Articles | Volume 21, issue 10
https://doi.org/10.5194/acp-21-7963-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-7963-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
SO2 and NH3 emissions enhance organosulfur compounds and fine particle formation from the photooxidation of a typical aromatic hydrocarbon
Zhaomin Yang
Environment Research Institute, Shandong University, Qingdao, 266237,
China
Li Xu
Environment Research Institute, Shandong University, Qingdao, 266237,
China
Narcisse T. Tsona
Environment Research Institute, Shandong University, Qingdao, 266237,
China
Jianlong Li
Environment Research Institute, Shandong University, Qingdao, 266237,
China
Xin Luo
Technology Center of Qingdao Customs, Qingdao, 266003, China
Environment Research Institute, Shandong University, Qingdao, 266237,
China
Related authors
Shan Zhang, Lin Du, Zhaomin Yang, Narcisse Tsona Tchinda, Jianlong Li, and Kun Li
Atmos. Chem. Phys., 23, 10809–10822, https://doi.org/10.5194/acp-23-10809-2023, https://doi.org/10.5194/acp-23-10809-2023, 2023
Short summary
Short summary
In this study, we have investigated the distinct impacts of humidity on the ozonolysis of two structurally different monoterpenes (limonene and Δ3-carene). We found that the molecular structure of precursors can largely influence the SOA formation under high RH by impacting the multi-generation reactions. Our results could advance knowledge on the roles of water content in aerosol formation and inform ongoing research on particle environmental effects and applications in models.
Zhaomin Yang, Kun Li, Narcisse T. Tsona, Xin Luo, and Lin Du
Atmos. Chem. Phys., 23, 417–430, https://doi.org/10.5194/acp-23-417-2023, https://doi.org/10.5194/acp-23-417-2023, 2023
Short summary
Short summary
SO2 significantly promotes particle formation during cyclooctene ozonolysis. Carboxylic acids and their dimers were major products in particles formed in the absence of SO2. SO2 can induce production of organosulfates with stronger particle formation ability than their precursors, leading to the enhancement in particle formation. Formation mechanisms and structures of organosulfates were proposed, which is helpful for better understanding how SO2 perturbs the formation and fate of particles.
Jie Hu, Jianlong Li, Narcisse Tsona Tchinda, Christian George, Feng Xu, Min Hu, and Lin Du
EGUsphere, https://doi.org/10.5194/egusphere-2025-4207, https://doi.org/10.5194/egusphere-2025-4207, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Phytoplankton blooms dynamically enrich dissolved organic carbon (DOC) in sea spray aerosol by 10-30 times, with proteins and saccharides transferring at different bloom stages. The sea-to-air transfer of DOC is driven by the synergy of biological and the interaction between DOC and bubble rupture. This synergistically-driven DOC flux affects aerosol properties and climate, highlighting the ocean-atmosphere link in organic carbon cycling.
Narcisse Tsona Tchinda, Xiaofan Lv, Stanley Numbonui Tasheh, Julius Numbonui Ghogomu, and Lin Du
Atmos. Chem. Phys., 25, 8575–8590, https://doi.org/10.5194/acp-25-8575-2025, https://doi.org/10.5194/acp-25-8575-2025, 2025
Short summary
Short summary
This study examines the transformation of organosulfates through reaction with HO• radicals. The results show that the nature of substituents on the carbon chain can effectively affect the decomposition rate of organosulfates, and ozone is unveiled as a complementary oxidant in the intermediate steps of this decomposition. The primary products from these reactions include carbonyl compounds and inorganic sulfate, which highlights the role of organosulfates in altering aerosol chemical composition.
Haibiao Chen, Caiqing Yan, Liubin Huang, Lin Du, Yang Yue, Xinfeng Wang, Qingcai Chen, Mingjie Xie, Junwen Liu, Fengwen Wang, Shuhong Fang, Qiaoyun Yang, Hongya Niu, Mei Zheng, Yan Wu, and Likun Xue
Atmos. Chem. Phys., 25, 3647–3667, https://doi.org/10.5194/acp-25-3647-2025, https://doi.org/10.5194/acp-25-3647-2025, 2025
Short summary
Short summary
A comprehensive understanding of the optical properties of brown carbon (BrC) is essential to accurately assess its climatic effects. Based on multi-site spectroscopic measurements, this study demonstrated the significant spatial heterogeneity in the optical and structural properties of water-soluble organic carbon (WSOC) in different regions of China and revealed factors affecting WSOC light absorption and the relationship between fluorophores and light absorption of WSOC.
Jian Wang, Lei Xue, Qianyao Ma, Feng Xu, Gaobin Xu, Shibo Yan, Jiawei Zhang, Jianlong Li, Honghai Zhang, Guiling Zhang, and Zhaohui Chen
Atmos. Chem. Phys., 24, 8721–8736, https://doi.org/10.5194/acp-24-8721-2024, https://doi.org/10.5194/acp-24-8721-2024, 2024
Short summary
Short summary
This study investigated the distribution and sources of non-methane hydrocarbons (NMHCs) in the lower atmosphere over the marginal seas of China. NMHCs, a subset of volatile organic compounds (VOCs), play a crucial role in atmospheric chemistry. Derived from systematic atmospheric sampling in coastal cities and marginal sea regions, this study offers valuable insights into the interaction between land and sea in shaping offshore atmospheric NMHCs.
