Articles | Volume 22, issue 22
https://doi.org/10.5194/acp-22-14529-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-14529-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Oligomer formation from the gas-phase reactions of Criegee intermediates with hydroperoxide esters: mechanism and kinetics
Long Chen
State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, China
CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
Yu Huang
CORRESPONDING AUTHOR
State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, China
CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
Yonggang Xue
State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, China
CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
Zhihui Jia
School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
Wenliang Wang
School of Chemistry and Chemical Engineering, Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
Related authors
Long Chen, Yu Huang, Yonggang Xue, Long Cui, and Zhihui Jia
EGUsphere, https://doi.org/10.5194/egusphere-2025-4646, https://doi.org/10.5194/egusphere-2025-4646, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
The mechanisms and kinetics of the formation of highly oxidized products from the multi-generation ·OH oxidation of styrene in the absence and presence of NOx are studied using the quantum chemistry methods. The calculations show that the volatility of the multi-generation ·OH oxidation products significantly decreases with increasing the number of ·OH oxidation steps.
Long Chen, Yu Huang, Yonggang Xue, Zhihui Jia, and Wenliang Wang
Atmos. Chem. Phys., 22, 3693–3711, https://doi.org/10.5194/acp-22-3693-2022, https://doi.org/10.5194/acp-22-3693-2022, 2022
Short summary
Short summary
Quantum chemical methods are applied to gain insight into the detailed mechanisms of OH-initiated oxidation of distinct HHPs. The dominant pathway is H-abstraction from the -OOH group in the initiation reactions of the OH radical with HOCH2OOH and HOC(CH3)2OOH. H-abstraction from -CH group is competitive with that from the -OOH group in the reaction of the OH radical with HOCH(CH3)OOH. The barrier of H-abstraction from the -OOH group is slightly increased as the methyl group number increases.
Long Chen, Yu Huang, Yonggang Xue, Long Cui, and Zhihui Jia
EGUsphere, https://doi.org/10.5194/egusphere-2025-4646, https://doi.org/10.5194/egusphere-2025-4646, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
The mechanisms and kinetics of the formation of highly oxidized products from the multi-generation ·OH oxidation of styrene in the absence and presence of NOx are studied using the quantum chemistry methods. The calculations show that the volatility of the multi-generation ·OH oxidation products significantly decreases with increasing the number of ·OH oxidation steps.
Meng Wang, Yusen Duan, Wei Xu, Qiyuan Wang, Zhuozhi Zhang, Qi Yuan, Xinwei Li, Shuwen Han, Haijie Tong, Juntao Huo, Jia Chen, Shan Gao, Zhongbiao Wu, Long Cui, Yu Huang, Guangli Xiu, Junji Cao, Qingyan Fu, and Shun-cheng Lee
Atmos. Chem. Phys., 22, 12789–12802, https://doi.org/10.5194/acp-22-12789-2022, https://doi.org/10.5194/acp-22-12789-2022, 2022
Short summary
Short summary
In this study, we report the long-term measurement of organic carbon (OC) and elementary carbon (EC) in PM2.5 with hourly time resolution conducted at a regional site in Shanghai from 2016 to 2020. The results from this study provide critical information about the long-term trend of carbonaceous aerosol, in particular secondary OC, in one of the largest megacities in the world and are helpful for developing pollution control measures from a long-term planning perspective.
Long Chen, Yu Huang, Yonggang Xue, Zhihui Jia, and Wenliang Wang
Atmos. Chem. Phys., 22, 3693–3711, https://doi.org/10.5194/acp-22-3693-2022, https://doi.org/10.5194/acp-22-3693-2022, 2022
Short summary
Short summary
Quantum chemical methods are applied to gain insight into the detailed mechanisms of OH-initiated oxidation of distinct HHPs. The dominant pathway is H-abstraction from the -OOH group in the initiation reactions of the OH radical with HOCH2OOH and HOC(CH3)2OOH. H-abstraction from -CH group is competitive with that from the -OOH group in the reaction of the OH radical with HOCH(CH3)OOH. The barrier of H-abstraction from the -OOH group is slightly increased as the methyl group number increases.
