Articles | Volume 22, issue 20
https://doi.org/10.5194/acp-22-13431-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-13431-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying the importance of vehicle ammonia emissions in an urban area of northeastern USA utilizing nitrogen isotopes
Wendell W. Walters
CORRESPONDING AUTHOR
Department of Earth, Environmental, and Planetary Sciences, Brown
University, Providence, RI 02912, USA
Institute at Brown for Environment and Society, Brown University,
Providence, RI 02912, USA
Madeline Karod
Department of Earth, Environmental, and Planetary Sciences, Brown
University, Providence, RI 02912, USA
Chemistry and Physics Department, Simmons University, Boston, MA 02215,
USA
Emma Willcocks
Program in Biology, Division of Biology and Medicine, Brown
University, Providence, RI 02912, USA
Bok H. Baek
Center for Spatial Information, Sciences, and Systems, George Mason
University, Fairfax, VA 22030, USA
Danielle E. Blum
Institute at Brown for Environment and Society, Brown University,
Providence, RI 02912, USA
Department of Chemistry, Brown University, Providence, RI 02916, USA
Meredith G. Hastings
Department of Earth, Environmental, and Planetary Sciences, Brown
University, Providence, RI 02912, USA
Institute at Brown for Environment and Society, Brown University,
Providence, RI 02912, USA
Related authors
Huan Fang and Wendell Walters
EGUsphere, https://doi.org/10.5194/egusphere-2025-923, https://doi.org/10.5194/egusphere-2025-923, 2025
Short summary
Short summary
The Sulfur Tracking Mechanism in CMAQ was used to model the oxygen isotope anomaly (Δ17O) of aerosol sulfate (ASO4) for the first time. This approach allows for a qualitative analysis of sulfate (SO42-) formation processes and comparison with corresponding measurements.
Wendell W. Walters, Masayuki Takeuchi, Danielle E. Blum, Gamze Eris, David Tanner, Weiqi Xu, Jean Rivera-Rios, Fobang Liu, Tianchang Xu, Greg Huey, Justin B. Min, Rodney Weber, Nga L. Ng, and Meredith G. Hastings
EGUsphere, https://doi.org/10.5194/egusphere-2024-3860, https://doi.org/10.5194/egusphere-2024-3860, 2024
Short summary
Short summary
We studied how chemicals released from plants and pollution interact in the atmosphere, affecting air quality and climate. By combining laboratory experiments and chemistry models, we tracked unique chemical fingerprints to understand how nitrogen compounds transform to form particles in the air. Our findings help explain the role of these reactions in pollution and provide tools to improve predictions for cleaner air and better climate policies.
Wendell W. Walters, Masayuki Takeuchi, Nga L. Ng, and Meredith G. Hastings
Geosci. Model Dev., 17, 4673–4687, https://doi.org/10.5194/gmd-17-4673-2024, https://doi.org/10.5194/gmd-17-4673-2024, 2024
Short summary
Short summary
The study introduces a novel chemical mechanism for explicitly tracking oxygen isotope transfer in oxidized reactive nitrogen and odd oxygen using the Regional Atmospheric Chemistry Mechanism, version 2. This model enhances our ability to simulate and compare oxygen isotope compositions of reactive nitrogen, revealing insights into oxidation chemistry. The approach shows promise for improving atmospheric chemistry models and tropospheric oxidation capacity predictions.
Claire Bekker, Wendell W. Walters, Lee T. Murray, and Meredith G. Hastings
Atmos. Chem. Phys., 23, 4185–4201, https://doi.org/10.5194/acp-23-4185-2023, https://doi.org/10.5194/acp-23-4185-2023, 2023
Short summary
Short summary
Nitrate is a critical component of the atmosphere that degrades air quality and ecosystem health. We have investigated the nitrogen isotope compositions of nitrate from deposition samples collected across the northeastern United States. Spatiotemporal variability in the nitrogen isotope compositions was found to track with nitrate formation chemistry. Our results highlight that nitrogen isotope compositions may be a robust tool for improving model representation of nitrate chemistry.
Heejeong Kim, Wendell W. Walters, Claire Bekker, Lee T. Murray, and Meredith G. Hastings
Atmos. Chem. Phys., 23, 4203–4219, https://doi.org/10.5194/acp-23-4203-2023, https://doi.org/10.5194/acp-23-4203-2023, 2023
Short summary
Short summary
Atmospheric nitrate has an important impact on human and ecosystem health. We evaluated atmospheric nitrate formation pathways in the northeastern US utilizing oxygen isotope compositions, which indicated a significant difference between the phases of nitrate (i.e., gas vs. particle). Comparing the observations with model simulations indicated that N2O5 hydrolysis chemistry was overpredicted. Our study has important implications for improving atmospheric chemistry model representation.
Jiajue Chai, Jack E. Dibb, Bruce E. Anderson, Claire Bekker, Danielle E. Blum, Eric Heim, Carolyn E. Jordan, Emily E. Joyce, Jackson H. Kaspari, Hannah Munro, Wendell W. Walters, and Meredith G. Hastings
Atmos. Chem. Phys., 21, 13077–13098, https://doi.org/10.5194/acp-21-13077-2021, https://doi.org/10.5194/acp-21-13077-2021, 2021
Short summary
Short summary
Nitrous acid (HONO) derived from wildfire emissions plays a key role in controlling atmospheric oxidation chemistry. However, the HONO budget remains poorly constrained. By combining the field-observed concentrations and novel isotopic composition (N and O) of HONO and nitrogen oxides (NOx), we quantitatively constrained the relative contribution of each pathway to secondary HONO production and the relative importance of major atmospheric oxidants (ozone versus peroxy) in aged wildfire smoke.
