
Atmos. Chem. Phys., 22, 15685–15702, 2022
https://doi.org/10.5194/acp-22-15685-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
esearch

article

Development and application of a multi-scale modeling
framework for urban high-resolution NO2

pollution mapping

Zhaofeng Lv1,�, Zhenyu Luo1,�, Fanyuan Deng1, Xiaotong Wang1, Junchao Zhao1, Lucheng Xu1,
Tingkun He1, Yingzhi Zhang2, Huan Liu1, and Kebin He1

1State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
2College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China

�These authors contributed equally to this work.

Correspondence: Huan Liu (liu_env@tsinghua.edu.cn)

Received: 25 May 2022 – Discussion started: 15 June 2022
Revised: 26 October 2022 – Accepted: 18 November 2022 – Published: 15 December 2022

Abstract. Vehicle emissions have become a major source of air pollution in urban areas, especially for near-road
environments, where the pollution characteristics are difficult to capture by a single-scale air quality model due to
the complex composition of the underlying surface. Here we developed a hybrid model CMAQ-RLINE_URBAN
to quantitatively analyze the effects of vehicle emissions on urban roadside NO2 concentrations at a high spatial
resolution of 50 m× 50 m. To estimate the influence of various street canyons on the dispersion of air pollutants,
a machine-learning-based street canyon flow (MLSCF) scheme was established based on computational fluid
dynamics and two machine learning methods. The results indicated that compared with the Community Multi-
scale Air Quality (CMAQ) model, the hybrid model improved the underestimation of NO2 concentration at
near-road sites with the mean bias (MB) changing from −10 to 6.3 µg m−3. The MLSCF scheme obviously
increased upwind concentrations within deep street canyons due to changes in the wind environment caused by
the vortex. In summer, the relative contribution of vehicles to NO2 concentrations in Beijing urban areas was
39 % on average, similar to results from the CMAQ-ISAM (Integrated Source Apportionment Method) model,
but it increased significantly with the decreased distance to the road centerline, especially on urban freeways,
where it reached 75 %.

1 Introduction

The accelerated urbanization leads to severe air pollution
in China. As one of the indicators of air pollution, nitro-
gen dioxide (NO2) has an adverse impact on human health
and promotes the generation of ozone and particulate mat-
ter (Pandey et al., 2005; Khaniabadi et al., 2017). During the
last decade, benefiting from the implementations of several
air pollution control strategies by the Chinese government,
the air quality has improved (Jin et al., 2016; Zheng et al.,
2018), and the vertical column densities of NO2 displayed
a decreasing trend after 2013 (Shah et al., 2020; Cui et al.,
2021). However, the economic development and nitrogen ox-
ide (NOx) emissions are not decoupled in China (Luo et al.,

2022a). In some megacities of China, such as Chengdu, the
daily averaged NO2 concentration could reach 200 µg m−3

(Zhu et al., 2019), far exceeding the 24 h average air quality
guideline of 80 µg m−3 suggested by the Ministry of Envi-
ronmental Protection of China.

The improvement in PM2.5 in China was mainly due to
the emission reduction and control measures of industrial
and domestic sources (Q. Zhang et al., 2019), which also re-
lieved the NO2 pollution, but the reduction potential of these
sources has been gradually declining. Meanwhile, as the pop-
ulation of vehicles is growing rapidly, vehicle emissions have
become a major source of NO2 pollution, especially in urban
areas (Nguyen et al., 2018). Due to the low release height
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of vehicle emissions, combined with the negative dispersion
condition caused by nearby buildings, air pollutants will be
significantly accumulated near the street. According to road-
side observations, within the distance of about 100–200 m
near roads, the concentrations of CO, NO2, ultrafine partic-
ulate matter (UFP), PM2.5, PM10, and other pollutants will
increase with the decreased distance to the road centerline,
especially for the pollution levels of NO2 and UFP, which
increase exponentially. Therefore, the gradient of concentra-
tion around the road changes dramatically (Nayeb Yazdi et
al., 2015; Hagler et al., 2012). Moreover, the dispersion of
air pollutants in the near-road environment is significantly af-
fected by geometric characteristics of the street canyon. For
example, in a standard street canyon, when the external wind
direction at the roof level is perpendicular to the street axis,
a clockwise vortex will be generated inside, resulting in the
accumulation of pollutant concentrations at the upwind grid
receptors in the canyon (Oke, 1988; Manning et al., 2000).
Consequently, how to quantitatively identify urban vehicle-
induced air pollution around roads affected by complex un-
derlying surface conditions has become an urgent scientific
issue.

Regionally scaled air quality models, represented by
chemical transport models (CTMs) including the Commu-
nity Multi-scale Air Quality (CMAQ) model (Byun and
Schere, 2006), the Comprehensive Air quality Model with
extensions (CAMx), and the Weather Research and Fore-
casting/Chemistry model (WRF-Chem) (Grell et al., 2005)
have been used extensively in assessments of the impacts of
vehicle emissions on the regional atmospheric environment,
focusing on the source apportionment (Luo et al., 2022b;
Vara-Vela et al., 2016; Kheirbek et al., 2016; Lv et al., 2020)
and evaluation of control measures (Zhang et al., 2020; Yu
et al., 2019; Cheng et al., 2019; Ke et al., 2017). How-
ever, the spatial resolution of CTMs is generally larger than
1 km× 1 km, so the significant impacts of vehicle emissions
on near-source air quality cannot be predicted by CTMs due
to the grid homogenization of vehicle emissions.

To avoid the aforementioned disadvantages, the locally
scaled numerical models based on Gaussian diffusion the-
ory or computational fluid dynamics (CFD) are adopted by
numerous researchers for studies at a finer spatial resolution
(Y. Zhang et al., 2021; Patterson and Harley, 2019; Soulhac
et al., 2012), including the Research LINE-source Disper-
sion Model (RLINE) (Snyder et al., 2013), the Operational
Street Pollution Model (OSPM), AERMOD (Cimorelli et al.,
2005), and RapidAir® (Masey et al., 2018). However, the
large uncertainties in predictions from Gaussian dispersion
models come from the provided meteorological conditions
and background concentrations. The natural logarithm func-
tion is usually used to characterize the vertical profile of wind
speed in both the inertial and rough sublayers, neglecting
the influence of urban complex underlying surface compo-
sitions on the wind field (Cimorelli et al., 2005; Masey et
al., 2018; Snyder et al., 2013). Nevertheless, in standard and

deep street canyons, the changes in vertical wind profile can-
not be described by the logarithmic form; otherwise the ac-
tual wind speed will be greatly overestimated (Soulhac et al.,
2008). Although the OSPM has performed a large number of
comparisons with field observations in shallow or standard
street canyons, the validation of model performance in deep
street canyons with a large aspect ratio was still inadequate
(Kakosimos et al., 2010). Moreover, OSPM overestimated
the bottom wind speed in a deep street canyon by about 10
times compared with the predictions from CFD, resulting in
greatly underestimated pollutant concentrations (Murena et
al., 2009). Comparatively speaking, the CFD model can ac-
curately simulate the airflow and pollutant concentration in
complex street canyons, but the simulation domain of the
CFD model is much smaller than the urban scale, and the in-
fluence of the long-term meteorological boundary conditions
cannot be considered.