Yaru Song, Jianlong Li, Narcisse Tsona Tchinda, Kun Li, and Lin Du
Atmos. Chem. Phys., 24, 5847–5862, https://doi.org/10.5194/acp-24-5847-2024, https://doi.org/10.5194/acp-24-5847-2024, 2024
Short summary
Short summary
Aromatic acids can be transferred from seawater to the atmosphere through bubble bursting. The air–sea transfer efficiency of aromatic acids was evaluated by simulating SSA generation with a plunging jet. As a whole, the transfer capacity of aromatic acids may depend on their functional groups and on the bridging effect of cations, as well as their concentration in seawater, as these factors influence the global emission flux of aromatic acids via SSA.
Xiaowen Chen, Lin Du, Zhaomin Yang, Shan Zhang, Narcisse Tsona Tchinda, Jianlong Li, and Kun Li
EGUsphere, https://doi.org/10.5194/egusphere-2023-2960, https://doi.org/10.5194/egusphere-2023-2960, 2024
Preprint archived
Short summary
Short summary
In this study, the interactions between α-pinene and marine emission dimethyl sulfide (DMS) are investigated. It is found that the yield of secondary organic aerosol initially increases and then decreases with the increasing DMS/α-pinene ratio. This trend can be explained by OH regeneration, acid-catalyzed reactions, and the change in OH reactivity, etc. These findings can improve our understanding of atmospheric processes in coastal areas.
Lin Du, Xiaofan Lv, Makroni Lily, Kun Li, and Narcisse Tsona Tchinda
Atmos. Chem. Phys., 24, 1841–1853, https://doi.org/10.5194/acp-24-1841-2024, https://doi.org/10.5194/acp-24-1841-2024, 2024
Short summary
Short summary
This study explores the pH effect on the reaction of dissolved SO2 with selected organic peroxides. Results show that the formation of organic and/or inorganic sulfate from these peroxides strongly depends on their electronic structures, and these processes are likely to alter the chemical composition of dissolved organic matter in different ways. The rate constants of these reactions exhibit positive pH and temperature dependencies within pH 1–10 and 240–340 K ranges.
Shan Zhang, Lin Du, Zhaomin Yang, Narcisse Tsona Tchinda, Jianlong Li, and Kun Li
Atmos. Chem. Phys., 23, 10809–10822, https://doi.org/10.5194/acp-23-10809-2023, https://doi.org/10.5194/acp-23-10809-2023, 2023
Short summary
Short summary
In this study, we have investigated the distinct impacts of humidity on the ozonolysis of two structurally different monoterpenes (limonene and Δ3-carene). We found that the molecular structure of precursors can largely influence the SOA formation under high RH by impacting the multi-generation reactions. Our results could advance knowledge on the roles of water content in aerosol formation and inform ongoing research on particle environmental effects and applications in models.
Minglan Xu, Narcisse Tsona Tchinda, Jianlong Li, and Lin Du
Atmos. Chem. Phys., 23, 2235–2249, https://doi.org/10.5194/acp-23-2235-2023, https://doi.org/10.5194/acp-23-2235-2023, 2023
Short summary
Short summary
The promotion of soluble saccharides on sea spray aerosol (SSA) generation and the changes in particle morphology were observed. On the contrary, the coexistence of surface insoluble fatty acid film and soluble saccharides significantly inhibited the production of SSA. This is the first demonstration that hydrogen bonding mediated by surface-insoluble fatty acids contributes to saccharide transfer in seawater, providing a new mechanism for saccharide enrichment in SSA.
Zhaomin Yang, Kun Li, Narcisse T. Tsona, Xin Luo, and Lin Du
Atmos. Chem. Phys., 23, 417–430, https://doi.org/10.5194/acp-23-417-2023, https://doi.org/10.5194/acp-23-417-2023, 2023
Short summary
Short summary
SO2 significantly promotes particle formation during cyclooctene ozonolysis. Carboxylic acids and their dimers were major products in particles formed in the absence of SO2. SO2 can induce production of organosulfates with stronger particle formation ability than their precursors, leading to the enhancement in particle formation. Formation mechanisms and structures of organosulfates were proposed, which is helpful for better understanding how SO2 perturbs the formation and fate of particles.
Narcisse Tsona Tchinda, Lin Du, Ling Liu, and Xiuhui Zhang
Atmos. Chem. Phys., 22, 1951–1963, https://doi.org/10.5194/acp-22-1951-2022, https://doi.org/10.5194/acp-22-1951-2022, 2022
Short summary
Short summary
This study explores the effect of pyruvic acid (PA) both in the SO3 hydrolysis and in sulfuric-acid-based aerosol formation. Results show that in dry and polluted areas, PA-catalyzed SO3 hydrolysis is about 2 orders of magnitude more efficient at forming sulfuric acid than the water-catalyzed reaction. Moreover, PA can effectively enhance the ternary SA-PA-NH3 particle formation rate by up to 4.7×102 relative to the binary SA-NH3 particle formation rate at cold temperatures.
Cited articles
Apsokardu, M. J. and Johnston, M. V.: Nanoparticle growth by particle-phase chemistry, Atmos. Chem. Phys., 18, 1895–1907, https://doi.org/10.5194/acp-18-1895-2018, 2018.
Babar, Z. B., Park, J.-H., and Lim, H.-J.: Influence of NH3 on
secondary organic aerosols from the ozonolysis and photooxidation of α-pinene in a flow reactor, Atmos. Environ., 164, 71–84,
https://doi.org/10.1016/j.atmosenv.2017.05.034, 2017.
Bell, D. M., Imre, D., S, T. M., and Zelenyuk, A.: The properties and
behavior of alpha-pinene secondary organic aerosol particles exposed to
ammonia under dry conditions, Phys. Chem. Chem. Phys., 19, 6497–6507,
https://doi.org/10.1039/c6cp08839b, 2017.