Huan Fang, Wendell W. Walters, David Mase, and Greg Michalski
Geosci. Model Dev., 14, 5001–5022, https://doi.org/10.5194/gmd-14-5001-2021, https://doi.org/10.5194/gmd-14-5001-2021, 2021
Short summary
Short summary
A new photochemical reaction scheme that incorporates nitrogen isotopes has been developed to simulate isotope tracers in air pollution. The model contains 16 N compounds, and 96 reactions involving N used in the Regional Atmospheric Chemistry Mechanism (RACM) were replicated using 15N in a new mechanism called iNRACM. The model is able to predict d15N variations in NOx, HONO, and HNO3 that are similar to those observed in aerosol and gases in the troposphere.
Wendell W. Walters, Linlin Song, Jiajue Chai, Yunting Fang, Nadia Colombi, and Meredith G. Hastings
Atmos. Chem. Phys., 20, 11551–11567, https://doi.org/10.5194/acp-20-11551-2020, https://doi.org/10.5194/acp-20-11551-2020, 2020
Short summary
Short summary
This article details new field observations of the nitrogen stable isotopic composition of ammonia emitted from vehicles conducted in the US and China. Vehicle emissions of ammonia may be a significant source to urban regions with important human health and environmental implications. Our measurements have indicated a consistent isotopic signature from vehicle ammonia emissions. The nitrogen isotopic composition of ammonia may be a useful tool for tracking vehicle emissions.
Huan Fang and Wendell Walters
EGUsphere, https://doi.org/10.5194/egusphere-2025-923, https://doi.org/10.5194/egusphere-2025-923, 2025
Short summary
Short summary
The Sulfur Tracking Mechanism in CMAQ was used to model the oxygen isotope anomaly (Δ17O) of aerosol sulfate (ASO4) for the first time. This approach allows for a qualitative analysis of sulfate (SO42-) formation processes and comparison with corresponding measurements.
Chi-Tsan Wang, Patrick C. Campbell, Paul Makar, Siqi Ma, Irena Ivanova, Bok H. Baek, Wei-Ting Hung, Zachary Moon, Youhua Tang, Barry Baker, Rick Saylor, and Daniel Tong
EGUsphere, https://doi.org/10.5194/egusphere-2025-485, https://doi.org/10.5194/egusphere-2025-485, 2025
Short summary
Short summary
Forests influence air quality by altering ozone levels, but most air pollution models overlook canopy effects. Our study improves ozone predictions by incorporating forest canopy shading and turbulence into a widely used model. We found that tree cover reduces near-surface ozone by decreasing photolysis rates and diffusion inside canopy, resulting in lower ozone concentrations in densely forested areas. These findings enhance ozone surface prediction accuracy and improve air quality modeling.
Wendell W. Walters, Masayuki Takeuchi, Danielle E. Blum, Gamze Eris, David Tanner, Weiqi Xu, Jean Rivera-Rios, Fobang Liu, Tianchang Xu, Greg Huey, Justin B. Min, Rodney Weber, Nga L. Ng, and Meredith G. Hastings
EGUsphere, https://doi.org/10.5194/egusphere-2024-3860, https://doi.org/10.5194/egusphere-2024-3860, 2024
Short summary
Short summary
We studied how chemicals released from plants and pollution interact in the atmosphere, affecting air quality and climate. By combining laboratory experiments and chemistry models, we tracked unique chemical fingerprints to understand how nitrogen compounds transform to form particles in the air. Our findings help explain the role of these reactions in pollution and provide tools to improve predictions for cleaner air and better climate policies.
Wendell W. Walters, Masayuki Takeuchi, Nga L. Ng, and Meredith G. Hastings
Geosci. Model Dev., 17, 4673–4687, https://doi.org/10.5194/gmd-17-4673-2024, https://doi.org/10.5194/gmd-17-4673-2024, 2024
Short summary
Short summary
The study introduces a novel chemical mechanism for explicitly tracking oxygen isotope transfer in oxidized reactive nitrogen and odd oxygen using the Regional Atmospheric Chemistry Mechanism, version 2. This model enhances our ability to simulate and compare oxygen isotope compositions of reactive nitrogen, revealing insights into oxidation chemistry. The approach shows promise for improving atmospheric chemistry models and tropospheric oxidation capacity predictions.
Chi-Tsan Wang, Bok H. Baek, William Vizuete, Lawrence S. Engel, Jia Xing, Jaime Green, Marc Serre, Richard Strott, Jared Bowden, and Jung-Hun Woo
Earth Syst. Sci. Data, 15, 5261–5279, https://doi.org/10.5194/essd-15-5261-2023, https://doi.org/10.5194/essd-15-5261-2023, 2023
Short summary
Short summary
Hazardous air pollutant (HAP) human exposure studies usually rely on local measurements or dispersion model methods, but those methods are limited under spatial and temporal conditions. We processed the US EPA emission data to simulate the hourly HAP emission patterns and applied the chemical transport model to simulate the HAP concentrations. The modeled HAP results exhibit good agreement (R is 0.75 and NMB is −5.6 %) with observational data.
Bok H. Baek, Carlie Coats, Siqi Ma, Chi-Tsan Wang, Yunyao Li, Jia Xing, Daniel Tong, Soontae Kim, and Jung-Hun Woo
Geosci. Model Dev., 16, 4659–4676, https://doi.org/10.5194/gmd-16-4659-2023, https://doi.org/10.5194/gmd-16-4659-2023, 2023
Short summary
Short summary
To enable the direct feedback effects of aerosols and local meteorology in an air quality modeling system without any computational bottleneck, we have developed an inline meteorology-induced emissions coupler module within the U.S. Environmental Protection Agency’s Community Multiscale Air Quality modeling system to dynamically model the complex MOtor Vehicle Emission Simulator (MOVES) on-road mobile emissions inline without a separate dedicated emissions processing model like SMOKE.