Considering the respective strengths and limitations of re-
gional models and local models, several studies have been
carried out on the coupling of air quality models applicable
to different scales (Ketzel et al., 2012; Stocker et al., 2012;
Lefebvre et al., 2013; Jensen et al., 2017; Kim et al., 2018;
Mallet et al., 2018; Hood et al., 2018; Benavides et al., 2019;
Kamińska, 2019; Mu et al., 2022). Although these models
performed accurately in near-road simulations, the influence
of street canyons is still hard to consider. In some hybrid
models (Stocker et al., 2012; Jensen et al., 2017; Mallet et
al., 2018), OSPM was still applied to calculate concentration
levels within the street, where the application of the logarith-
mic wind profile probably overestimated the bottom wind
speed in a deep street canyon as mentioned above. Other
models simply assumed that in street canyons, wind direc-
tion followed the street direction, and wind speed was uni-
form, which was not sufficient to resolve the concentration
gradient within street canyons (Kim et al., 2018; Benavides
et al., 2019). Berchet et al. (2017) proposed a cost-effective
method for simulating city-scale pollution taking advantage
of high-resolution accurate CFD, while the primary NOx was
predicted due to the lack of a chemical module. Therefore, it
is essential to build an integrated model to predict long-term
and near-road air pollution suitable for the urban complex
underlying surface environment.

The objective of the present work is to investigate the
street-level NO2 concentrations and quantify the contribu-
tion of vehicle emissions considering the influence of the
refined wind flow in the complex urban environment. To
this end, a hybrid model CMAQ-RLINE_URBAN was de-
veloped by offline-coupling the local RLINE model with the
regional CMAQ model and some localized urban thermody-
namic parameter schemes. Specifically, in order to predict
the effects of urban street canyons on the diffusion of pollu-
tants, we developed a machine-learning-based street canyon
flow (MLSCF) parameterization scheme to estimate the wind
environment in a cost-effective way, which was based on in-
tegrating two machine learning methods using big wind pro-
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Figure 1. The framework of multiscale hybrid model CMAQ-
RLINE_URBAN.

file data from 1600 CFD simulations. To evaluate the perfor-
mance of CMAQ-RLINE_URBAN, simulations under sev-
eral scenarios were conducted in Beijing urban areas from
1 to 31 August to 2019 and validated through comparison
with observations from monitoring sites. Furthermore, spa-
tial distribution characteristics of NO2 concentrations in the
near-road environment were also analyzed in this study.

2 Materials and methods

2.1 Hybrid model framework

Here, we established the MLSCF scheme based on the R
language and modified the code of the RLINE model to
add other parameterization schemes with the FORTRAN lan-
guage. Finally, a multiscale air quality hybrid model was de-
veloped to achieve high-resolution NO2 pollution mapping in
urban areas. The framework of CMAQ-RLINE_URBAN is
shown in Fig. 1. The hybrid model was established based on
the RLINE model, with offline coupling with the gridded me-
teorological field provided by the WRF model and the pol-
lutant background concentrations from non-vehicle sources
provided by the CMAQ model with the Integrated Source
Apportionment Method (ISAM), considering the thermo-
dynamic effects caused by the complex underlying surface
compositions of the city. Finally, in our hybrid model, an
NO2 pollution map with a high temporal (1 h) and spatial
resolution (50 m× 50 m) can be obtained.

RLINE is a Gaussian line source dispersion model devel-
oped by Snyder et al. (2013) to predict pollutant concentra-
tions in near-road environments. In the RLINE model, the
mobile source is regarded as a finite line source from which
the concentration is found by approximating the line as a se-
ries of point sources and integrating the contributions of point
sources using an efficient numerical integration scheme. The
number of points needed for convergence to the proper solu-
tion is a function of distance from the source line to the re-
ceptor, and each point source is simulated using a Gaussian
plume formulation. The RLINE model performs generally
comparable results when evaluated with other line source
models for on-road traffic emissions dispersion (Snyder et
al., 2013; Heist et al., 2013; Chang et al., 2015), and it has
been successfully used in many studies to evaluate the im-
pacts from traffic emissions on air quality (Zhai et al., 2016;
Valencia et al., 2018; Benavides et al., 2019; Filigrana et al.,
2020; X. Zhang et al., 2021).

The simulation for local meteorological conditions in
CMAQ-RLINE_URBAN included three steps: estimation
for areas above the top of the urban canopy layer (UCL),
inside UCL, and inside the street canyon. (1) In this study,
the configuration of the WRF model referred to our previous
study (Lv et al., 2020). The height of the midpoint in the bot-
tom layer to the ground was set as 22.5 m, which was close
to the average height of buildings near street canyons, similar
to the settings in the previous study (Benavides et al., 2019).
Therefore, the meteorological field simulated by the WRF
model was used as the wind field and atmospheric stability
at the top of UCL. During the hybrid model running, the me-
teorological conditions over buildings near each road were
obtained separately from the WRF model according to the
road location. (2) Then, the surface roughness length (z0) of
each road was estimated based on the surrounding building
geometry and used to recalculate the localized meteorologi-
cal parameters (e.g. Monin–Obukhov length) within UCL ac-
cording to the algorithm proposed by Benavides et al. (2019)
(z0 scheme). The atmospheric turbulence intensity in urban
areas around sunset in the afternoon was obviously enhanced
considering the influence of the urban heat island effect based
on methods in the AERMOD model (Cimorelli et al., 2005)
(UHI scheme). The UHI scheme would affect the turbulent
intensity based on the evaluation of the upward surface heat
flux and the urban boundary layer height due to convec-
tive effects, and then the mixing height, convective velocity
scale, surface friction velocity, and Monin–Obhukov length
were all recalculated (details in the Supplement Sect. S1).
(3) Finally, the wind field within UCL was calculated ac-
cording to different types of road environments: open ter-
rain and street canyon. The logarithmic wind profile based on
Monin–Obhukov similarity theory (MOST) (Foken, 2006) in
the original RLINE model was still used when the grid recep-
tor was located in the open terrain (MOST scheme), while the
MLSCF parameterization scheme was used for grid receptors
within the street canyon to quantitatively characterize the in-
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fluence of the street canyon geometry and the external wind
environment at the top of the roof. The detailed introduction
for street canyon geometry and the MLSCF scheme is de-
scribed in Sect. 2.2.