Cited articles
Alecu, I. M., Zheng, J., Zhao, Y., and Truhlar, D. G.: Computational
thermochemistry: scale factor databases and scale factors for vibrational
frequencies obtained from electronic model chemistries, J. Chem. Theory
Comput., 6, 2872–2887, https://doi.org/10.1021/ct100326h, 2010.
Anglada, J. M. and Solé, A.: Impact of the water dimer on the
atmospheric reactivity of carbonyl oxides, Phys. Chem. Chem. Phys., 18,
17698–17712, https://doi.org/10.1039/C6CP02531E, 2016.
Aplincourt, P. and Ruiz-López, M. F.: Theoretical study of formic acid
anhydride formation from carbonyl oxide in the atmosphere, J. Phys. Chem. A,
104, 380–388, https://doi.org/10.1021/jp9928208, 2000.
Atkinson, R. and Arey, J.: Atmospheric degradation of volatile organic
compounds, Chem. Rev., 103, 4605–4638, https://doi.org/10.1021/cr0206420,
2003.
Bao, J. L. and Truhlar, D. G.: Variational transition state theory:
theoretical framework and recent developments, Chem. Soc. Rev., 46,
7548–7596, https://doi.org/10.1039/c7cs00602k, 2017.
Barber, V. P., Pandit, S., Green, A. M., Trongsiriwat, N., Walsh, P. J.,
Klippenstein, S. J., and Lester, M. I.: Four-carbon Criegee intermediate
from isoprene ozonolysis: methyl vinyl ketone oxide synthesis, infrared
spectrum, and OH production, J. Am. Chem. Soc., 140, 10866–10880,
https://doi.org/10.1021/jacs.8b06010, 2018.
Boys, S. F. and Bernardi, F.: The calculation of small molecular
interactions by the differences of separate total energies. Some procedures
with reduced errors, Mol. Phys., 19, 553–566,
https://doi.org/10.1080/00268977000101561, 1970.
Cabezas, C. and Endo, Y.: The reactivity of the Criegee intermediate
CH3CHOO with water probed by FTMW spectroscopy, J. Chem. Phys., 148,
014308–014315, https://doi.org/10.1063/1.5009033, 2018.
Cabezas, C. and Endo, Y.: The Criegee intermediate-formic acid reaction
explored by rotational spectroscopy, Phys. Chem. Chem. Phys., 21,
18059–18064, https://doi.org/10.1039/c9cp03001h, 2019.
Cabezas, C. and Endo, Y.: Observation of hydroperoxyethyl formate from the
reaction between the methyl Criegee intermediate and formic acid, Phys.
Chem. Chem. Phys., 22, 446–454, https://doi.org/10.1039/C9CP05030B, 2020.
Canneaux, S., Bohr, F., and Henon, E.: KiSThelP: a program to predict
thermodynamic properties and rate constants from quantum chemistry results,
J. Comput. Chem., 35, 82–93, https://doi.org/10.1002/jcc.23470, 2013.
Caravan, R. L., Vansco, M. F., Au, K., Khan, M. A. H., Li, Y. L., Winiberg,
F. A. F., Zuraski, K., Lin, Y. H., Chao, W., Trongsiriwat, N., Walsh, P. J.,
Osborn, D. L., Percival, C. J., Lin, J. J. M., Shallcross, D. E., Sheps, L.,
Klippenstein, S. J., Taatjes, C. A., and Lester, M. I.: Direct kinetic
measurements and theoretical predictions of an isoprene-derived Criegee
intermediate, P. Natl. Acad. Sci. USA, 117, 9733–9740,
https://doi.org/10.1073/pnas.1916711117, 2020.
Chaliyakunnel, S., Millet, D. B., Wells, K. C., Cady-Pereira, K. E., and
Shephard, M. W.: A large underestimate of formic acid from tropical fires:
constraints from space-borne measurements, Environ. Sci. Technol., 50,
5631–5640, https://doi.org/10.1021/acs.est.5b06385, 2016.