Jessica M. Burger, Emily Joyce, Meredith G. Hastings, Kurt A. M. Spence, and Katye E. Altieri
Atmos. Chem. Phys., 23, 5605–5622, https://doi.org/10.5194/acp-23-5605-2023, https://doi.org/10.5194/acp-23-5605-2023, 2023
Short summary
Short summary
A seasonal analysis of the nitrogen isotopes of atmospheric nitrate over the remote Southern Ocean reveals that similar natural NOx sources dominate in spring and summer, while winter is representative of background-level conditions. The oxygen isotopes suggest that similar oxidation pathways involving more ozone occur in spring and winter, while the hydroxyl radical is the main oxidant in summer. This work helps to constrain NOx cycling and oxidant budgets in a data-sparse remote marine region.
Claire Bekker, Wendell W. Walters, Lee T. Murray, and Meredith G. Hastings
Atmos. Chem. Phys., 23, 4185–4201, https://doi.org/10.5194/acp-23-4185-2023, https://doi.org/10.5194/acp-23-4185-2023, 2023
Short summary
Short summary
Nitrate is a critical component of the atmosphere that degrades air quality and ecosystem health. We have investigated the nitrogen isotope compositions of nitrate from deposition samples collected across the northeastern United States. Spatiotemporal variability in the nitrogen isotope compositions was found to track with nitrate formation chemistry. Our results highlight that nitrogen isotope compositions may be a robust tool for improving model representation of nitrate chemistry.
Heejeong Kim, Wendell W. Walters, Claire Bekker, Lee T. Murray, and Meredith G. Hastings
Atmos. Chem. Phys., 23, 4203–4219, https://doi.org/10.5194/acp-23-4203-2023, https://doi.org/10.5194/acp-23-4203-2023, 2023
Short summary
Short summary
Atmospheric nitrate has an important impact on human and ecosystem health. We evaluated atmospheric nitrate formation pathways in the northeastern US utilizing oxygen isotope compositions, which indicated a significant difference between the phases of nitrate (i.e., gas vs. particle). Comparing the observations with model simulations indicated that N2O5 hydrolysis chemistry was overpredicted. Our study has important implications for improving atmospheric chemistry model representation.
Bok H. Baek, Rizzieri Pedruzzi, Minwoo Park, Chi-Tsan Wang, Younha Kim, Chul-Han Song, and Jung-Hun Woo
Geosci. Model Dev., 15, 4757–4781, https://doi.org/10.5194/gmd-15-4757-2022, https://doi.org/10.5194/gmd-15-4757-2022, 2022
Short summary
Short summary
The Comprehensive Automobile Research System (CARS) is an open-source Python-based automobile emissions inventory model designed to efficiently estimate high-quality emissions. The CARS is designed to utilize the local vehicle activity database, such as vehicle travel distance, road-link-level network information, and vehicle-specific average speed by road type, to generate a temporally and spatially enhanced inventory for policymakers, stakeholders, and the air quality modeling community.
Jessica M. Burger, Julie Granger, Emily Joyce, Meredith G. Hastings, Kurt A. M. Spence, and Katye E. Altieri
Atmos. Chem. Phys., 22, 1081–1096, https://doi.org/10.5194/acp-22-1081-2022, https://doi.org/10.5194/acp-22-1081-2022, 2022
Short summary
Short summary
The nitrogen (N) isotopic composition of atmospheric nitrate in the Southern Ocean (SO) marine boundary layer (MBL) reveals the importance of oceanic alkyl nitrate emissions as a source of reactive N to the atmosphere. The oxygen isotopic composition suggests peroxy radicals contribute up to 63 % to NO oxidation and that nitrate forms via the OH pathway. This work improves our understanding of reactive N sources and cycling in a remote marine region, a proxy for the pre-industrial atmosphere.
Jiajue Chai, Jack E. Dibb, Bruce E. Anderson, Claire Bekker, Danielle E. Blum, Eric Heim, Carolyn E. Jordan, Emily E. Joyce, Jackson H. Kaspari, Hannah Munro, Wendell W. Walters, and Meredith G. Hastings
Atmos. Chem. Phys., 21, 13077–13098, https://doi.org/10.5194/acp-21-13077-2021, https://doi.org/10.5194/acp-21-13077-2021, 2021
Short summary
Short summary
Nitrous acid (HONO) derived from wildfire emissions plays a key role in controlling atmospheric oxidation chemistry. However, the HONO budget remains poorly constrained. By combining the field-observed concentrations and novel isotopic composition (N and O) of HONO and nitrogen oxides (NOx), we quantitatively constrained the relative contribution of each pathway to secondary HONO production and the relative importance of major atmospheric oxidants (ozone versus peroxy) in aged wildfire smoke.
Huan Fang, Wendell W. Walters, David Mase, and Greg Michalski
Geosci. Model Dev., 14, 5001–5022, https://doi.org/10.5194/gmd-14-5001-2021, https://doi.org/10.5194/gmd-14-5001-2021, 2021
Short summary
Short summary
A new photochemical reaction scheme that incorporates nitrogen isotopes has been developed to simulate isotope tracers in air pollution. The model contains 16 N compounds, and 96 reactions involving N used in the Regional Atmospheric Chemistry Mechanism (RACM) were replicated using 15N in a new mechanism called iNRACM. The model is able to predict d15N variations in NOx, HONO, and HNO3 that are similar to those observed in aerosol and gases in the troposphere.
Veronica R. Rollinson, Julie Granger, Sydney C. Clark, Mackenzie L. Blanusa, Claudia P. Koerting, Jamie M. P. Vaudrey, Lija A. Treibergs, Holly C. Westbrook, Catherine M. Matassa, Meredith G. Hastings, and Craig R. Tobias
Biogeosciences, 18, 3421–3444, https://doi.org/10.5194/bg-18-3421-2021, https://doi.org/10.5194/bg-18-3421-2021, 2021
Short summary
Short summary
We measured nutrients and the naturally occurring nitrogen (N) and oxygen (O) stable isotope ratios of nitrate discharged from a New England river over an annual cycle, to monitor N loading and identify dominant sources from the watershed. We uncovered a seasonality to loading and sources of N from the watershed. Seasonality in the nitrate isotope ratios also informed on N cycling, conforming to theoretical expectations of riverine nutrient cycling.