The real-time vehicle emission inventory used in both re-
gional and local air quality models was based on a street-
level on-road vehicle emission (SLOVE) model developed in
our previous study (Lv et al., 2020), which was based on the
real-time traffic condition data from the map provider AMap
(available at https://www.amap.com/, last access: 9 Decem-
ber 2022). The daily averaged NOx emission from on-road
vehicles in Beijing in 2019 was estimated to be 136.0 Mg,
of which emissions from heavy-duty vehicles and heavy-
duty trucks accounted for 31 % and 34 %, respectively. In our
simulation, the concentrations of NO, NO2, and O3 exclud-
ing contributions from vehicle emissions were used as back-
ground concentrations at the roof level, avoiding the double
counting in the coupling process. These background con-
centrations were simulated by the CMAQ-ISAM model, in
which the emissions were divided into local mobile and other
four emission groups to trace their contributions separately,
so the influence of non-local vehicle emissions was consid-
ered, and details were presented in our previous study (Lv et
al., 2020). The spatial resolution of the innermost domain in
both the WRF and the CMAQ model was 1.33 km× 1.33 km.
In addition, the influence of atmospheric turbulence and
building geometry on the vertical mixing of background con-
centration was considered (vertical mixing scheme). The ra-
tios of wind speed at surface and roof levels were used as a
proxy to calculate the contribution of background concentra-
tion over street canyons to the near-ground level (Benavides
et al., 2019). In this scheme, the surface wind was from the
MLSCF scheme when the grid receptor is located within the
street canyon, and otherwise the logarithmic wind profile was
used to calculate the wind speed at the specified height, and
details were shown in the Supplement Sect. S2. Finally, com-
bined with the vehicle-induced primary NOx concentration
calculated by the RLINE kernel, the high spatial-resolution
NO2 map could be simulated considering the photochemi-
cal process of NOx . In this study, a simplified two-reaction
scheme, including the photolysis of NO2 and the oxidation
of NO, was incorporated into the model to characterize the
photochemical process of NOx (details in the Supplement
Sect. S3), which has been successfully applied in the SIR-
ANE dispersion model (Soulhac et al., 2017).

2.2 Development for MLSCF scheme

2.2.1 The database of street canyon geometry

We first established a database of street canyon geometry for
15 398 roads in urban areas of Beijing based on the three-
dimensional building data obtained from our previous study
(Lv et al., 2020) using a geographic information system
(GIS). Three typical parameters to represent street canyon

Table 1. Values of controlling factors used in the simulations.

Controlling factor Value

Hl/Hr (unitless) 0.50 0.75 1.00 1.33 2.00
H/W (unitless) 0.25 0.50 1.00 2.00 –
L/H (unitless) 3 5 10 20 –
V (H ) (m s−1) 1 2 3 4 5
α (◦) 0 30 60 90 –

geometry were investigated: height ratio (Hl/Hr) (Hl is the
building height on the left side, while Hr is the building
height on the right side), aspect ratio (H/W ) (H is set to be
the average height, and W is the width of the street canyon),
and the canyon length-to-height ratio (L/H ) (L is set to be
the length of the street canyon). In this study, the extremely
special geometry of canyons was not considered, and the typ-
ical street canyons were selected according to the following
conditions: (1) the proportion of actual street canyon length
(the length of road which the buildings are near) was greater
than 0.5; (2) H/W was greater than 0.2; (3) Hl/Hr was be-
tween 0.3 and 3.3. Finally, the total number of typical street
canyons was 1889, with a total length of 787 km. The spa-
tial distributions of canyon geometry are shown in Fig. S1
in the Supplement. In urban areas of Beijing, street canyons
were generally wide, with an average width of 50.3 m, and
buildings on both sides were relatively low with a mean of
23.6 m. Most street canyons were obviously located in areas
within the 4th ring road. The shallow (H/W ≤ 0.5) canyons
and long canyons (L/H >7) dominated, accounting for 54 %
and 84 % of the total number of street canyons.

2.2.2 Description of CFD cases

Here, to predict airflow in street canyons comprehensively,
CFD simulations were conducted under combinations of dif-
ferent values of controlling factors based on ANSYS FLU-
ENT (v19.2). The controlling factors included the aforemen-
tioned three typical parameters to represent canyon geome-
try, the background wind speed at the height of H (V (H )),
and the angle between wind direction and street axis (α) to
describe the external wind environment. The selected values
of each factor were listed in Table 1, and a total of 1600 (i.e.,
5× 4× 4× 5× 4) simulations were implemented.

In this study, the computational domain of three-
dimensional (3D) full-scale CFD simulations is shown in
Fig. 2. The average building height H of the street canyon
was always set to 21 m in different simulations, which was
similar to the mean street canyon height in Beijing. Other
actual sizes of street canyons (e.g., street canyon width W )
were calculated according to the ratio of each specific simu-
lation. Distances between urban canopy layer (UCL) bound-
aries and the domain top, domain inlet, and domain outlet
were set as 5H , 5H , and 20H , respectively.
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Figure 2. Computational domain (a) and grid arrangement (b) in all CFD test cases.

The turbulence closure schemes for CFD include the
Reynolds–Averaged Navier–Stokes (RANS) and the large-
eddy simulation (LES), the choice of which depends on the
computational cost, the accuracy required, and the purpose
of application. The RANS resolves the mean time-averaged
properties with all the turbulence motions to be modeled,
while LES adopts a spatial filtering operation and conse-
quently resolves large-scale eddies directly and parameter-
izes small-scale eddies (Zhong et al., 2016). Compared with
the LES, the RANS is more easily established and computa-
tionally faster (Xie and Castro, 2006). However, the LES can
provide a better prediction of airflow than the RANS when
handling complex geometries (Dejoan et al., 2010; Santiago
et al., 2010). In this study, considering the huge computa-
tional burden of a large number of simulations and the rel-
atively simple geometry of street canyons in our modeling,
the RANS was selected to characterize the airflow.