Blair, S. L., MacMillan, A. C., Drozd, G. T., Goldstein, A. H., Chu, R. K.,
Pasa-Tolic, L., Shaw, J. B., Tolic, N., Lin, P., Laskin, J., Laskin, A., and
Nizkorodov, S. A.: Molecular characterization of organosulfur compounds in
biodiesel and diesel fuel secondary organic aerosol, Environ. Sci. Technol.,
51, 119–127, https://doi.org/10.1021/acs.est.6b03304, 2017.
Boris, A. J., Lee, T., Park, T., Choi, J., Seo, S. J., and Collett Jr., J. L.: Fog composition at Baengnyeong Island in the eastern Yellow Sea: detecting markers of aqueous atmospheric oxidations, Atmos. Chem. Phys., 16, 437–453, https://doi.org/10.5194/acp-16-437-2016, 2016.
Cai, D., Wang, X., Chen, J., and Li, X.: Molecular characterization of
organosulfates in highly polluted atmosphere using ultra-high-resolution
mass spectrometry, J. Geophys. Res.-Atmos., 125, e2019JD032253, https://doi.org/10.1029/2019jd032253, 2020.
Chen, L., Bao, Z., Wu, X., Li, K., Han, L., Zhao, X., Zhang, X., Wang, Z.,
Azzi, M., and Cen, K.: The effects of humidity and ammonia on the chemical
composition of secondary aerosols from toluene/NOx photo-oxidation, Sci.
Total Environ., 728, 138671, https://doi.org/10.1016/j.scitotenv.2020.138671, 2020a.
Chen, T., Liu, Y., Ma, Q., Chu, B., Zhang, P., Liu, C., Liu, J., and He, H.: Significant source of secondary aerosol: formation from gasoline evaporative emissions in the presence of SO2 and NH3, Atmos. Chem. Phys., 19, 8063–8081, https://doi.org/10.5194/acp-19-8063-2019, 2019.
Chen, Y., Zhang, Y., Lambe, A. T., Xu, R., Lei, Z., Olson, N. E., Zhang, Z.,
Szalkowski, T., Cui, T., Vizuete, W., Gold, A., Turpin, B. J., Ault, A. P.,
Chan, M. N., and Surratt, J. D.: Heterogeneous Hydroxyl Radical Oxidation of
Isoprene-Epoxydiol-Derived Methyltetrol Sulfates: Plausible Formation
Mechanisms of Previously Unexplained Organosulfates in Ambient Fine
Aerosols, Environ. Sci. Tech. Let., 7, 460–468,
https://doi.org/10.1021/acs.estlett.0c00276, 2020b.
Cheng, Y., Yu, Q.-Q., Liu, J.-M., Zhu, S., Zhang, M., Zhang, H., Zheng, B.,
and He, K.-B.: Model vs. observation discrepancy in aerosol characteristics
during a half-year long campaign in Northeast China: The role of biomass
burning, Environ. Pollut., 269, 116167–116167, https://doi.org/10.1016/j.envpol.2020.116167,
2021.
Chu, B., Zhang, X., Liu, Y., He, H., Sun, Y., Jiang, J., Li, J., and Hao, J.: Synergetic formation of secondary inorganic and organic aerosol: effect of SO2 and NH3 on particle formation and growth, Atmos. Chem. Phys., 16, 14219–14230, https://doi.org/10.5194/acp-16-14219-2016, 2016.
Chu, B., Ma, Q., Liu, J., Ma, J., Zhang, P., Chen, T., Feng, Q., Wang, C.,
Yang, N., Ma, H., Ma, J., Russell, A. G., and He, H.: Air pollutant
correlations in china: Secondary air pollutant responses to NOx and
SO2 control, Environ. Sci. Tech. Let., 7, 695–700,
https://doi.org/10.1021/acs.estlett.0c00403, 2020.
Estillore, A. D., Hettiyadura, A. P. S., Qin, Z., Leckrone, E., Wombacher,
B., Humphry, T., Stone, E. A., and Grassian, V. H.: Water Uptake and
Hygroscopic Growth of Organosulfate Aerosol, Environ. Sci. Technol., 50,
4259–4268, https://doi.org/10.1021/acs.est.5b05014, 2016.
Fleming, L. T., Ali, N. N., Blair, S. L., Roveretto, M., George, C., and
Nizkorodov, S. A.: Formation of Light-Absorbing Organosulfates during
Evaporation of Secondary Organic Material Extracts in the Presence of
Sulfuric Acid, ACS Earth Space Chem., 3, 947–957,
https://doi.org/10.1021/acsearthspacechem.9b00036, 2019.
Flores, J. M., Washenfelder, R. A., Adler, G., Lee, H. J., Segev, L.,
Laskin, J., Laskin, A., Nizkorodov, S. A., Brown, S. S., and Rudich, Y.:
Complex refractive indices in the near-ultraviolet spectral region of
biogenic secondary organic aerosol aged with ammonia, Phys. Chem. Chem.
Phys., 16, 10629–10642, https://doi.org/10.1039/c4cp01009d, 2014.
Friedman, B., Brophy, P., Brune, W. H., and Farmer, D. K.: Anthropogenic
Sulfur Perturbations on Biogenic Oxidation: SO2 Additions Impact
Gas-Phase OH Oxidation Products of α- and β-Pinene, Environ.
Sci. Technol., 50, 1269-1279, https://doi.org/10.1021/acs.est.5b05010, 2016.
Fu, X., Wang, S., Xing, J., Zhang, X., Wang, T., and Hao, J.: Increasing
Ammonia Concentrations Reduce the Effectiveness of Particle Pollution
Control Achieved via SO2 and NOx Emissions Reduction in East
China, Environ. Sci. Tech. Let., 4, 221–227,
https://doi.org/10.1021/acs.estlett.7b00143, 2017.