Guitao Shi, Hongmei Ma, Zhengyi Hu, Zhenlou Chen, Chunlei An, Su Jiang, Yuansheng Li, Tianming Ma, Jinhai Yu, Danhe Wang, Siyu Lu, Bo Sun, and Meredith G. Hastings
The Cryosphere, 15, 1087–1095, https://doi.org/10.5194/tc-15-1087-2021, https://doi.org/10.5194/tc-15-1087-2021, 2021
Short summary
Short summary
It is important to understand atmospheric chemistry over Antarctica under a changing climate. Thus snow collected on a traverse from the coast to Dome A was used to investigate variations in snow chemistry. The non-sea-salt fractions of K+, Mg2+, and Ca2+ are associated with terrestrial inputs, and nssCl− is from HCl. In general, proportions of non-sea-salt fractions of ions to the totals are higher in the interior areas than on the coast, and the proportions are higher in summer than in winter.
Wendell W. Walters, Linlin Song, Jiajue Chai, Yunting Fang, Nadia Colombi, and Meredith G. Hastings
Atmos. Chem. Phys., 20, 11551–11567, https://doi.org/10.5194/acp-20-11551-2020, https://doi.org/10.5194/acp-20-11551-2020, 2020
Short summary
Short summary
This article details new field observations of the nitrogen stable isotopic composition of ammonia emitted from vehicles conducted in the US and China. Vehicle emissions of ammonia may be a significant source to urban regions with important human health and environmental implications. Our measurements have indicated a consistent isotopic signature from vehicle ammonia emissions. The nitrogen isotopic composition of ammonia may be a useful tool for tracking vehicle emissions.
Cited articles
Ampollini, L., Katz, E. F., Bourne, S., Tian, Y., Novoselac, A., Goldstein,
A. H., Lucic, G., Waring, M. S., and DeCarlo, P. F.: Observations and
Contributions of Real-Time Indoor Ammonia Concentrations during HOMEChem,
Environ. Sci. Technol., 53, 8591–8598,
https://doi.org/10.1021/acs.est.9b02157, 2019.
Ashbaugh, L. L. and Eldred, R. A.: Loss of particle nitrate from teflon
sampling filters: effects on measured gravimetric mass in California and in
the IMPROVE network, J. Air Waste Manage., 54, 93–104,
https://doi.org/10.1080/10473289.2004.10470878, 2004.
Baek, B. H. and Seppanen, C.: CEMPD/SMOKE: SMOKE v4.8.1 Public Release
(January 29, 2021), Zenodo, https://doi.org/10.5281/zenodo.4480334, 2021.
Begum, B. A., Kim, E., Jeong, C.-H., Lee, D.-W., and Hopke, P. K.:
Evaluation of the potential source contribution function using the 2002
Quebec forest fire episode, Atmos. Environ., 39, 3719–3724, 2005.
Behera, S. N. and Sharma, M.: Investigating the potential role of ammonia in
ion chemistry of fine particulate matter formation for an urban environment,
Sci. Total Environ., 408, 3569–3575, 2010.
Behera, S. N., Sharma, M., Aneja, V. P., and Balasubramanian, R.: Ammonia in
the atmosphere: a review on emission sources, atmospheric chemistry and
deposition on terrestrial bodies,
Environ. Sci. Pollut. R., 20, 8092–8131, 2013.
Berner, A. H. and Felix, J. D.: Investigating ammonia emissions in a
coastal urban airshed using stable isotope techniques, Sci. Total
Environ., 707, 134952, https://doi.org/10.1016/j.scitotenv.2019.134952,
2020.
Bhattarai, N., Wang, S., Xu, Q., Dong, Z., Chang, X., Jiang, Y., and Zheng,
H.: Sources of gaseous NH3 in urban Beijing from parallel sampling of NH3
and , their nitrogen isotope measurement and modeling, Sci. Total Environ., 747, 141361, https://doi.org/10.1016/j.scitotenv.2020.141361, 2020.
Böhlke, J. K. and Coplen, T. B.: Reference and intercomparison materials
for stable isotopes of light elements, in: Proceedings of the
IAEA-TECDOC-825 Consultants Meeting Held in Vienna, Vienna, Austria, 1–3 December 1993.
Bohlke, J. K., Gwinn, C. J., and Coplen, T. B.: New Reference Materials for
Nitrogen-Isotope-Ratio Measurements, Geostandard. Newslett., 17, 159–164,
https://doi.org/10.1111/j.1751-908X.1993.tb00131.x, 1993.
Böhlke, J. K., Smith, R. L., and Hannon, J. E.: Isotopic analysis of N
and O in nitrite and nitrate by sequential selective bacterial reduction to
N2O, Anal. Chem., 79, 5888–5895, 2007.
Bouwman, A. F., Lee, D. S., Asman, W. A. H., Dentener, F. J., Van Der Hoek,
K. W., and Olivier, J. G. J.: A global high-resolution emission inventory
for ammonia, Global Biogeochem. Cy., 11, 561–587, 1997.
Cao, H., Henze, D. K., Cady-Pereira, K., McDonald, B. C., Harkins, C., Sun,
K., Bowman, K. W., Fu, T.-M., and Nawaz, M. O.: COVID-19 Lockdowns Afford
the First Satellite-Based Confirmation That Vehicles Are an Under-recognized
Source of Urban NH3 Pollution in Los Angeles, Environ. Sci.
Technol. Lett., 9, 3–9,
https://doi.org/10.1021/acs.estlett.1c00730, 2021.
Carslaw, D. C. and Ropkins, K.: Openair–an R package for air quality data
analysis, Environ. Modell. Softw., 27, 52–61, 2012.