Chao, W., Hsieh, J. T., Chang, C. H., and Lin, J. J. M.: Direct kinetic
measurement of the reaction of the simplest Criegee intermediate with water
vapor, Science, 347, 751–754, https://doi.org/10.1126/science.1261549, 2015.
Chen, L., Wang, W., Wang, W., Liu, Y., Liu, F., Liu, N., and Wang, B:
Water-catalyzed decomposition of the simplest Criegee intermediate
CH2OO, Theor. Chem. Acc., 135, 131–143,
https://doi.org/10.1007/s00214-016-1894-9, 2016.
Chen, L., Huang, Y., Xue, Y., Cao, J., and Wang, W.: Competition between
HO2 and H2O2 reactions with CH2OO/anti-CH3CHOO in the
oligomer formation: a theoretical perspective, J. Phys. Chem. A, 121,
6981–6991, https://doi.org/10.1021/acs.jpca.7b05951, 2017.
Chen, L., Huang, Y., Xue, Y., Cao, J., and Wang, W.: Effect of
oligomerization reactions of Criegee intermediate with organic acid/peroxy
radical on secondary organic aerosol formation from isoprene ozonolysis,
Atmos. Environ., 187, 218–229,
https://doi.org/10.1016/j.atmosenv.2018.06.001, 2018.
Chen, L., Huang, Y., Xue, Y., Shen, Z., Cao, J., and Wang, W.: Mechanistic and kinetics investigations of oligomer formation from Criegee intermediate reactions with hydroxyalkyl hydroperoxides, Atmos. Chem. Phys., 19, 4075–4091, https://doi.org/10.5194/acp-19-4075-2019, 2019.
Chhantyal-Pun, R., McGillen, M. R., Beames, J. M., Khan, M. A. H., Percival,
C. J., Shallcross, D. E., and Orr-Ewing, A. J.: Temperature Dependence of
the Rates of Reaction of Trifluoracetic Acid with Criegee Intermediates,
Angew. Chem. Int. Edit., 129, 9172–9175,
https://doi.org/10.1002/anie.201703700, 2017.
Chhantyal-Pun, R., Rotavera, B., Mcgillen, M. R., Khan, M. A. H., Eskola, A.
J., Caravan, R. L., Blacker, L., Tew, D. P., Osborn, D. L., Percival, C. J.,
Taatjes, C. A., Shallcross D. E., and Orr-Ewing, A. J.: Criegee intermediate
reactions with carboxylic acids: a potential source of secondary organic
aerosol in the atmosphere, ACS Earth Space Chem., 2, 833–842,
https://doi.org/10.1021/acsearthspacechem.8b00069, 2018.
Chung, C. A., Su, J. W., and Lee, Y. P.: Detailed mechanism and kinetics of
the reaction of Criegee intermediate CH2OO with HCOOH investigated via
infrared identification of conformers of hydroperoxymethyl formate and
formic acid anhydride, Phys. Chem. Chem. Phys., 21, 21445–21455,
https://doi.org/10.1039/c9cp04168k, 2019.
Compernolle, S., Ceulemans, K., and Müller, J.-F.: EVAPORATION: a new vapour pressure estimation methodfor organic molecules including non-additivity and intramolecular interactions, Atmos. Chem. Phys., 11, 9431–9450, https://doi.org/10.5194/acp-11-9431-2011, 2011.
Criegee, R.: Mechanism of ozonolysis, Angew. Chem. Int. Edit., 14,
745–752, https://doi.org/10.1002/anie.197507451, 1975.
Donahue, N. M., Kroll, J. H., Pandis, S. N., and Robinson, A. L.: A two-dimensional volatility basis set – Part 2: Diagnostics of organic-aerosol evolution, Atmos. Chem. Phys., 12, 615–634, https://doi.org/10.5194/acp-12-615-2012, 2012.