Fuzzi, S., Baltensperger, U., Carslaw, K., Decesari, S., Denier van der Gon, H., Facchini, M. C., Fowler, D., Koren, I., Langford, B., Lohmann, U., Nemitz, E., Pandis, S., Riipinen, I., Rudich, Y., Schaap, M., Slowik, J. G., Spracklen, D. V., Vignati, E., Wild, M., Williams, M., and Gilardoni, S.: Particulate matter, air quality and climate: lessons learned and future needs, Atmos. Chem. Phys., 15, 8217–8299, https://doi.org/10.5194/acp-15-8217-2015, 2015.
Guo, H., Wang, T., Blake, D., Simpson, I., Kwok, Y., and Li, Y.: Regional
and local contributions to ambient non-methane volatile organic compounds at
a polluted rural/coastal site in Pearl River Delta, China, Atmos. Environ.,
40, 2345–2359, 2006.
Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu,
Z., Shao, M., Zeng, L., Molina, M. J., and Zhang, R.: Elucidating severe
urban haze formation in China, P. Natl. Acad. Sci. USA, 111, 17373–17378,
https://doi.org/10.1073/pnas.1419604111, 2014.
Han, Y., Gong, Z., Liu, P., de Sá, S. S., McKinney, K. A., and Martin,
S. T.: Influence of Particle Surface Area Concentration on the Production of
Organic Particulate Matter in a Continuously Mixed Flow Reactor, Environ.
Sci. Technol., 53, 4968–4976, https://doi.org/10.1021/acs.est.8b07302, 2019.
Hansen, A. M. K., Hong, J., Raatikainen, T., Kristensen, K., Ylisirniö, A., Virtanen, A., Petäjä, T., Glasius, M., and Prisle, N. L.: Hygroscopic properties and cloud condensation nuclei activation of limonene-derived organosulfates and their mixtures with ammonium sulfate, Atmos. Chem. Phys., 15, 14071–14089, https://doi.org/10.5194/acp-15-14071-2015, 2015.
Hao, L., Kari, E., Leskinen, A., Worsnop, D. R., and Virtanen, A.: Direct contribution of ammonia to α-pinene secondary organic aerosol formation, Atmos. Chem. Phys., 20, 14393–14405, https://doi.org/10.5194/acp-20-14393-2020, 2020.
Heald, C. L., Kroll, J. H., Jimenez, J. L., Docherty, K. S., DeCarlo, P. F.,
Aiken, A. C., Chen, Q., Martin, S. T., Farmer, D. K., and Artaxo, P.: A
simplified description of the evolution of organic aerosol composition in
the atmosphere, Geophys. Res. Lett., 37, L08803, https://doi.org/10.1029/2010gl042737, 2010.
Henze, D. K., Seinfeld, J. H., Ng, N. L., Kroll, J. H., Fu, T.-M., Jacob, D. J., and Heald, C. L.: Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs. low-yield pathways, Atmos. Chem. Phys., 8, 2405–2420, https://doi.org/10.5194/acp-8-2405-2008, 2008.
Huang, R.-J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y.,
Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P.,
Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G.,
Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J.,
Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., El Haddad, I., and
Prevot, A. S. H.: High secondary aerosol contribution to particulate
pollution during haze events in China, Nature, 514, 218–222,
https://doi.org/10.1038/nature13774, 2014.
Jorga, S. D., Kaltsonoudis, C., Liangou, A., and Pandis, S. N.: Measurement
of Formation Rates of Secondary Aerosol in the Ambient Urban Atmosphere
Using a Dual Smog Chamber System, Environ. Sci. Technol., 54, 1336–1343,
https://doi.org/10.1021/acs.est.9b03479, 2020.
Julin, J., Murphy, B. N., Patoulias, D., Fountoukis, C., Olenius, T.,
Pandis, S. N., and Riipinen, I.: Impacts of Future European Emission
Reductions on Aerosol Particle Number Concentrations Accounting for Effects
of Ammonia, Amines, and Organic Species, Environ. Sci. Technol., 52,
692–700, https://doi.org/10.1021/acs.est.7b05122, 2018.
Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys., 5, 1053–1123, https://doi.org/10.5194/acp-5-1053-2005, 2005.
Kleindienst, T. E., Edney, E. O., Lewandowski, M., Offenberg, J. H., and
Jaoui, M.: Secondary organic carbon and aerosol yields from the irradiations
of isoprene and α-pinene in the presence of NOx and SO2,
Environ. Sci. Technol., 40, 3807–3812, https://doi.org/10.1021/es052446r, 2006.
Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C., and Seinfeld, J. H.:
Secondary organic aerosol formation from isoprene photooxidation, Environ.
Sci. Technol., 40, 1869–1877, https://doi.org/10.1021/es0524301, 2006.
Kulmala, M., Petaja, T., Nieminen, T., Sipila, M., Manninen, H. E.,
Lehtipalo, K., Dal Maso, M., Aalto, P. P., Junninen, H., Paasonen, P.,
Riipinen, I., Lehtinen, K. E., Laaksonen, A., and Kerminen, V. M.:
Measurement of the nucleation of atmospheric aerosol particles, Nat.
Protoc., 7, 1651–1667, https://doi.org/10.1038/nprot.2012.091, 2012.
Lal, V., Khalizov, A. F., Lin, Y., Galvan, M. D., Connell, B. T., and Zhang,
R.: Heterogeneous reactions of epoxides in acidic media, J. Phys. Chem. A,
116, 6078–6090, https://doi.org/10.1021/jp2112704, 2012.