Following the CFD guideline (Tominaga et al., 2008;
Franke et al., 2011), zero normal gradient conditions or pres-
sure outlet conditions were applied at the domain outlet, and
symmetry boundary conditions were adopted at the domain
top and two lateral domain boundaries. For near-wall treat-
ment, no-slip wall boundary conditions with standard wall
functions were used (FLUENT, 2006). All governing equa-
tions for the flow and turbulent quantities were discretized
by the finite-volume method with the second-order upwind
scheme. The SIMPLE scheme was used for the pressure and
velocity coupling. The residual for continuity equation, ve-
locity components, turbulent kinetic energy, and its dissipa-
tion rate were all below 10−5. Meanwhile, the CFD sim-
ulation would also stop when the iteration steps exceeded
10 000, due to the large computing cost of so many simu-
lations. In summary, the average iteration steps of a total of
1600 cases were 4443. About 54.6 % of cases met the con-
vergence criteria, and the median residual values of the con-
tinuity equation, velocity in the x axis, velocity in the y axis,
velocity in the z axis, k, and ε were 1.0× 10−5, 8.5× 10−7,
8.5× 10−7, 4.1× 10−7, 3.4× 10−6, and 5.4× 10−6, respec-
tively, indicating the overall model performance was accept-

able. The selected turbulence model and grid arrangement
are discussed in Sect. 2.2.3.

At the domain inlet, the power-law velocity profile (Brown
et al., 2001), vertical profiles of turbulent kinetic energy kin,
and its dissipation rate εin at the domain inlet (Lien and Yee,
2004; K. Zhang et al., 2019), were described below:

U0 (z)= Uref

(
z

Href

)α
, (1)

kin (z)= (Iin×U0 (z))2, (2)

εin (z)=
C

3/4
µ k

3/2
in

κz
. (3)

Here, U0 (z) stood for the stream-wise velocity at the
height z. Uref represented the reference speed. The reference
height Href was 21 m. The power-law exponent of α = 0.22
denoted underlying surface roughness above medium-dense
urban area (Kikumoto et al., 2017). Turbulence intensity Iin
was 0.1, the von Kármán constant κ was 0.41, and Cµ was
0.09.

2.2.3 The CFD validation

In this study, the stream-wise and vertical velocity predicted
by CFD within street canyons was compared with wind tun-
nel data in previous research. For buildings of the cube array
model, wind tunnel data from Brown et al. (2001) was used
to evaluate the reliability of CFD results by measuring verti-
cal profiles of velocity. In this experiment, the street canyon
was perpendicular to the wind direction at the roof level. For
long-street models, we predicted horizontal profiles of veloc-
ity along the street centerline at the height of z= 0.11H or
vertical profiles at some points and then validated CFD sim-
ulations using wind tunnel data from Hang et al. (2010). In
this validation case, the wind direction at the roof level was
parallel to the axis of street canyons. The description and val-
idation results are shown in Figs. S2–S3 and Table S1 in the
Supplement, respectively.

We identified the influence of different minimum sizes
of hexahedral cells near wall surfaces (fine: 0.1 m; medium:
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0.2 m; coarse: 0.5 m) and turbulence models (standard k− ε
model and renormalization group (RNG) k−ε model) on the
predicted velocity, to evaluate the grid independence and tur-
bulence model accuracy (Fig. S3 in the Supplement). The
results indicated that the predictions from the standard k− ε
model could match the variations in observed velocity within
the street canyon well; these performances were much better
than that of the RNG model. In addition, different grid res-
olutions used in simulations would not obviously affect the
predicted results. We finally adopted the standard k−εmodel
to characterize turbulence, and the minimum size of hexahe-
dral cells near wall surfaces was 0.5 m; an expansion ratio
of 1.1 was applied to save the computing cost, and the aver-
age mesh number of the total of 80 street canyon models is
1 367 965.

Moreover, the averaged wind speed from CFD in street
canyons with different aspect ratios and external wind di-
rection was compared with predictions from other empirical
methods used in the SIRANE model (Soulhac et al., 2012)
and the MUNICH model (Kim et al., 2018). Similar predic-
tions using different methods also proved the reliability of the
CFD simulation in this study (Fig. S4 in the Supplement).

2.2.4 Machine learning

Data-driven methods, such as machine learning and deep
learning, are now successful operational geoscientific pro-
cessing schemes and have co-evolved with data availability
over the past decade (Reichstein et al., 2019). Specifically,
these models have been used as computationally efficient
emulators of explicit mechanism models, to explore uncer-
tainties (Aleksankina et al., 2019) and sensitivities or replace
complex gas phase chemistry schemes (Keller and Evans,
2019; Conibear et al., 2021). In addition, meta-models (Fang
et al., 2005) such as neural networks and Gaussian process
(Beddows et al., 2017) are also used to produce a quick to run
model surrogate and show reliable performance. The random
forest (RF) model algorithm is an ensemble learning method
that generates many decision trees and aggregates their re-
sults and has been developed to solve the high variance errors
typical of a single decision tree (Breiman, 2001). Multivari-
ate adaptive regression splines (MARS) are a nonparamet-
ric and nonlinear regression method, which can be regarded
as an extension of the multivariate linear model (Friedman,
1991). RF and MARS are common machine learning meth-
ods which run efficiently on large data sets and are relatively
robust to outliers and noise. Furthermore, they never require
the specification of the underlying data model and the com-
plex parameter tuning, and they can still provide efficient al-
ternatives and generally show a high accuracy in applications
for predicting air pollutant concentrations (Hu et al., 2017;
Chen et al., 2018; Kamińska, 2019; Geng et al., 2020).

Here, based on the database including 42 880 samples ob-
tained from 1600 CFD simulations, RF and MARS were both
used to simulate the wind vector along the x axis (Vx) and the

y axis (Vy) at different heights within the street canyon, re-
spectively. The Vx and Vy were the average of all velocities
along the x or y axis over the same horizontal profile at a
specific height within the street canyons. The input predic-
tor variables included H/W , L/W , Hl/Hr, the grid recep-
tor relative height (z/H ), and the background wind vector
at the height of H along the x axis (Vbgx = V (H )× sinα)
and the y axis (Vbgy = V (H )× cosα). We finally combined
the advantages of these two machine learning models and de-
veloped the MLSCF scheme to predict wind environment in
street canyons and incorporated into the hybrid model, which
is discussed in Sect. 3.1.

In the RF model, the number of predictors randomly sam-
pled at each split node in the decision tree (mtry) and the
number of trees to grow (NumTrees) are two important hy-
perparameters that determine the performance of the model.
Similarly, in the MARS model, the two important hyperpa-
rameters are the total number of terms (nprune) and the max-
imum number of interactions (degree). By comparing the
mean squared error (MSE) for testing datasets across mod-
els with candidate parameter combinations, we set mtry and
NumTrees as 6 and 200 in RF, respectively, and nprune and
degree as 23 and 3 in MARS, respectively. Additionally, the
10-fold cross-validation (CV) repeated 10 times was con-
sidered to evaluate the prediction performance of our mod-
els. The total dataset was randomly divided into 10 subsets,
where 9 subsets was used to train the model and another was
applied for validation. The fitted coefficients of MARS are
shown in Tables S2–S3 in the Supplement.