Carslaw, D. C., Beevers, S. D., Ropkins, K., and Bell, M. C.: Detecting and
quantifying aircraft and other on-airport contributions to ambient nitrogen
oxides in the vicinity of a large international airport, Atmos. Environ., 40, 5424–5434, 2006.
Cass, G. R., Gharib, S., Peterson, M., and Tilden, J. W.: The origin of
ammonia emissions to the atmosphere in an urban area, Open file report,
82–6, 1982.
Chang, Y., Liu, X., Deng, C., Dore, A. J., and Zhuang, G.: Source apportionment of atmospheric ammonia before, during, and after the 2014 APEC summit in Beijing using stable nitrogen isotope signatures, Atmos. Chem. Phys., 16, 11635–11647, https://doi.org/10.5194/acp-16-11635-2016, 2016.
Decina, S. M., Templer, P. H., Hutyra, L. R., Gately, C. K., and Rao, P.:
Variability, drivers, and effects of atmospheric nitrogen inputs across an
urban area: emerging patterns among human activities, the atmosphere, and
soils, Sci. Total Environ., 609, 1524–1534, 2017.
Decina, S. M., Hutyra, L. R., and Templer, P. H.: Hotspots of nitrogen
deposition in the world's urban areas: a global data synthesis, Front.
Ecol. Environ., 18, 92–100, https://doi.org/10.1002/fee.2143,
2020.
Felix, D. J., Elliott, E. M., Gish, T. J., McConnell, L. L., and Shaw, S.
L.: Characterizing the isotopic composition of atmospheric ammonia emission
sources using passive samplers and a combined oxidation-bacterial
denitrifier approach, Rapid Commun. Mass Spectrom., 27,
2239–2246, 2013.
Felix, J. D., Elliott, E. M., and Gay, D. A.: Spatial and temporal patterns
of nitrogen isotopic composition of ammonia at U.S. ammonia monitoring
network sites, Atmos. Environ., 150, 434–442,
https://doi.org/10.1016/j.atmosenv.2016.11.039, 2017.
Fenn, M. E., Bytnerowicz, A., Schilling, S. L., Vallano, D. M., Zavaleta, E.
S., Weiss, S. B., Morozumi, C., Geiser, L. H., and Hanks, K.: On-road
emissions of ammonia: An underappreciated source of atmospheric nitrogen
deposition, Sci. Total Environ., 625, 909–919,
https://doi.org/10.1016/j.scitotenv.2017.12.313, 2018.
Fleming, Z. L., Monks, P. S., and Manning, A. J.: Untangling the influence
of air-mass history in interpreting observed atmospheric composition,
Atmos. Res., 104, 1–39, 2012.
Frank, D. A., Evans, R. D., and Tracy, B. F.: The role of ammonia
volatilization in controlling the natural 15N abundance of a grazed
grassland, Biogeochemistry, 68, 169–178,
https://doi.org/10.1023/B:BIOG.0000025736.19381.91, 2004.
Freyer, H. D.: Seasonal trends of and nitrogen isotope
composition in rain collected at Jülich, Germany, Tellus, 30, 83–92,
1978.
Galán Madruga, D., Fernandez Patier, R., Puertas, S., García, R.,
and Cristóbal López, A.: Characterization and local emission sources
for ammonia in an urban environment, B. Environ. Contam.
Tox., 100, 593–599, 2018.
Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R.
W., Seitzinger, S. P., Asner, G. P., Cleveland, C., Green, P., and Holland,
E.: Nitrogen cycles: past, present, and future, Biogeochemistry, 70,
153–226, 2004.
Gu, M., Pan, Y., Sun, Q., Walters, W. W., Song, L., and Fang, Y.: Is
fertilization the dominant source of ammonia in the urban atmosphere?,
Sci. Total Environ., 838, 155890,
https://doi.org/10.1016/j.scitotenv.2022.155890, 2022a.
Gu, M., Pan, Y., Walters, W. W., Sun, Q., Song, L., Wang, Y., Xue, Y., and
Fang, Y.: Vehicular Emissions Enhanced Ammonia Concentrations in Winter
Mornings: Insights from Diurnal Nitrogen Isotopic Signatures, Environ. Sci.
Technol., 56, 1578–1585, https://doi.org/10.1021/acs.est.1c05884, 2022b.
Heaton, T. H. E.: 15N14N ratios of nitrate and ammonium in rain at Pretoria,
South Africa, Atmos. Environ., 21, 843–852, 1987.
Hristov, A. N., Zaman, S., Vander Pol, M., Ndegwa, P., Campbell, L., and
Silva, S.: Nitrogen losses from dairy manure estimated through nitrogen mass
balance and chemical markers, J. Environ. Qual., 38,
2438–2448, 2009.
Hu, Q., Zhang, L., Evans, G. J., and Yao, X.: Variability of atmospheric
ammonia related to potential emission sources in downtown Toronto, Canada,
Atmos. Environ., 99, 365–373,
https://doi.org/10.1016/j.atmosenv.2014.10.006, 2014.
Jickells, T. D., Kelly, S. D., Baker, A. R., Biswas, K., Dennis, P. F.,
Spokes, L. J., Witt, M., and Yeatman, S. G.: Isotopic evidence for a marine
ammonia source, Geophys. Res. Lett., 30, 1374,
https://doi.org/10.1029/2002GL016728, 2003.
Joyce, E. E., Walters, W. W., Roy, E. L., Clark, S. C., Schiebel, H., and
Hastings, M. G.: Highly concentrated atmospheric inorganic nitrogen
deposition in an urban, coastal region in the US, Environ. Res. Commun., 2,
081001, https://doi.org/10.1088/2515-7620/aba637, 2020.
Kawashima, H. and Ono, S.: Nitrogen Isotope Fractionation from Ammonia Gas
to Ammonium in Particulate Ammonium Chloride, Environ. Sci. Technol., 53,
10629–10635, https://doi.org/10.1021/acs.est.9b01569, 2019.