Lehtipalo, K., Yan, C., Dada, L., Bianchi, F., Xiao, M., Wagner, R.,
Stolzenburg, D., Ahonen, L. R., Amorim, A., Baccarini, A., Bauer, P. S.,
Baumgartner, B., Bergen, A., Bernhammer, A. K., Breitenlechner, M., Brilke,
S., Buchholz, A., Mazon, S. B., Chen, D. X., Chen, X. M., Dias, A., Dommen,
J., Draper, D. C., Duplissy, J., Ehn, M., Finkenzeller, H., Fischer, L.,
Frege, C., Fuchs, C., Garmash, O., Gordon, H., Hakala, J., He, X. C.,
Heikkinen, L., Heinritzi, M., Helm, J. C., Hofbauer, V., Hoyle, C. R.,
Jokinen, T., Kangasluoma, J., Kerminen, V. M., Kim, C., Kirkby, J.,
Kontkanen, J., Kurten, A., Lawler, M. J., Mai, H. J., Mathot, S., Mauldin,
R. L., Molteni, U., Nichman, L., Nie, W., Nieminen, T., Ojdanic, A., Onnela,
A., Passananti, M., Petaja, T., Piel, F., Pospisilova, V., Quelever, L. L.
J., Rissanen, M. P., Rose, C., Sarnela, N., Schallhart, S., Schuchmann, S.,
Sengupta, K., Simon, M., Sipila, M., Tauber, C., Tome, A., Trostl, J.,
Vaisanen, O., Vogel, A. L., Volkamer, R., Wagner, A. C., Wang, M. Y., Weitz,
L., Wimmer, D., Ye, P. L., Ylisirnio, A., Zha, Q. Z., Carslaw, K. S.,
Curtius, J., Donahue, N. M., Flagan, R. C., Hansel, A., Riipinen, I.,
Virtanen, A., Winkler, P. M., Baltensperger, U., Kulmala, M., and Worsnop,
D. R.: Multicomponent new particle formation from sulfuric acid, ammonia,
and biogenic vapors, Sci. Adv., 4, 9, https://doi.org/10.1126/sciadv.aau5363, 2018.
Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The
contribution of outdoor air pollution sources to premature mortality on a
global scale, Nature, 525, 367–371, https://doi.org/10.1038/nature15371, 2015.
Li, H., Zhang, Q., Zhang, Q., Chen, C., Wang, L., Wei, Z., Zhou, S., Parworth, C., Zheng, B., Canonaco, F., Prévôt, A. S. H., Chen, P., Zhang, H., Wallington, T. J., and He, K.: Wintertime aerosol chemistry and haze evolution in an extremely polluted city of the North China Plain: significant contribution from coal and biomass combustion, Atmos. Chem. Phys., 17, 4751–4768, https://doi.org/10.5194/acp-17-4751-2017, 2017.
Li, K., Chen, L., White, S. J., Yu, H., Wu, X., Gao, X., Azzi, M., and Cen,
K.: Smog chamber study of the role of NH3 in new particle formation from
photo-oxidation of aromatic hydrocarbons, Sci. Total Environ., 619–620,
927-937, https://doi.org/10.1016/j.scitotenv.2017.11.180, 2018.
Li, Y. and Wang, L.: The atmospheric oxidation mechanism of
1,2,4-trimethylbenzene initiated by OH radicals, Phys. Chem. Chem. Phys.,
16, 17908–17917, https://doi.org/10.1039/c4cp02027h, 2014.
Li, Y., Pöschl, U., and Shiraiwa, M.: Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols, Atmos. Chem. Phys., 16, 3327–3344, https://doi.org/10.5194/acp-16-3327-2016, 2016.
Lin, Y.-H., Knipping, E. M., Edgerton, E. S., Shaw, S. L., and Surratt, J. D.: Investigating the influences of SO2 and NH3 levels on isoprene-derived secondary organic aerosol formation using conditional sampling approaches, Atmos. Chem. Phys., 13, 8457–8470, https://doi.org/10.5194/acp-13-8457-2013, 2013.
Lin, Y. H., Budisulistiorini, H., Chu, K., Siejack, R. A., Zhang, H. F.,
Riva, M., Zhang, Z. F., Gold, A., Kautzman, K. E., and Surratt, J. D.:
Light-Absorbing Oligomer Formation in Secondary Organic Aerosol from
Reactive Uptake of Isoprene Epoxydiols, Environ. Sci. Technol., 48,
12012–12021, https://doi.org/10.1021/es503142b, 2014.
Liu, C., Ma, Q., Chu, B., Liu, Y., He, H., Zhang, X., Li, J., and Hao, J.:
Effect of aluminium dust on secondary organic aerosol formation in
m-xylene/NOx photo-oxidation, Sci. China Earth Sci., 58, 245–254,
https://doi.org/10.1007/s11430-014-5023-0, 2015a.
Liu, Y., Liggio, J., Staebler, R., and Li, S.-M.: Reactive uptake of ammonia to secondary organic aerosols: kinetics of organonitrogen formation, Atmos. Chem. Phys., 15, 13569–13584, https://doi.org/10.5194/acp-15-13569-2015, 2015b.
Liu, S., Shilling, J. E., Song, C., Hiranuma, N., Zaveri, R. A., and
Russell, L. M.: Hydrolysis of Organonitrate Functional Groups in Aerosol
Particles, Aerosol Sci. Technol., 46, 1359–1369,
10.1080/02786826.2012.716175, 2012.