In order to identify the sensitivity and response rela-
tionship between prediction variables and results in the RF
model, we used the MSE for out-of-bag (OOB) estimates to
evaluate the relative importance of each feature to Vx and Vy ,
by randomly replacing the value of a single prediction vari-
able one by one (Liaw and Wiener, 2002). Higher values of
increase in MSE indicated that the predictor was more im-
portant. In addition, partial dependence plots (PDPs) were
applied to establish the response relationship between the
change in a single predictive variable and the predicted re-
sults, considering the average influence of other variables
(Greenwell, 2017).

2.3 Configuration of CMAQ-RLINE_URBAN

The near-ground NO2 concentrations were simulated from
1 to 31 August 2019 when the average of daily high tem-
peratures was higher than 30 ◦C and sunlight duration was
longer than 13 h, leading to strong photochemical reactions.
The simulation domain for the hybrid model covered the
core urban areas within and surrounding the 5th ring road,
shown in Fig. 3. The receptors included both grid recep-
tors and monitor receptors. The grid receptors were set at
a spatial resolution of 50 m× 50 m, and the height above
the ground was 1.5 m, which was equivalent to the height
of human breathing. We used data from 10 observation sta-
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tions (monitor receptors) located in the normal urban envi-
ronment and 5 near-road monitoring sites for validation (Bei-
jing Ecological Environment Monitoring Center, available
at http://zx.bjmemc.com.cn/, last access: 9 December 2022)
(DSH, NSH, QM, XZM, and YDM) in the simulation do-
main (Fig. 3), which were 10 and 3 m above the ground, re-
spectively. The QM and XZM sites were located in shallow
street canyons, and details of the morphometry of near-road
measurement sites are shown in Table S4 in the Supplement.

In general, compared to the RLINE model, CMAQ-
RLINE_URBAN has the following improvements:

a. The gridded meteorological parameters provided by the
WRF model were used.

b. Gridded non-vehicle-related concentrations provided by
the CMAQ-ISAM model were used as background con-
centrations.

c. A simple NOx photochemical scheme was incorporated
to simulate NO2 concentrations.

d. Thermodynamic effects caused by the special underly-
ing surface structures of the city were considered, in-
cluding UHI effects, the influence of local buildings on
turbulence intensity, and vertical mixing of background
concentrations.

e. A newly developed MLSCF scheme was applied to pre-
dict the wind environment in street canyons.

In our simulation, the model configurations in the base sce-
nario CMAQ-RLINE_URBAN included all (a)–(e) schemes,
and the other two control scenarios were set to investigate
the sensitivity of urban schemes to predictions, where all
input data were set to be the same. The scenario CMAQ-
RLINE only including (a)–(c) schemes was set to analyze the
impacts of urban thermodynamic schemes, and the scenario
CMAQ-RLINE_URBAN_nc including (a)–(d) schemes was
set to identify the impacts of the MLSCF scheme. Although
the wind environment for each road at the top of the canyon
was provided by the WRF model in all scenarios, the cal-
culation of wind profiles within the street canyon was dif-
ferent. It was estimated based on the MOST theory in the
CMAQ-RLINE and CMAQ-RLINE_URBAN_nc rather than
that from MLSCF in the CMAQ-RLINE_URBAN.

3 Results

3.1 Fitting results of machine learning

In this study, the 10-fold cross-validation (CV) repeated 10
times was considered to evaluate the prediction performances
of RF and MARS models. As shown in Figs. 4 and S5, both
models performed with acceptable robustness in CV, indi-
cating that neither the RF nor the MARS model overfitted
the data. In general, the performances of both models in

predicting Vy was better than that for Vx of which the ab-
solute value was relatively small, especially for the MARS
model. Since Vx was responsible for the formation of the
vortex within street canyons and affected by multiple fac-
tors, it was more difficult to simulate. The averages of mean
absolute error (MAE), root mean square error (RMSE), and
correlation coefficient (R) in the CV of the RF model were
0.04, 0.02 m s−1, and 0.99, respectively, for Vx and 0.05,
0.03 m s−1, and 0.99, respectively, for Vy . Although the av-
erage of the relative error (RE) was a little high (42.5 % and
43 %), particularly when the predicted wind speed was low,
the median RE was relatively low with 9.8 % and 2.7 %, re-
spectively, indicating an acceptable performance. Compared
with the advanced nonlinear RF algorithm, the MARS model
did not perform very well, especially when the absolute value
of Vx was greater than 1 m s−1 and Vy was less than 3 m s−1.
However, when the predicted wind speed by machine learn-
ing methods was compared with observations from wind
tunnel experiments, we found that the performance of the
MARS model was obviously better than that of RF model
in one of the validation cases (see Fig. 5). The decision
tree model like RF failed to respond to the parts beyond the
range of prediction variables (Vbgy = 17 m s−1

� 5 m s−1),
while the more reasonable predictions can be obtained by
the MARS model, which essentially used a piecewise lin-
ear function. Therefore, the MLSCF scheme was established
based on a method to combine the advantages of each model.
The RF model was used when the input value was within the
range of predictors shown in Table 1; otherwise the predic-
tions from the MARS model were used.

In addition, the importance of each predictor variable in
the RF model was investigated to explain their impacts on
predictions. As shown in Fig. 6, the background wind speeds
on the x and y axes played vital roles in predictions of Vx
and Vy , respectively, followed by the relative height (z/H ).
Among the geometric parameters of the street canyon, the
impact of L/W was the lowest. Since Vx was the main driv-
ing force for the formation of vortices in street canyons, it
was more affected by the geometry of street canyons, espe-
cially Hl/Hr, compared to Vy . This feature importance rank-
ing was basically consistent with the conclusion in a previous
study (Fu et al., 2017). Figure S6 in the Supplement shows
the PDPs of each predictor variable in the RF model for Vx
and Vy . As z/H grew, Vx and Vy showed linear and logarith-
mic increase patterns, respectively. Moreover, the resistant
effect of windward buildings on wind speed enhanced with
increasing Hl/Hr, resulting in a significant decrease in Vx
particularly when Hl/Hr was lower than 1.25. The relation-
ship between predictors and results in the model was consis-
tent with the actual mechanism, indicating our model could
provide an accurate description of the wind field in the street
canyon.
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Figure 3. Study domain (© OpenStreetMap contributors 2020. Distributed under the Open Data Commons Open Database License (ODbL)
v1.0) and location of monitoring sites (© Microsoft). A: DSH; B: NSH; C: QM; D: XZM; E: YDM.