Kawashima, H., Ogata, R., and Gunji, T.: Laboratory-based validation of a
passive sampler for determination of the nitrogen stable isotope ratio of
ammonia gas, Atmos. Environ., 245, 118009,
https://doi.org/10.1016/j.atmosenv.2020.118009, 2021.
Kim, Y. P., Seinfeld, J. H., and Saxena, P.: Atmospheric gas-aerosol
equilibrium I. Thermodynamic model, Aerosol Sci. Technol., 19,
157–181, 1993.
Koutrakis, P., Wolfson, J. M., and Spengler, J. D.: An improved method for
measuring aerosol strong acidity: results from a nine-month study in St
Louis, Missouri and Kingston, Tennessee, Atmos. Environ., 22,
157–162, 1988.
Koutrakis, P., Sioutas, C., Ferguson, S. T., Wolfson, J. M., Mulik, J. D.,
and Burton, R. M.: Development and evaluation of a glass honeycomb
denuder/filter pack system to collect atmospheric gases and particles,
Environ. Sci. Technol., 27, 2497–2501, 1993.
Li, M., Weschler, C. J., Beko, G., Wargocki, P., Lucic, G., and Williams,
J.: Human ammonia emission rates under various indoor environmental
conditions, Environ. Sci. Technol., 54, 5419–5428, 2020.
Liu, J., Ding, P., Zong, Z., Li, J., Tian, C., Chen, W., Chang, M., Salazar,
G., Shen, C., and Cheng, Z.: Evidence of rural and suburban sources of urban
haze formation in China: a case study from the Pearl River Delta region,
J. Geophys. Res.-Atmos., 123, 4712–4726, 2018.
McIlvin, M. R. and Altabet, M. A.: Chemical Conversion of Nitrate and
Nitrite to Nitrous Oxide for Nitrogen and Oxygen Isotopic Analysis in
Freshwater and Seawater, Anal. Chem., 77, 5589–5595,
https://doi.org/10.1021/ac050528s, 2005.
Meng, Z. Y., Lin, W. L., Jiang, X. M., Yan, P., Wang, Y., Zhang, Y. M., Jia, X. F., and Yu, X. L.: Characteristics of atmospheric ammonia over Beijing, China, Atmos. Chem. Phys., 11, 6139–6151, https://doi.org/10.5194/acp-11-6139-2011, 2011.
Muzio, L. J. and Arand, J. K.: Homogeneous Gas Phase Decomposition of Oxides
of Nitrogen. Tustin, CA, KVB Incorporated, Electric Power Research Institute
report FP-253, Project, 461, 1976.
Nowak, J. B., Huey, L. G., Russell, A. G., Tian, D., Neuman, J. A., Orsini,
D., Sjostedt, S. J., Sullivan, A. P., Tanner, D. J., Weber, R. J., Nenes, A., Edgerton, E., and Fehsenfeld, F. C.: Analysis of urban gas phase ammonia measurements from the 2002
Atlanta Aerosol Nucleation and Real-Time Characterization Experiment
(ANARChE), J. Geophys. Res.-Atmos., 111, D17308, https://doi.org/10.1029/2006JD007113,
2006.
Pan, Y., Tian, S., Liu, D., Fang, Y., Zhu, X., Zhang, Q., Zheng, B.,
Michalski, G., and Wang, Y.: Fossil Fuel Combustion-Related Emissions
Dominate Atmospheric Ammonia Sources during Severe Haze Episodes: Evidence
from 15N-Stable Isotope in Size-Resolved Aerosol Ammonium, Environ. Sci.
Technol., 50, 8049–8056, https://doi.org/10.1021/acs.est.6b00634, 2016.
Pan, Y., Tian, S., Liu, D., Fang, Y., Zhu, X., Gao, M., Gao, J., Michalski,
G., and Wang, Y.: Isotopic evidence for enhanced fossil fuel sources of
aerosol ammonium in the urban atmosphere, Environ. Pollut., 238,
942–947, 2018.
Pan, Y., Gu, M., Song, L., Tian, S., Wu, D., Walters, W. W., Yu, X., Lü,
X., Ni, X., and Wang, Y.: Systematic low bias of passive samplers in
characterizing nitrogen isotopic composition of atmospheric ammonia,
Atmos. Res., 243, 105018,
https://doi.org/10.1016/j.atmosres.2020.105018, 2020.
Pandolfi, M., Amato, F., Reche, C., Alastuey, A., Otjes, R. P., Blom, M. J., and Querol, X.: Summer ammonia measurements in a densely populated Mediterranean city, Atmos. Chem. Phys., 12, 7557–7575, https://doi.org/10.5194/acp-12-7557-2012, 2012.
Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M., and Chin, M.:
Natural and transboundary pollution influences on sulfate-nitrate-ammonium
aerosols in the United States: Implications for policy,
J. Geophys. Res.-Atmos., 109, D15204,
https://doi.org/10.1029/2003JD004473, 2004.
Parnell, A. C., Inger, R., Bearhop, S., and Jackson, A. L.: Source
partitioning using stable isotopes: coping with too much variation, PloS
one, 5, e9672, https://doi.org/10.1371/journal.pone.0009672, 2010.
Paulot, F., Jacob, D. J., Pinder, R. W., Bash, J. O., Travis, K., and Henze,
D. K.: Ammonia emissions in the United States, European Union, and China
derived by high-resolution inversion of ammonium wet deposition data:
Interpretation with a new agricultural emissions inventory
(MASAGE_NH3), J. Geophys. Res.-Atmos.,
119, 4343–4364, https://doi.org/10.1002/2013JD021130, 2014.
Paulot, F., Jacob, D. J., Johnson, M. T., Bell, T. G., Baker, A. R., Keene,
W. C., Lima, I. D., Doney, S. C., and Stock, C. A.: Global oceanic emission
of ammonia: Constraints from seawater and atmospheric observations, Global
Biogeochem. Cy., 29, 1165–1178, https://doi.org/10.1002/2015GB005106,
2015.