Liu, S., Jia, L., Xu, Y., Tsona, N. T., Ge, S., and Du, L.: Photooxidation of cyclohexene in the presence of SO2: SOA yield and chemical composition, Atmos. Chem. Phys., 17, 13329–13343, https://doi.org/10.5194/acp-17-13329-2017, 2017.
Liu, T., Wang, X., Hu, Q., Deng, W., Zhang, Y., Ding, X., Fu, X., Bernard, F., Zhang, Z., Lü, S., He, Q., Bi, X., Chen, J., Sun, Y., Yu, J., Peng, P., Sheng, G., and Fu, J.: Formation of secondary aerosols from gasoline vehicle exhaust when mixing with SO2, Atmos. Chem. Phys., 16, 675–689, https://doi.org/10.5194/acp-16-675-2016, 2016.
Ma, Y., Xu, X., Song, W., Geng, F., and Wang, L.: Seasonal and diurnal
variations of particulate organosulfates in urban Shanghai, China, Atmos.
Environ., 85, 152–160, https://doi.org/10.1016/j.atmosenv.2013.12.017, 2014.
Mehra, A., Wang, Y., Krechmer, J. E., Lambe, A., Majluf, F., Morris, M. A., Priestley, M., Bannan, T. J., Bryant, D. J., Pereira, K. L., Hamilton, J. F., Rickard, A. R., Newland, M. J., Stark, H., Croteau, P., Jayne, J. T., Worsnop, D. R., Canagaratna, M. R., Wang, L., and Coe, H.: Evaluation of the chemical composition of gas- and particle-phase products of aromatic oxidation, Atmos. Chem. Phys., 20, 9783–9803, https://doi.org/10.5194/acp-20-9783-2020, 2020.
Meng, Z., Wu, L., Xu, X., Xu, W., Zhang, R., Jia, X., Liang, L., Miao, Y.,
Cheng, H., Xie, Y., He, J., and Zhong, J.: Changes in ammonia and its
effects on PM2.5 chemical property in three winter seasons in Beijing,
China, Sci. Total Environ., 749, 142208, https://doi.org/10.1016/j.scitotenv.2020.142208,
2020.
Mo, Z., Lu, S., and Shao, M.: Volatile organic compound (VOC) emissions and
health risk assessment in paint and coatings industry in the Yangtze River
Delta, China, Environ. Pollut., 269, 115740, https://doi.org/10.1016/j.envpol.2020.115740,
2021.
Na, K., Song, C., and Cockeriii, D.: Formation of secondary organic aerosol
from the reaction of styrene with ozone in the presence and absence of
ammonia and water, Atmos. Environ., 40, 1889–1900,
https://doi.org/10.1016/j.atmosenv.2005.10.063, 2006.
Na, K., Song, C., Switzer, C., and Cocker, D. R., III: Effect of ammonia on
secondary organic aerosol formation from alpha-Pinene ozonolysis in dry and
humid conditions, Environ. Sci. Technol., 41, 6096–6102, https://doi.org/10.1021/es061956y,
2007.
Nestorowicz, K., Jaoui, M., Rudzinski, K. J., Lewandowski, M., Kleindienst, T. E., Spólnik, G., Danikiewicz, W., and Szmigielski, R.: Chemical composition of isoprene SOA under acidic and non-acidic conditions: effect of relative humidity, Atmos. Chem. Phys., 18, 18101–18121, https://doi.org/10.5194/acp-18-18101-2018, 2018.
Ng, N. L., Kroll, J. H., Chan, A. W. H., Chhabra, P. S., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from m-xylene, toluene, and benzene, Atmos. Chem. Phys., 7, 3909–3922, https://doi.org/10.5194/acp-7-3909-2007, 2007.
O'Brien, R. E., Laskin, A., Laskin, J., Rubitschun, C. L., Surratt, J. D.,
and Goldstein, A. H.: Molecular characterization of S- and N-containing
organic constituents in ambient aerosols by negative ion mode
high-resolution Nanospray Desorption Electrospray Ionization Mass
Spectrometry: CalNex 2010 field study, J. Geophys. Res.-Atmos., 119,
12706–12720, https://doi.org/10.1002/2014jd021955, 2014.
Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., and
Seinfeld, J. H.: Gas/particle partitioning and secondary organic aerosol
yields, Environ. Sci. Technol., 30, 2580–2585, https://doi.org/10.1021/es950943+, 1996.
Paasonen, P., Peltola, M., Kontkanen, J., Junninen, H., Kerminen, V.-M., and Kulmala, M.: Comprehensive analysis of particle growth rates from nucleation mode to cloud condensation nuclei in boreal forest, Atmos. Chem. Phys., 18, 12085–12103, https://doi.org/10.5194/acp-18-12085-2018, 2018.
Ran, L., Zhao, C., Geng, F., Tie, X., Tang, X., Peng, L., Zhou, G., Yu, Q.,
Xu, J., and Guenther, A.: Ozone photochemical production in urban Shanghai,
China: Analysis based on ground level observations, J. Geophys. Res.-Atmos.,
114, D15301, https://doi.org/10.1029/2008jd010752, 2009.
Riva, M., Tomaz, S., Cui, T., Lin, Y.-H., Perraudin, E., Gold, A., Stone, E.
A., Villenave, E., and Surratt, J. D.: Evidence for an Unrecognized
Secondary Anthropogenic Source of Organosulfates and Sulfonates: Gas-Phase
Oxidation of Polycyclic Aromatic Hydrocarbons in the Presence of Sulfate
Aerosol, Environ. Sci. Technol., 49, 6654–6664, https://doi.org/10.1021/acs.est.5b00836,
2015a.