Figure 4. Cross-validations of machine learning models for Vx (a,
c) and Vy (b, d): (a–b) RF model; (c–d) MARS model.

3.2 Impacts of MLSCF on simulations in street canyons

We compared the differences between monthly mean wind
profile in different street canyons including QM (shallow
canyon: H/W = 0.22), XZM (shallow canyon: H/W =
0.35), SZJ (standard canyon: H/W = 1), and JTDL (deep
canyon:H/W = 1.93), calculated by the default logarithmic
function based on MOST in the original RLINE model (Fo-
ken, 2006) and the MLSCF scheme developed in this study.
As shown in Fig. 7a–d, the wind profile estimated by MOST

Figure 5. Performances of machine learning on the velocity pro-
file in wind tunnel experiments. The street canyon was perpendicu-
lar (a) or parallel (b) to the wind direction at the roof level in differ-
ent experiments. The detailed description of each experiment was
introduced in Sect. 2.2.3.

Figure 6. Variable importance ranking in the RF model for (a) Vx
and (b) Vy .
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showed a logarithmic change at the height above displace-
ment height (dh) with a decrease to 0 at dh and remained
constant below dh (the dh is calculated by multiplying surface
roughness length (z0) times a factor which is recommended
to be set as 5). Compared with the MOST, the simulated wind
speeds near the ground and at the top of canyons were gen-
erally lower based on the MLSCF scheme in shallow and
standard street canyons. In the deep street canyon, the signif-
icant reduction in ventilation volume led to the mean wind
speed simulated by the MLSCF scheme being much lower
than that of MOST at all heights. Although the aspect ratios
of the street canyon located in QM and XZM were similar,
their orientations were quite different, resulting in significant
differences under prevailing external winds in different direc-
tions. Since prevailing northerly and southerly winds were
observed in Beijing during the study period, the resistance
effect of the buildings on both sides of the east–west street
canyon located in QM was more obvious.

We also investigated the impacts of the MLSCF hourly
wind direction at the bottom (z= 3 m) of different street
canyons by comparing the roof-level predictions from the
WRF model (see Fig. 7e–f). In a shallow street canyon like
QM, the simulated wind direction at the bottom was consis-
tent with the background on the whole, with R reaching 0.8.
When the background wind direction was less than 180◦, the
averaged wind direction at the bottom simulated by MLSCF
was 91.8◦, which was basically consistent with the angle be-
tween the street and the south direction (84.5◦). When the
background wind direction was greater than 180◦, the aver-
age wind direction predicted by MLSCF (257.4◦) was sim-
ilar to that in the opposite direction of the street (264.5◦),
which was in line with the theory proposed by Soulhac et
al. (2008) that the average wind direction in street canyons
was assumed to be consistent with the (opposite) orientation
of the street. While in the deep street canyon of SZJ, when
the external wind perpendicularly blew to the street, the wind
direction at the bottom was completely opposite to that at the
top due to the formation of vortex, with R reaching −0.97.
In conclusion, compared with the traditional MOST method,
the newly developed MLSCF scheme could simulate the in-
fluence of the external wind environment and geometry on
the wind field well inside the street canyon.

As shown in Fig. 8, the impacts of the MLSCF scheme
on simulated NO2 concentration were identified by the dif-
ferences between the CMAQ-RLINE_URBAN and CMAQ-
RLINE_URBAN_nc scenarios during a clean day (24 Au-
gust). When the atmosphere was stable at night, in street
canyons with a large aspect ratio, the wind direction at the
bottom changed to the opposite of that at the top. Com-
bined with the decreased wind speed affected by the MLSCF
scheme, the NO2 concentrations at upwind grid receptors in-
creased by up to 80 µg m−3. Meanwhile, the changes in wind
direction would also decrease the concentrations at down-
wind grid receptors by up to 20 µg m−3. For example, in the
SZJ standard canyon, the background wind direction over the

street was 79◦ (easterly), and the wind direction at the bottom
changed to 291◦ affected by the MLSCF scheme (westerly).
Therefore, the upwind NO2 concentrations increased, and the
location of peak NO2 concentration shifted to the windward
direction. Since the changes in NO2 concentrations were also
influenced by the local on-road emissions, the increase was
only up to 2.1 µg m−3 in SZJ street, where the traffic flow and
vehicle emissions were low at night. However, a little influ-
ence was observed during the day in the convective boundary
layer. During this period, although the wind direction at the
bottom did not change obviously due to the parallel back-
ground wind in SZJ street, the increased surface wind speed
was beneficial for the dispersion, resulting in the decreased
concentration in grid receptors within both sides of the street
canyon. In summary, the MLSCF scheme enabled the charac-
terization of the concentration distribution in street canyons.

3.3 Performance of near-road simulations from different
models

The performances in predicting NO2 concentrations at all
monitor receptors from different models were first compared,
including the CMAQ-RLINE_URBAN, CMAQ-RLINE, and
CMAQ models. The mean bias (MB), RMSE, normalized
mean bias (NMB), normalized mean gross error (NMGE),
the fraction of predictions within a factor of 2 (FAC2), the
index of agreement (IOA), and R between simulations and
observations were all selected as statistical indicators for the
evaluation (Table 2). In general, the performance of CMAQ-
RLINE_URBAN was the best at all urban sites. Compared
to the CMAQ model, the averaged MB and NMB at urban
sites in the hybrid model decreased from 8 to 1.3 µg m−3 and
27 % to 4 %, respectively.