Drozd, G. T., Kurtén, T., Donahue, N. M., and Lester, M. I.:
Unimolecular decay of the dimethyl-substituted Criegee intermediate in
alkene ozonolysis: decay time scales and the importance of tunneling, J.
Phys. Chem. A, 121, 6036–6045, https://doi.org/10.1021/acs.jpca.7b05495,
2017.
Eckart, C.: The penetration of a potential barrier by electrons, Phys. Rev.,
35, 1303–1309, https://doi.org/10.1103/PhysRev.35.1303, 1930.
Fukui, K.: The path of chemical reactions – the IRC approach, Accounts Chem.
Res., 14, 363–368, https://doi.org/10.1021/ar00072a001, 1981.
Giorio, C., Campbell, S. J., Bruschi, M., Tampieri, F., Barbon, A.,
Toffoletti, A., Tapparo, A., Paijens, C., Wedlake, A. J., Grice, P., Howe,
D. J., and Kalbere, M.: Online quantification of Criegee intermediates of
α-pinene ozonolysis by stabilization with spin traps and
proton-transfer reaction mass spectrometry detection, J. Am. Chem. Soc.,
139, 3999–4008, https://doi.org/10.1021/jacs.6b10981, 2017.
Gong, Y. and Chen, Z.: Quantification of the role of stabilized Criegee intermediates in the formation of aerosols in limonene ozonolysis, Atmos. Chem. Phys., 21, 813–829, https://doi.org/10.5194/acp-21-813-2021, 2021.
Hammond, G. S.: A correlation of reaction rates, J. Am. Chem. Soc., 77,
334–338, https://doi.org/10.1021/ja01607a027, 1955.
Huang, H. L., Chao, W., and Lin, J. J. M.: Kinetics of a Criegee
intermediate that would survive high humidity and may oxidize atmospheric
SO2, P. Natl. Acad. Sci. USA, 112, 10857–10862, https://doi.org/10.1073/pnas.1513149112, 2015.
Humphrey, W., Dalke, A., and Schulten, K.: VMD: Visual molecular dynamics,
J. Mol. Graphics, 14, 33–38, https://doi.org/10.1016/0263-7855(96)00018-5,
1996.
Johnson, D. and Marston, G.: The gas-phase ozonolysis of unsaturated
volatile organic compounds in the troposphere, Chem. Soc. Rev., 37, 699–716,
https://doi.org/10.1039/B704260B, 2008.
Johnson, D., Lewin, A. G., and Marston, G.: The effect of
Criegee-intermediate scavengers on the OH yield from the reaction of ozone
with 2-methylbut-2-ene, J. Phys. Chem. A, 105, 2933–2935,
https://doi.org/10.1021/jp003975e, 2001.
Karton, A., Kettner, M., and Wild, D. A.: Sneaking up on the Criegee
intermediate from below: Predicted photoelectron spectrum of the
CH2OO− anion and W3-F12 electron affinity of CH2OO, Chem.
Phys. Lett., 585, 15–20, https://doi.org/10.1016/j.cplett.2013.08.075, 2013.
Khan, M. A. H., Percival, C. J., Caravan, R. L., Taatjes, C. A., and
Shallcross, D. E.: Criegee intermediates and their impacts on the
troposphere, Environ. Sci.-Proc. Imp., 20, 437–453,
https://doi.org/10.1039/C7EM00585G, 2018.
Lester, M. I. and Klippenstein, S. J.: Unimolecular decay of Criegee
intermediates to OH radical products: prompt and thermal decay processes,
Accounts Chem. Res., 51, 978–985, https://doi.org/10.1021/acs.accounts.8b00077,
2018.
Lin, J. J. M. and Chao, W.: Structure-dependent reactivity of Criegee
intermediates studied with spectroscopic methods, Chem. Soc. Rev., 46,
7483–7497, https://doi.org/10.1039/c7cs00336f, 2017.