Riva, M., Tomaz, S., Cui, T. Q., Lin, Y. H., Perraudin, E., Gold, A., Stone,
E. A., Villenave, E., and Surratt, J. D.: Evidence for an unrecognized
secondary anthropogenic source of organosulfates and sulfonates: gas-phase
oxidation of polycyclic aromatic hydrocarbons in the presence of sulfate
aerosol, Environ. Sci. Technol., 49, 6654–6664, https://doi.org/10.1021/acs.est.5b00836,
2015b.
Riva, M., Da Silva Barbosa, T., Lin, Y.-H., Stone, E. A., Gold, A., and Surratt, J. D.: Chemical characterization of organosulfates in secondary organic aerosol derived from the photooxidation of alkanes, Atmos. Chem. Phys., 16, 11001–11018, https://doi.org/10.5194/acp-16-11001-2016, 2016a.
Riva, M., Budisulistiorini, S. H., Chen, Y., Zhang, Z., D'Ambro, E. L.,
Zhang, X., Gold, A., Turpin, B. J., Thornton, J. A., Canagaratna, M. R., and
Surratt, J. D.: Chemical Characterization of Secondary Organic Aerosol from
Oxidation of Isoprene Hydroxyhydroperoxides, Environ. Sci. Technol., 50,
9889–9899, https://doi.org/10.1021/acs.est.6b02511, 2016b.
Riva, M., Chen, Y., Zhang, Y., Lei, Z., Olson, N. E., Boyer, H. C., Narayan,
S., Yee, L. D., Green, H. S., Cui, T., Zhang, Z., Baumann, K., Fort, M.,
Edgerton, E., Budisulistiorini, S. H., Rose, C. A., Ribeiro, I. O., RL, E.
O., Dos Santos, E. O., Machado, C. M. D., Szopa, S., Zhao, Y., Alves, E. G.,
de Sa, S. S., Hu, W., Knipping, E. M., Shaw, S. L., Duvoisin Junior, S., de
Souza, R. A. F., Palm, B. B., Jimenez, J. L., Glasius, M., Goldstein, A. H.,
Pye, H. O. T., Gold, A., Turpin, B. J., Vizuete, W., Martin, S. T.,
Thornton, J. A., Dutcher, C. S., Ault, A. P., and Surratt, J. D.: Increasing
Isoprene Epoxydiol-to-Inorganic Sulfate Aerosol Ratio Results in Extensive
Conversion of Inorganic Sulfate to Organosulfur Forms: Implications for
Aerosol Physicochemical Properties, Environ. Sci. Technol., 53, 8682–8694,
https://doi.org/10.1021/acs.est.9b01019, 2019.
Sarrafzadeh, M., Wildt, J., Pullinen, I., Springer, M., Kleist, E., Tillmann, R., Schmitt, S. H., Wu, C., Mentel, T. F., Zhao, D., Hastie, D. R., and Kiendler-Scharr, A.: Impact of NOx and OH on secondary organic aerosol formation from β-pinene photooxidation, Atmos. Chem. Phys., 16, 11237–11248, https://doi.org/10.5194/acp-16-11237-2016, 2016.
Shalamzari, M. S., Kahnt, A., Vermeylen, R., Kleindienst, T. E.,
Lewandowski, M., Cuyckens, F., Maenhaut, W., and Claeys, M.:
Characterization of polar organosulfates in secondary organic aerosol from
the green leaf volatile 3-Z-hexenal, Environ. Sci. Technol., 48,
12671–12678, https://doi.org/10.1021/es503226b, 2014.
Shiraiwa, M., Yee, L. D., Schilling, K. A., Loza, C. L., Craven, J. S.,
Zuend, A., Ziemann, P. J., and Seinfeld, J. H.: Size distribution dynamics
reveal particle-phase chemistry in organic aerosol formation, P. Natl. Acad. Sci. USA, 110, 11746–11750, https://doi.org/10.1073/pnas.1307501110, 2013.
Shrivastava, M., Fast, J., Easter, R., Gustafson Jr., W. I., Zaveri, R. A., Jimenez, J. L., Saide, P., and Hodzic, A.: Modeling organic aerosols in a megacity: comparison of simple and complex representations of the volatility basis set approach, Atmos. Chem. Phys., 11, 6639–6662, https://doi.org/10.5194/acp-11-6639-2011, 2011.
Shrivastava, M., Cappa, C. D., Fan, J., Goldstein, A. H., Guenther, A. B.,
Jimenez, J. L., Kuang, C., Laskin, A., Martin, S. T., Ng, N. L., Petaja, T.,
Pierce, J. R., Rasch, P. J., Roldin, P., Seinfeld, J. H., Shilling, J.,
Smith, J. N., Thornton, J. A., Volkamer, R., Wang, J., Worsnop, D. R.,
Zaveri, R. A., Zelenyuk, A., and Zhang, Q.: Recent advances in understanding
secondary organic aerosol: Implications for global climate forcing, Rev.
Geophys., 55, 509–559, https://doi.org/10.1002/2016rg000540, 2017.
Song, C., Wu, L., Xie, Y., He, J., Chen, X., Wang, T., Lin, Y., Jin, T.,
Wang, A., Liu, Y., Dai, Q., Liu, B., Wang, Y. N., and Mao, H.: Air pollution
in China: Status and spatiotemporal variations, Environ. Pollut., 227,
334–347, https://doi.org/10.1016/j.envpol.2017.04.075, 2017.