Paulot, F., Ginoux, P., Cooke, W. F., Donner, L. J., Fan, S., Lin, M.-Y., Mao, J., Naik, V., and Horowitz, L. W.: Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth, Atmos. Chem. Phys., 16, 1459–1477, https://doi.org/10.5194/acp-16-1459-2016, 2016.
Pekney, N. J., Davidson, C. I., Zhou, L., and Hopke, P. K.: Application of
PSCF and CPF to PMF-modeled sources of PM2.5 in Pittsburgh, Aerosol Sci. Technol., 40, 952–961, 2006.
Perrino, C., De Santis, F., and Febo, A.: Uptake of nitrous acid and
nitrogen oxides by nylon surfaces: Implications for nitric acid measurement,
Atmos. Environ., 22, 1925–1930,
https://doi.org/10.1016/0004-6981(88)90081-9, 1988.
Plautz, J.: Piercing the haze, Science, 361, 1060–1063,
https://doi.org/10.1126/science.361.6407.1060, 2018.
Puchalski, M. A., Rogers, C. M., Baumgardner, R., Mishoe, K. P., Price, G.,
Smith, M. J., Watkins, N., and Lehmann, C. M.: A statistical comparison of
active and passive ammonia measurements collected at Clean Air Status and
Trends Network (CASTNET) sites, Environ. Sci.-Proc.
Imp., 17, 358–369, 2015.
Reche, C., Viana, M., Pandolfi, M., Alastuey, A., Moreno, T., Amato, F.,
Ripoll, A., and Querol, X.: Urban NH3 levels and sources in a Mediterranean
environment, Atmos. Environ., 57, 153–164,
https://doi.org/10.1016/j.atmosenv.2012.04.021, 2012.
Savard, M. M., Cole, A., Smirnoff, A., and Vet, R.: δ15N values of
atmospheric N species simultaneously collected using sector-based samplers
distant from sources – Isotopic inheritance and fractionation, Atmos. Environ., 162, 11–22, https://doi.org/10.1016/j.atmosenv.2017.05.010,
2017.
Shah, V., Jaeglé, L., Thornton, J. A., Lopez-Hilfiker, F. D., Lee, B.
H., Schroder, J. C., Campuzano-Jost, P., Jimenez, J. L., Guo, H., Sullivan,
A. P., Weber, R. J., Green, J. R., Fiddler, M. N., Bililign, S., Campos, T.
L., Stell, M., Weinheimer, A. J., Montzka, D. D., and Brown, S. S.: Chemical
feedbacks weaken the wintertime response of particulate sulfate and nitrate
to emissions reductions over the eastern United States, P. Natl. Acad. Sci. USA, 115,
8110–8115, https://doi.org/10.1073/pnas.1803295115, 2018.
Song, L., Walters, W. W., Pan, Y., Li, Z., Gu, M., Duan, Y., Lü, X., and
Fang, Y.: 15N natural abundance of vehicular exhaust ammonia, quantified by
active sampling techniques, Atmos. Environ., 255, 118430,
https://doi.org/10.1016/j.atmosenv.2021.118430, 2021.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J., Cohen, M. D.,
and Ngan, F.: NOAA's HYSPLIT atmospheric transport and dispersion modeling
system, B. Am. Meteorol. Soc., 96, 2059–2077,
2015.
Suarez-Bertoa, R., Zardini, A. A., and Astorga, C.: Ammonia exhaust
emissions from spark ignition vehicles over the New European Driving Cycle,
Atmos. Environ., 97, 43–53,
https://doi.org/10.1016/j.atmosenv.2014.07.050, 2014.
Suarez-Bertoa, R., Mendoza-Villafuerte, P., Riccobono, F., Vojtisek, M.,
Pechout, M., Perujo, A., and Astorga, C.: On-road measurement of NH3
emissions from gasoline and diesel passenger cars during real world driving
conditions, Atmos. Environ., 166, 488–497,
https://doi.org/10.1016/j.atmosenv.2017.07.056, 2017.
Sun, K., Tao, L., Miller, D. J., Khan, M. A., and Zondlo, M. A.: On-Road
Ammonia Emissions Characterized by Mobile, Open-Path Measurements, Environ.
Sci. Technol., 48, 3943–3950, https://doi.org/10.1021/es4047704, 2014.
Sun, K., Tao, L., Miller, D. J., Pan, D., Golston, L. M., Zondlo, M. A.,
Griffin, R. J., Wallace, H. W., Leong, Y. J., Yang, M. M., Zhang, Y.,
Mauzerall, D. L., and Zhu, T.: Vehicle Emissions as an Important Urban
Ammonia Source in the United States and China, Environ. Sci. Technol., 51,
2472–2481, https://doi.org/10.1021/acs.est.6b02805, 2017.
Sutton, M. A., Dragosits, U., Tang, Y. S., and Fowler, D.: Ammonia emissions
from non-agricultural sources in the UK, Atmos. Environ., 34,
855–869, 2000.
Tomlin, A. S., Smalley, R. J., Tate, J. E., Barlow, J. F., Belcher, S. E.,
Arnold, S. J., Dobre, A., and Robins, A.: A field study of factors
influencing the concentrations of a traffic-related pollutant in the
vicinity of a complex urban junction, Atmos. Environ., 43,
5027–5037, 2009.
Updyke, K. M., Nguyen, T. B., and Nizkorodov, S. A.: Formation of brown
carbon via reactions of ammonia with secondary organic aerosols from
biogenic and anthropogenic precursors, Atmos. Environ., 63, 22–31,
2012.
Urey, H. C.: The thermodynamic properties of isotopic substances, J. Chem.
Soc., 7, 562–581, 1947.
Uria-Tellaetxe, I. and Carslaw, D. C.: Conditional bivariate probability
function for source identification, Environ. Modell.