Diurnal variations in observed and predicted hourly av-
eraged NO2 concentrations at near-road sites from differ-
ent models were mainly compared and shown in Fig. 9.
The comparison of hourly and daily averaged concentrations
is shown in Fig. 10. Overall, CMAQ-RLINE_URBAN per-
formed best with the smallest deviations. By comparing the
performances of the CMAQ and CMAQ-RLINE scenarios,
we found the direct coupling between the CMAQ and RLINE
models could reproduce the high NO2 concentrations at near-
road sites in the daytime and significantly improve the un-
derestimation of near-source concentrations due to grid dilu-
tion of emissions in the CMAQ model. The averaged MB
and NMB at all sites changed from −10 to 25.6 µg m−3

and from −20 % to 51 %, respectively. However, a signif-
icant overestimation was found in CMAQ-RLINE at night
(00:00–06:00; all times in this paper are given in local time)
and around sunset in the afternoon (16:00–23:00), of which
the peak could exceed the observed concentrations by more
than 1-fold. This overestimation was reduced in the CMAQ-
RLINE_URBAN, where the urban thermodynamic schemes
were implemented. The averaged MB and NMB decreased to
6.3 µg m−3 and 12 %, respectively, for the following reasons:
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Figure 7. Influence of MLSCF on wind environment in the street canyon. Monthly averaged vertical profile of wind speed from the
MOST and MLSCF methods in different street canyons: (a) QM (H/W = 0.22); (b) XZM (H/W = 0.35); (c) SZJ (H/W = 1); (b) JTDL
(H/W = 1.93). The gray shading represents the standard deviation in results of all hours. Hourly wind direction from the WRF model (at
roof level) and the MLSCF method (at ground level) in different street canyons: (e) QM (H/W = 0.22); (f) SZJ (H/W = 1). As the gray
and green shading shown, the background wind over the street canyon provided by the WRF model was divided into four main directions:
east, west, south, and north.

Table 2. Model performances under different scenarios.

Sites Scenario MB RMSE NMB NMGE FAC2 IOA R

All CMAQ 3.1 25.6 9 53 0.65 0.45 0.52
CMAQ-RLINE 18.5 46.6 53 77 0.67 0.19 0.55
CMAQ-RLINE_URBAN 4.6 25.8 13 49 0.75 0.49 0.57

Urban CMAQ 8.0 24.3 27 58 0.68 0.40 0.59
CMAQ-RLINE 12.3 35.8 43 76 0.64 0.20 0.50
CMAQ-RLINE_URBAN 1.3 23.1 4 51 0.71 0.47 0.49

MB: mean bias; RMSE: root mean squared error; NMB: normalized mean bias; NMGE: normalized mean gross error; FAC2:
fraction of predictions within a factor of 2; IOA: index of agreement; R: correlation coefficient.
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Figure 8. Differences in NO2 concentrations at the height of 1.5 m impacted by the MLSCF scheme (a, c) over the study domain (CMAQ-
RLINE_URBAN – CMAQ-RLINE_URBAN_nc) (© Microsoft) and (b, d) near SZJ in 24 August 2019 at 00:00–01:00 (a, b) and 10:00–
11:00 (c, d).

(1) the increased surface roughness length slightly enhanced
local turbulence intensity near roads; (2) the UHI scheme en-
hanced the intensity of atmospheric turbulence in urban ar-
eas before and after sunset in the afternoon; (3) the effect
of turbulence intensity on the local vertical mixing of back-
ground concentrations was considered, significantly reduc-
ing the mixing ratio of concentrations over UCL and near
the ground at nights in the stable boundary layer (Fig. S7 in
the Supplement), which was probably the main driving force
of decreased predictions in the hybrid model (Benavides et
al., 2019). However, CMAQ-RLINE_URBAN slightly over-
estimated the nighttime NO2 concentration of all observa-
tion stations except the DSH, which was probably caused by
overestimations of background concentrations from CMAQ-
ISAM and vehicle emissions.

The accuracy of model performances at each traffic site
showed a small difference affected by the variations in the
traffic flow and emissions of nearby roads as well as the ge-
ometry of surrounding buildings and street canyons. At the
DSH and NSH sites, which were adjacent to ring roads as
the main urban freight corridors with a high traffic flow in-
cluding a large proportion of trucks, the high NOx emis-
sions led to the highest roadside NO2 observations among

all sites. The CMAQ model would significantly underesti-
mate the high NO2 concentration at sites nearby ring roads,
with MB and NMB lower than −15 µg m−3 and −28 % (Ta-
ble S5 in the Supplement), respectively, which was improved
using CMAQ-RLINE_URBAN. However, the hybrid model
produced a minor overestimation at the NSH site, since the
monitor was actually positioned in the road centerline but
assumed to be located downwind in the model, resulting in a
relatively large systematic error (Snyder et al., 2013). In total,
CMAQ-RLINE_URBAN performed best among all models,
especially improving the estimation of NO2 concentrations
near roads by the original regional model.

Additionally, Fig. S8 in the Supplement shows the com-
parison between simulated and observed roadside hourly and
daily maximum 8 h average O3 concentrations by different
models, and their diurnal variations are shown in Fig. S9.
Generally, the hybrid model significantly improved the over-
estimation of daytime O3 concentrations by the CMAQ
model when considering the titration effect of high NO con-
centration near roads on O3. In the hybrid model, the peak
time was delayed to about 15:00, which was closer to the ob-
servation, but still 1–2 h earlier than the actual time, which
may be related to the uncertainty in the NO2 photolysis rate.
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Figure 9. Diurnal variations in observed and predicted hourly averaged NO2 concentrations from different models at near-road monitoring
sites: (a) DSH; (b) NSH; (c) QM; (d) XZM; (e) YDM.

3.4 Spatial distribution characteristics of simulated
concentrations

We investigated the differences between the spatial distri-
bution of the monthly averaged NO2 concentration sim-
ulated by the CMAQ and CMAQ-RLINE_URBAN mod-
els, as shown in Fig. 11. Since the urban thermodynamic
schemes were considered in the hybrid model, the over-
estimation of most urban environmental grid receptors by
the CMAQ model was relieved. Within the 4th ring road
and its surrounding areas, the mean concentration of NO2
from CMAQ-RLINE_URBAN was 30.1 µg m−3, lower than
that from the CMAQ model (39.5 µg m−3). The overall spa-
tial distribution characteristics of NO2 predictions from both
models showed that the concentrations in south regions were
high due to the pollution transport from Hebei province (An
et al., 2019). However, near-road hotspots for the NO2 pol-
lution were identified in the hybrid model where the spatial
resolution of results increased to 50 m× 50 m. The NO2 con-
centrations nearby ring roads with high traffic flow and emis-
sions were up to 120 µg m−3, much higher than the maximum
prediction from the CMAQ model (52.4 µg m−3). In addi-
tion, the simulated near-road concentrations from the hybrid
model during traffic peak hours (18:00–19:00) were signifi-
cantly higher than those at noon (12:00–13:00), while there
were few changes in results from the CMAQ model (Fig. S10
in the Supplement).

The NO2 concentrations estimated by CMAQ-
RLINE_URBAN at all grid receptor followed a two-mode

Gaussian distribution (Fig. S11 in the Supplement), which
was similar to Zhang’s results (Y. Zhang et al., 2021). The
NO2 concentrations as a result of vehicle emissions were
further calculated by the differences between the total and
background concentrations. In general, the vehicle-induced
NO2 concentrations in urban areas were 11.8 µg m−3,
accounting for 39 % of the total concentrations, which was
similar to the predicted contribution from the CMAQ-ISAM
model (42.5 %).