Lin, X., Meng, Q., Feng, B., Zhai, Y., Li, Y., Yu, Y., Li, Z., Shan, X.,
Liu, F., Zhang, L., and Sheng, L.: Theoretical study on Criegee
intermediate's role in ozonolysis of acrylic acid, J. Phys. Chem. A, 123,
1929–1936, https://doi.org/10.1021/acs.jpca.8b11671, 2019.
Liu, F., Beames, J. M., Petit, A. S., McCoy, A. B., and Lester, M. I.:
Infrared-driven unimolecular reaction of CH3CHOO Criegee intermediates
to OH radical products, Science, 345, 1596–1598,
https://doi.org/10.1126/science.1257158, 2014.
Liu, L., Bei, N., Wu, J., Liu, S., Zhou, J., Li, X., Yang, Q., Feng, T., Cao, J., Tie, X., and Li, G.: Effects of stabilized Criegee intermediates (sCIs) on sulfate formation: a sensitivity analysis during summertime in Beijing–Tianjin–Hebei (BTH), China, Atmos. Chem. Phys., 19, 13341–13354, https://doi.org/10.5194/acp-19-13341-2019, 2019.
Long, B., Cheng, J. R., Tan, X. F., and Zhang, W. J.: Theoretical study on
the detailed reaction mechanisms of carbonyl oxide with formic acid, J. Mol.
Struc.-Theochem., 916, 159–167,
https://doi.org/10.1016/j.theochem.2009.09.028, 2009.
Long, B., Bao, J. L., and Truhlar, D. G.: Atmospheric chemistry of Criegee
intermediates: unimolecular reactions and reactions with water, J. Am. Chem.
Soc., 138, 14409–14422, https://doi.org/10.1021/jacs.6b08655, 2016.
Long, B., Bao, J. L., and Truhlar, D. G.: Unimolecular reaction of acetone
oxide and its reaction with water in the atmosphere, P. Natl. Acad. Sci.
USA, 115, 6135–6140, https://doi.org/10.1073/pnas.1804453115, 2018.
Lu, T. and Chen, F.: Multiwfn: A multifunctional wavefunction analyzer, J.
Comput. Chem., 33, 580–592, https://doi.org/10.1002/jcc.22885, 2012.
Mendes, J., Zhou, C. W., and Curran, H. J.: Theoretical chemical kinetic
study of the H-atom abstraction reactions from aldehydes and acids by H
atoms and OH, HO2, and CH3 radicals, J. Phys. Chem. A, 118,
12089–12104, https://doi.org/10.1021/jp5072814, 2014.
Neeb, P., Horie, O., and Moortgat, G. K.: The ethene-ozone reaction in the
gas phase, J. Phys. Chem. A, 102, 6778–6785,
https://doi.org/10.1021/jp981264z, 1998.
Novelli, A., Vereecken, L., Lelieveld, J., and Harder, H.: Direct
observation of OH formation from stabilised Criegee intermediates, Phys.
Chem. Chem. Phys., 16, 19941–19951, https://doi.org/10.1039/c4cp02719a,
2014.
Novelli, A., Hens, K., Tatum Ernest, C., Martinez, M., Nölscher, A. C., Sinha, V., Paasonen, P., Petäjä, T., Sipilä, M., Elste, T., Plass-Dülmer, C., Phillips, G. J., Kubistin, D., Williams, J., Vereecken, L., Lelieveld, J., and Harder, H.: Estimating the atmospheric concentration of Criegee intermediates and their possible interference in a FAGE-LIF instrument, Atmos. Chem. Phys., 17, 7807–7826, https://doi.org/10.5194/acp-17-7807-2017, 2017.
Osborn, D. L. and Taatjes, C. A.: The physical chemistry of Criegee
intermediates in the gas phase, Int. Rev. Phys. Chem., 34, 309–360,
https://doi.org/10.1080/0144235X.2015.1055676, 2015.
