles, Flow Turbul. Combust., 76, 291–312, 2006.
Yu, M., Zhu, Y., Lin, C.-J., Wang, S., Xing, J., Jang, C., Huang, J., Huang,
J., Jin, J., and Yu, L.: Effects of air pollution control measures on air
quality improvement in Guangzhou, China, J. Environ.
Manage., 244, 127–137, https://doi.org/10.1016/j.jenvman.2019.05.046, 2019.
Zhai, X., Russell, A. G., Sampath, P., Mulholland, J. A., Kim, B.-U., Kim,
Y., and D'Onofrio, D.: Calibrating R-LINE model results with observational
data to develop annual mobile source air pollutant fields at fine spatial
resolution: Application in Atlanta, Atmos. Environ., 147, 446–457,
2016.
Zhang, K., Chen, G., Wang, X., Liu, S., Mak, C. M., Fan, Y., and Hang, J.:
Numerical evaluations of urban design technique to reduce vehicular personal
intake fraction in deep street canyons, Sci. Total Environ.,
653, 968–994, https://doi.org/10.1016/j.scitotenv.2018.10.333,
2019.
Zhang, Q., Tong, P., Liu, M., Lin, H., Yun, X., Zhang, H., Tao, W., Liu, J.,
Wang, S., Tao, S., and Wang, X.: A WRF-Chem model-based future vehicle
emission control policy simulation and assessment for the
Beijing-Tianjin-Hebei region, China, J. Environ. Manage.,
253, 109751, https://doi.org/10.1016/j.jenvman.2019.109751,
2020.
Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang,
J., He, H., Liu, W., Ding, Y., Lei, Y., Li, J., Wang, Z., Zhang, X., Wang,
Y., Cheng, J., Liu, Y., Shi, Q., Yan, L., Geng, G., Hong, C., Li, M., Liu,
F., Zheng, B., Cao, J., Ding, A., Gao, J., Fu, Q., Huo, J., Liu, B., Liu,
Z., Yang, F., He, K., and Hao, J.: Drivers of improved PM2.5 air quality in China from 2013
to 2017, P. Natl. Acad. Sci. USA, 116, 24463–24469, https://doi.org/10.1073/pnas.1907956116, 2019.
Zhang, X., Just, A. C., Hsu, H.-H. L., Kloog, I., Woody, M., Mi, Z., Rush,
J., Georgopoulos, P., Wright, R. O., and Stroustrup, A.: A hybrid approach
to predict daily NO2 concentrations at city block scale, Sci.
Total Environ., 761, 143279, https://doi.org/10.1016/j.scitotenv.2020.143279, 2021.
Zhang, Y., Ye, X., Wang, S., He, X., Dong, L., Zhang, N., Wang, H., Wang, Z., Ma, Y., Wang, L., Chi, X., Ding, A., Yao, M., Li, Y., Li, Q., Zhang, L., and Xiao, Y.: Large-eddy simulation of traffic-related air pollution at a very high resolution in a mega-city: evaluation against mobile sensors and insights for influencing factors, Atmos. Chem. Phys., 21, 2917–2929, https://doi.org/10.5194/acp-21-2917-2021, 2021.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
Zhong, J., Cai, X.-M., and Bloss, W. J.: Coupling dynamics and chemistry in
the air pollution modelling of street canyons: A review, Environ.
Pollut., 214, 690–704, https://doi.org/10.1016/j.envpol.2016.04.052, 2016.
Zhong, J., Cai, X.-M., and Bloss, W. J.: Large eddy simulation of reactive
pollutants in a deep urban street canyon: Coupling dynamics with O-NOx-VOC
chemistry, Environ. Pollut., 224, 171–184, https://doi.org/10.1016/j.envpol.2017.01.076, 2017.
Zhu, Y., Zhan, Y., Wang, B., Li, Z., Qin, Y., and Zhang, K.:
Spatiotemporally mapping of the relationship between NO2 pollution and
urbanization for a megacity in Southwest China during 2005–2016,
Chemosphere, 220, 155–162, https://doi.org/10.1016/j.chemosphere.2018.12.095, 2019.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(19842 KB) - Full-text XML
- Corrigendum
-
Supplement
(2726 KB) - BibTeX
- EndNote
Short summary
This study developed a hybrid model, CMAQ-RLINE_URBAN, to predict the urban NO2 concentrations at a high spatial resolution. To estimate the influence of various street canyons on the dispersion of air pollutants, a new parameterization scheme was established based on computational fluid dynamics and machine learning methods. This work created a new method to identify the characteristics of vehicle-related air pollution at both city and street scales simultaneously and accurately.
This study developed a hybrid model, CMAQ-RLINE_URBAN, to predict the urban NO2 concentrations...
Altmetrics
Final-revised paper
Preprint