Figure 12 shows the changes in NO2 concentrations simu-
lated by the hybrid model with distance from the grid recep-
tors to its nearest road centerline. The concentrations at grid
receptors within 200 m from the road were significantly af-
fected by vehicle emissions. Within 50 m around the road,
as the distance from grid receptors to the road centerline
gradually increased, the NO2 concentrations decreased ex-
ponentially. The total NO2 concentrations decreased from
53.1 to 30 µg m−3, and the vehicle-induced concentrations
also dropped from 34.7 to 12.6 µg m−3. The concentrations
near roads with different types were highly dependent on the
emission intensity. The NO2 concentration was highest in
the center of the urban freeway, which was 76 µg m−3 and
about 1.9 times higher than that on local roads. The rela-
tive contribution of vehicle emissions to NO2 concentration
reached up to 75.3 % on urban freeways as well as 71.9 %
and 65.5 % on artery roads and freeways but only 51.1 % on
local roads. It was worth noting that although the NO2 con-
centrations at grid receptors far from the road on highways
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Figure 10. Observed and predicted hourly (a–c) or daily averaged (d–f) NO2 concentrations from different models at near-road sites: (a,
d) the CMAQ model; (b, e) the CMAQ-RLINE model; (c, f) the CMAQ-RLINE_URBAN model.

Figure 11. Spatial distribution of monthly averaged NO2 concentrations from (a) the CMAQ model and (b) the CMAQ-RLINE_URBAN
model. (© OpenStreetMap contributors 2020. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.)

https://doi.org/10.5194/acp-22-15685-2022 Atmos. Chem. Phys., 22, 15685–15702, 2022



15698 Z. Lv et al.: Development and application of a multi-scale modeling framework

Figure 12. Monthly averaged NO2 concentrations attributed to all emission sources or vehicles with a distance from the receptor to its
nearest road centerline. (a) NO2 attributed to all emission sources near all roads. (b) NO2 attributed to all emission sources near different
road types. (c) Relative contribution of vehicles to NO2 near different road types. The shaded area in (a) represents the standard deviation in
the results of all receptors.

were slightly higher than those on other road types, the con-
tribution of vehicle emissions was the lowest. This was be-
cause the NOx emission intensity of freeways was as high
as that on artery roads, but the density and height of build-
ings around freeways were usually low, resulting in a high
vertical flux of background concentrations from the top of
UCL to the ground. In conclusion, the results from the hybrid
model accurately reflected not only the impacts of local on-
road emissions but also the pollution characteristics affected
by non-vehicle sources at the regional scale.

4 Conclusion and discussions

In this study, we developed a hybrid model CMAQ-
RLINE_URBAN to quantitatively analyze the effects of ve-
hicle emissions on urban roadside NO2 concentrations at a
high spatial resolution of 50 m× 50 m. The main conclusions
of this study are as follows.

The developed MLSCF scheme revealed that, affected by
the geometry of buildings on both sides of the road, the wind
environment in the street canyon was sometimes quite dif-
ferent from that in the environmental background. In deep
street canyons, the wind speed at the bottom decreased obvi-
ously due to the resistant effect of buildings, and the direc-
tions of horizontal flow at the bottom and top of the canyon
were completely opposite due to the formation of a vortex.
The application of the MLSCF scheme in the hybrid model
led to increased NO2 concentrations at upwind grid receptors
within deep street canyons due to changes in the wind envi-
ronment. However, the influence of the turbulence induced
by street canyon effects on the mixing of air pollution was

not considered, which we will make an effort to do in the
future.

The comparison between observations and predictions
showed that the hybrid model significantly improved the un-
derestimation of near-source concentrations due to grid dilu-
tion of emissions in the CMAQ model. The implementation
of the urban thermodynamic schemes in the hybrid model
also relieved the overestimation in nighttime NO2 con-
centrations from CMAQ directly coupled with the RLINE
model. The predictions from the CMAQ-RLINE_URBAN
model could accurately reflect not only the impact of local
road emissions but also the pollution characteristics of non-
vehicle sources at a regional level. It revealed that in summer,
the average contribution of vehicle emission to NO2 con-
centrations in urban areas of Beijing was 11.8 µg m−3, and
the relative contribution accounted for approximately 39 %.
Moreover, the vehicle-induced NO2 pollution increased sig-
nificantly with the decreased distance to the road centerline,
especially reaching 76 µg m−3 (75 %) on urban freeways.

On the basis of this study, the following perspectives are
proposed for future research. (1) At present, the execution
time during 1 h running CMAQ-RLINE_URBAN over the
urban domain was about 3.9 h on average, which reached
4.8 h at night due to the difficulty of convergence under con-
ditions of high atmospheric stability. Therefore, considering
the running cost, the grid resolution of the area in Beijing of
the 5th ring road and its surroundings can reach 50 m× 50 m.
We will make efforts to develop a parallel computing method
to reduce the computing time, in order to improve the grid
resolution of a relatively large-scale simulation. (2) In our
study, a simplified two-reaction scheme was incorporated
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into the model to characterize the photochemical process of
NOx , since it performed similar predictions and less compu-
tational time compared with those of the complicated CB05
gas phase chemical mechanism (Kim et al., 2018). How-
ever, another study pointed out that the impact of nonlin-
ear O3–NOx–VOC chemistry on NO2 concentrations in the
deep canyon was non-negligible (Zhong et al., 2017). The
influence of different chemistry schemes on near-road simu-
lation will be investigated in the future. (3) It was suggested
that the long-term site observation of wind environment and
pollutant concentrations in various street canyons should be
compared with modeling results, especially in deep street
canyons with a large aspect ratio. The navigation monitor-
ing technology would be applied in the model verification,
which can carry out large-scale observation of concentrations
along streets. (4) Here, we considered the dynamic impact
of idealized building structures on the wind environment in
street canyons. However, there are many other influencing
factors, such as building layout and arrangement, roof shape,
green vegetation, and thermodynamic effects, which we sug-
gest should be considered in future studies. (5) In this study,
we mainly focused on the NO2 concentrations. In fact, the
concentration of particulate matter, especially UFP, will also
have an obvious peak near the road centerline. In the future,
the process of physical and chemical changes in particulate
matter near the vehicle exhaust outlet should be further in-
vestigated. (6) The high-resolution NO2 concentration map
will be beneficial for the estimation of human health risks
induced by air pollution at the street level in future research.
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