Paulot, F., Wunch, D., Crounse, J. D., Toon, G. C., Millet, D. B., DeCarlo, P. F., Vigouroux, C., Deutscher, N. M., González Abad, G., Notholt, J., Warneke, T., Hannigan, J. W., Warneke, C., de Gouw, J. A., Dunlea, E. J., De Mazière, M., Griffith, D. W. T., Bernath, P., Jimenez, J. L., and Wennberg, P. O.: Importance of secondary sources in the atmospheric budgets of formic and acetic acids, Atmos. Chem. Phys., 11, 1989–2013, https://doi.org/10.5194/acp-11-1989-2011, 2011.
Peltola, J., Seal, P., Inkilä, A., and Eskola, A.: Time-resolved,
broadband UV-absorption spectrometry measurements of Criegee intermediate
kinetics using a new photolytic precursor: unimolecular decomposition of
CH2OO and its reaction with formic acid, Phys. Chem. Chem. Phys., 22,
11797–11808, https://doi.org/10.1039/d0cp00302f, 2020.
Porterfield, J. P., Lee, K. L. K., Dell'Isola, V., Carroll, P. B., and
McCarthy, M. C.: Characterization of the simplest hydroperoxide ester,
hydroperoxymethyl formate, a precursor of atmospheric aerosols, Phys. Chem.
Chem. Phys., 21, 18065–18070, https://doi.org/10.1039/c9cp03466h, 2019.
Riva, M., Budisulistiorini, S. H., Zhang, Z., Gold, A., Thornton, J. A.,
Turpin, B. J., and Surratt, J. D.: Multiphase reactivity of gaseous
hydroperoxide oligomers produced from isoprene ozonolysis in the presence of
acidified aerosols, Atmos. Environ., 152, 314–322,
https://doi.org/10.1016/j.atmosenv.2016.12.040, 2017.
Sadezky, A., Winterhalter, R., Kanawati, B., Römpp, A., Spengler, B., Mellouki, A., Le Bras, G., Chaimbault, P., and Moortgat, G. K.: Oligomer formation during gas-phase ozonolysis of small alkenes and enol ethers: new evidence for the central role of the Criegee Intermediate as oligomer chain unit, Atmos. Chem. Phys., 8, 2667–2699, https://doi.org/10.5194/acp-8-2667-2008, 2008.
Sakamoto, Y., Inomata, S., and Hirokawa, J.: Oligomerization reaction of the
Criegee intermediate leads to secondary organic aerosol formation in
ethylene ozonolysis, J. Phys. Chem. A, 117, 12912–12921,
https://doi.org/10.1021/jp408672m, 2013.
Sakamoto, Y., Yajima, R., Inomatad, S., and Hirokawa, J.: Water vapour
effects on secondary organic aerosol formation in isoprene ozonolysis, Phys.
Chem. Chem. Phys., 19, 3165–3175, https://doi.org/10.1039/c6cp04521a, 2017.
Sipilä, M., Jokinen, T., Berndt, T., Richters, S., Makkonen, R., Donahue, N. M., Mauldin III, R. L., Kurtén, T., Paasonen, P., Sarnela, N., Ehn, M., Junninen, H., Rissanen, M. P., Thornton, J., Stratmann, F., Herrmann, H., Worsnop, D. R., Kulmala, M., Kerminen, V.-M., and Petäjä, T.: Reactivity of stabilized Criegee intermediates (sCIs) from isoprene and monoterpene ozonolysis toward SO2 and organic acids, Atmos. Chem. Phys., 14, 12143–12153, https://doi.org/10.5194/acp-14-12143-2014, 2014.
So, S., Wille, U., and Silva, G. D.: Atmospheric chemistry of enols: a
theoretical study of the vinyl alcohol + OH + O2 reaction
mechanism, Environ. Sci. Technol., 48, 6694–6701,
https://doi.org/10.1021/es500319q, 2014.
Stavrakou, T., Müller, J. F., Peeters, J., Razavi, A., Clarisse, L.,
Clerbaux, C., Coheur, P. F., Hurtmans, D., Mazière, M. D., Vigouroux,
C., Deutscher, N. M., Griffith, D. W. T., Jones, N., and Paton-Walsh, C.:
Satellite evidence for a large source of formic acid from boreal and
tropical forests, Nat. Geosci., 5, 26–30, https://doi.org/10.1038/ngeo1354,
2012.