Softw.,
59, 1–9, 2014.
Van Damme, M., Clarisse, L., Whitburn, S., Hadji-Lazaro, J., Hurtmans, D.,
Clerbaux, C., and Coheur, P.-F.: Industrial and agricultural ammonia point
sources exposed, Nature, 564, 99–103, 2018.
Walker, J. T., Whitall, D. R., Robarge, W., and Paerl, H. W.: Ambient
ammonia and ammonium aerosol across a region of variable ammonia emission
density, Atmos. Environ., 38, 1235–1246,
https://doi.org/10.1016/j.atmosenv.2003.11.027, 2004.
Walters, W.: Data for “Quantifying the Importance of Vehicle Ammonia Emissions in an Urban Area of the Northeastern US Utilizing Nitrogen Isotopes”, Harvard Dataverse, V1, https://doi.org/10.7910/DVN/JHMBRI, 2022.
Walters, W. W. and Hastings, M. G.: Collection of Ammonia for High
Time-Resolved Nitrogen Isotopic Characterization Utilizing an Acid-Coated
Honeycomb Denuder, Anal. Chem., 90, 8051–8057,
https://doi.org/10.1021/acs.analchem.8b01007, 2018.
Walters, W. W., Chai, J., and Hastings, M. G.: Theoretical Phase Resolved
Ammonia–Ammonium Nitrogen Equilibrium Isotope Exchange Fractionations:
Applications for Tracking Atmospheric Ammonia Gas-to-Particle Conversion,
ACS Earth Space Chem., 79–89, https://doi.org/10.1021/acsearthspacechem.8b00140,
2018.
Walters, W. W., Blum, D. E., and Hastings, M. G.: Selective Collection of
Particulate Ammonium for Nitrogen Isotopic Characterization Using a
Denuder–Filter Pack Sampling Device, Anal. Chem.,
7586–7594, https://doi.org/10.1021/acs.analchem.9b00151, 2019.
Walters, W. W., Song, L., Chai, J., Fang, Y., Colombi, N., and Hastings, M. G.: Characterizing the spatiotemporal nitrogen stable isotopic composition of ammonia in vehicle plumes, Atmos. Chem. Phys., 20, 11551–11567, https://doi.org/10.5194/acp-20-11551-2020, 2020.
Wang, S., Nan, J., Shi, C., Fu, Q., Gao, S., Wang, D., Cui, H., Saiz-Lopez,
A., and Zhou, B.: Atmospheric ammonia and its impacts on regional air
quality over the megacity of Shanghai, China, Sci. Rep., 5, 15842, https://doi.org/10.1038/srep15842,
2015.
Wu, L., Ren, H., Wang, P., Chen, J., Fang, Y., Hu, W., Ren, L., Deng, J.,
Song, Y., and Li, J.: Aerosol ammonium in the urban boundary layer in
Beijing: insights from nitrogen isotope ratios and simulations in summer
2015, Environ. Sci. Tech. Lett., 6, 389–395, 2019.
Xiao, H.-W., Wu, J.-F., Luo, L., Liu, C., Xie, Y.-J., and Xiao, H.-Y.:
Enhanced biomass burning as a source of aerosol ammonium over cities in
central China in autumn, Environ. Pollut., 266, 115278, https://doi.org/10.1016/j.envpol.2020.115278, 2020.
Yao, X. and Zhang, L.: Trends in atmospheric ammonia at urban, rural, and remote sites across North America, Atmos. Chem. Phys., 16, 11465–11475, https://doi.org/10.5194/acp-16-11465-2016, 2016.
Yao, X., Hu, Q., Zhang, L., Evans, G. J., Godri, K. J., and Ng, A. C.: Is
vehicular emission a significant contributor to ammonia in the urban
atmosphere?, Atmos. Environ., 80, 499–506,
https://doi.org/10.1016/j.atmosenv.2013.08.028, 2013.
Yu, X.-Y., Lee, T., Ayres, B., Kreidenweis, S. M., Collett, J. L., and Malm,
W.: Particulate Nitrate Measurement Using Nylon Filters, J. Air
Waste Manage., 55, 1100–1110,
https://doi.org/10.1080/10473289.2005.10464721, 2005.
Yu, X.-Y., Lee, T., Ayres, B., Kreidenweis, S. M., Malm, W., and Collett, J.
L.: Loss of fine particle ammonium from denuded nylon filters, Atmos. Environ., 40, 4797–4807, https://doi.org/10.1016/j.atmosenv.2006.03.061,
2006.
Zhang, L., Altabet, M. A., Wu, T., and Hadas, O.: Sensitive measurement of
15N/14N (δ15 ) at natural abundance levels in fresh and
saltwaters, Anal. Chem., 79, 5297–5303, 2007.
Zhang, Y., Liu, X., Fang, Y., Liu, D., Tang, A., and Collett, J. L.:
Atmospheric Ammonia in Beijing during the COVID-19 Outbreak: Concentrations,
Sources, and Implications, Environ. Sci. Technol. Lett., 8, 32–38,
https://doi.org/10.1021/acs.estlett.0c00756, 2021.
Zhou, C., Zhou, H., Holsen, T. M., Hopke, P. K., Edgerton, E. S., and
Schwab, J. J.: Ambient Ammonia Concentrations Across New York State, J. Geophys. Res.-Atmos., 124, 8287–8302,
https://doi.org/10.1029/2019JD030380, 2019.
Short summary
Atmospheric ammonia and its products are a significant source of urban haze and nitrogen deposition. We have investigated the seasonal source contributions to a mid-sized city in the northeastern US megalopolis utilizing geospatial statistical analysis and novel isotopic constraints, which indicate that vehicle emissions were significant components of the urban-reduced nitrogen budget. Reducing vehicle ammonia emissions should be considered to improve ecosystems and human health.
Atmospheric ammonia and its products are a significant source of urban haze and nitrogen...
Altmetrics
Final-revised paper
Preprint