Taatjes, C. A.: Criegee intermediates: what direct production and detection
can teach us about reactions of carbonyl oxides, Annu. Rev. Phys. Chem., 68,
183–207, https://doi.org/10.1146/annurev-physchem-052516-050739, 2017.
Taatjes, C. A., Welz, O., Eskola, A. J., Savee, J. D., Scheer, A. M.,
Shallcross, D. E., Rotavera, B., Lee, E. P. F., Dyke, J. M., Mok, D. K. W.,
Osborn, D. L., and Percival, C. J.: Direct measurements of
conformer-dependent reactivity of the Criegee intermediate CH3CHOO,
Science, 340, 177–180, https://doi.org/10.1126/science.1234689, 2013.
Taatjes, C. A., Khan, M. A. H., Eskola, A. J., Percival, C. J., Osborn, D.
L., Wallington, T. J., and Shallcross, D. E.: Reaction of perfluorooctanoic
acid with Criegee intermediates and implications for the atmospheric fate of
perfluorocarboxylic acids, Environ. Sci. Technol., 53, 1245–1251,
https://doi.org/10.1021/acs.est.8b05073, 2019.
Tobias, H. J. and Ziemann, P. J.: Kinetics of the gas-phase reactions of
alcohols, aldehydes, carboxylic acids, and water with the C13 stabilized
Criegee intermediate formed from ozonolysis of 1-tetradecene, J. Phys. Chem.
A, 105, 6129–6135, https://doi.org/10.1021/jp004631r, 2001.
Truhlar, D. G., Hase, W. L., and Hynes, J. T.: Current status of
transition-state theory, J. Phys. Chem., 87, 2664–2682,
https://doi.org/10.1021/jp953748q, 1996.
Vansco, M. F., Zuraski, K., Winiberg, F. A. F., Au, K., Trongsiriwat, N.,
Walsh, P. J., Osborn, D. L., Percival, C. J., Klippenstein, S. J., Taatjes,
C. A., Lester, M. I., and Caravan, R. L.: Functionalized hydroperoxide
formation from the reaction of methacrolein-oxide, an isoprene-derived
Criegee intermediate, with formic acid: experiment and theory, Molecules,
26, 3058–3072, https://doi.org/10.3390/molecules26103058, 2021.
Vereecken, L.: The reaction of Criegee intermediates with acids and enols,
Phys. Chem. Chem. Phys., 19, 28630–28640,
https://doi.org/10.1039/c7cp05132h, 2017.
Vereecken, L., Harder, H., and Novelli, A.: The reaction of Criegee
intermediates with NO, RO2, and SO2, and their fate in the
atmosphere, Phys. Chem. Chem. Phys., 14, 14682–14695,
https://doi.org/10.1039/c2cp42300f, 2012.
Wang, S., Newland, M. J., Deng, W., Rickard, A. R., Hamilton, J. F.,
Muñoz, A., Ródenas, M., Vázquez, M. M., Wang, L., and Wang, X.:
Aromatic photo-oxidation, a new source of atmospheric acidity, Environ. Sci.
Technol., 54, 7798–7806, https://doi.org/10.1021/acs.est.0c00526, 2020.
Welz, O., Savee, J. D., Osborn, D. L., Vasu, S. S., Percival, C. J.,
Shallcross, D. E., and Taatjes, C. A.: Direct kinetic measurements of
Criegee intermediate (CH2OO) formed by reaction of CH2I with
O2, Science, 335, 204–207, https://doi.org/10.1126/science.1213229,
2012.
Welz, O., Eskola, A. J., Sheps, L., Rotavera, B., Savee, J. D., Scheer, A.
M., Osborn, D. L., Lowe, D., Booth, A. M., Xiao, P., Khan, M. A. H.,
Percival, C. J., Shallcross, D. E., and Taatjes, C. A.: Rate coefficients of
C(1) and C(2) Criegee intermediate reactions with formic and acetic Acid
near the collision limit: direct kinetics measurements and atmospheric
implications, Angew. Chem. Int. Edit., 53, 4547–4550,
https://doi.org/10.1002/anie.201400964, 2014.
Yin, C. and Takahashi, K.: How does substitution affect the unimolecular
reaction rates of Criegee intermediates? Phys. Chem. Chem. Phys., 19,
12075–12084, https://doi.org/10.1039/c7cp01091e, 2017.
Yu, S.: Role of organic acids (formic, acetic, pyruvic and oxalic) in the
formation of cloud condensation nuclei (CCN): a review, Atmos. Res., 53,
185–217, https://doi.org/10.1016/S0169-8095(00)00037-5, 2000.
Zhang, P., Wang, W., Zhang, T., Chen, L., Du, Y., Li, C., and Lv, J.:
Theoretical study on the mechanism and kinetics for the self-reaction of
C2H5O2 radicals, J. Phys. Chem. A, 116, 4610–4620,
https://doi.org/10.1021/jp301308u, 2012.
Zhao, R., Kenseth, C. M., Huang, Y., Dalleska, N. F., Kuang, X. M., Chen,
J., Paulson, S. E., and Seinfeld, J. H.: Rapid aqueous-phase hydrolysis of
ester hydroperoxides arising from Criegee intermediates and organic acids,
J. Phys. Chem. A, 122, 5190–5201, https://doi.org/10.1021/acs.jpca.8b02195,
2018.
Zhao, Y. and Truhlar, D. G.: The M06 suite of density functionals for main
group thermochemistry, thermochemical kinetics, noncovalent interactions,
excited states, and transition elements: two new functionals and systematic
testing of four M06-class functionals and 12 other functionals, Theor. Chem.
Acc., 120, 215–241, https://doi.org/10.1007/s00214-007-0310-x, 2008.
Zhao, Y., Wingen, L. M., Perraud, V., Greaves, J., and Finlayson-Pitts, B.
J.: Role of the reaction of stabilized Criegee intermediates with peroxy
radicals in particle formation and growth in air, Phys. Chem. Chem. Phys.,
17, 12500–12514, https://doi.org/10.1039/c5cp01171j, 2015.
Zheng, J., Bao, L. J., Meana-Paneda, R., Zhang, S., Lynch, B. J., Corchado, J. C., Chuang, Y. Y., Fast, P. L., Hu, W. P., Liu, Y. P., Lynch, G. C., Nguyen, K. A., Jackels, C. F., Fernandez-Ramos, A., Ellingson, B. A., Melissas, V. S., Villa, J., Rossi, I., Coitino, L., Pu, J., Albu, T. V., Steckler, R., Garrett, B. C., Issacson, A. D., and Truhlar, D. G.: Polyrate, version 2017-C, University of Minnesota, Minneapolis, MN, https://comp.chem.umn.edu/polyrate/ (last access: 9 November 2022), 2018.
Zhou, S., Joudan, S., Forbes, M. W., Zhou, Z., and Abbatt, J. P. D.:
Reaction of condensed-phase Criegee intermediates with carboxylic acids and
perfluoroalkyl carboxylic acids, Environ. Sci. Tech. Let., 6, 243–250,
https://doi.org/10.1021/acs.estlett.9b00165, 2019.
Short summary
Quantum chemical methods are applied to gain insight into the oligomerization reaction mechanisms and kinetics of distinct stabilized Criegee intermediate (SCI) reactions with hydroperoxide esters, where calculations show that SCI addition reactions with hydroperoxide esters proceed through the successive insertion of SCIs to form oligomers that involve SCIs as the repeating unit. The saturated vapor pressure of the formed oligomers decreases monotonically with the increasing number of SCIs.
Quantum chemical methods are applied to gain insight into the oligomerization reaction...
Altmetrics
Final-revised paper
Preprint