Surratt, J. D., Gomez-Gonzalez, Y., Chan, A. W. H., Vermeylen, R.,
Shahgholi, M., Kleindienst, T. E., Edney, E. O., Offenberg, J. H.,
Lewandowski, M., Jaoui, M., Maenhaut, W., Claeys, M., Flagan, R. C., and
Seinfeld, J. H.: Organosulfate formation in biogenic secondary organic
aerosol, J. Phys. Chem. A, 112, 8345–8378, https://doi.org/10.1021/jp802310p, 2008.
Terzano, C., Di Stefano, F., Conti, V., Graziani, E., and Petroianni, A.:
Air pollution ultrafine particles: toxicity beyond the lung, Eur. Rev. Med.
Pharmacol. Sci., 14, 809–821, 2010.
Tolocka, M. P. and Turpin, B.: Contribution of organosulfur compounds to
organic aerosol mass, Environ. Sci. Technol., 46, 7978–7983,
https://doi.org/10.1021/es300651v, 2012.
Volkamer, R., Jimenez, J. L., San Martini, F., Dzepina, K., Zhang, Q.,
Salcedo, D., Molina, L. T., Worsnop, D. R., and Molina, M. J.: Secondary
organic aerosol formation from anthropogenic air pollution: Rapid and higher
than expected, Geophys. Res. Lett., 33, L17811, https://doi.org/10.1029/2006gl026899, 2006.
Wang, M., Kong, W., Marten, R., He, X. C., Chen, D., Pfeifer, J., Heitto,
A., Kontkanen, J., Dada, L., Kurten, A., Yli-Juuti, T., Manninen, H. E.,
Amanatidis, S., Amorim, A., Baalbaki, R., Baccarini, A., Bell, D. M.,
Bertozzi, B., Brakling, S., Brilke, S., Murillo, L. C., Chiu, R., Chu, B.,
De Menezes, L. P., Duplissy, J., Finkenzeller, H., Carracedo, L. G.,
Granzin, M., Guida, R., Hansel, A., Hofbauer, V., Krechmer, J., Lehtipalo,
K., Lamkaddam, H., Lampimaki, M., Lee, C. P., Makhmutov, V., Marie, G.,
Mathot, S., Mauldin, R. L., Mentler, B., Muller, T., Onnela, A., Partoll,
E., Petaja, T., Philippov, M., Pospisilova, V., Ranjithkumar, A., Rissanen,
M., Rorup, B., Scholz, W., Shen, J., Simon, M., Sipila, M., Steiner, G.,
Stolzenburg, D., Tham, Y. J., Tome, A., Wagner, A. C., Wang, D. S., Wang,
Y., Weber, S. K., Winkler, P. M., Wlasits, P. J., Wu, Y., Xiao, M., Ye, Q.,
Zauner-Wieczorek, M., Zhou, X., Volkamer, R., Riipinen, I., Dommen, J.,
Curtius, J., Baltensperger, U., Kulmala, M., Worsnop, D. R., Kirkby, J.,
Seinfeld, J. H., El-Haddad, I., Flagan, R. C., and Donahue, N. M.: Rapid
growth of new atmospheric particles by nitric acid and ammonia condensation,
Nature, 581, 184–189, https://doi.org/10.1038/s41586-020-2270-4, 2020a.
Wang, S., Zhou, S., Tao, Y., Tsui, W. G., Ye, J., Yu, J. Z., Murphy, J. G.,
McNeill, V. F., Abbatt, J. P. D., and Chan, A. W. H.: Organic Peroxides and
Sulfur Dioxide in Aerosol: Source of Particulate Sulfate, Environ. Sci.
Technol., 53, 10695–10704, https://doi.org/10.1021/acs.est.9b02591, 2019a.
Wang, X. K., Rossignol, S., Ma, Y., Yao, L., Wang, M. Y., Chen, J. M.,
George, C., and Wang, L.: Molecular characterization of atmospheric
particulate organosulfates in three megacities at the middle and lower
reaches of the Yangtze River, Atmos. Chem. Phys., 16, 2285–2298,
https://doi.org/10.5194/acp-16-2285-2016, 2016.
Wang, Y., Ma, Y., Li, X., Kuang, B. Y., Huang, C., Tong, R., and Yu, J. Z.:
Monoterpene and Sesquiterpene alpha-Hydroxy Organosulfates: Synthesis, MS/MS
Characteristics, and Ambient Presence, Environ. Sci. Technol., 53,
12278–12290, https://doi.org/10.1021/acs.est.9b04703, 2019b.
Wang, Y., Mehra, A., Krechmer, J. E., Yang, G., Hu, X., Lu, Y., Lambe, A., Canagaratna, M., Chen, J., Worsnop, D., Coe, H., and Wang, L.: Oxygenated products formed from OH-initiated reactions of trimethylbenzene: autoxidation and accretion, Atmos. Chem. Phys., 20, 9563–9579, https://doi.org/10.5194/acp-20-9563-2020, 2020b.
Warner, J. X., Dickerson, R. R., Wei, Z., Strow, L. L., Wang, Y., and Liang,
Q.: Increased atmospheric ammonia over the world's major agricultural areas
detected from space, Geophys. Res. Lett., 44, 2875–2884,
https://doi.org/10.1002/2016gl072305, 2017.
Wu, Y., Gu, B., Erisman, J. W., Reis, S., Fang, Y., Lu, X., and Zhang, X.:
PM2.5 pollution is substantially affected by ammonia emissions in
China, Environ. Pollut., 218, 86–94, https://doi.org/10.1016/j.envpol.2016.08.027, 2016.
Wyche, K. P., Monks, P. S., Ellis, A. M., Cordell, R. L., Parker, A. E., Whyte, C., Metzger, A., Dommen, J., Duplissy, J., Prevot, A. S. H., Baltensperger, U., Rickard, A. R., and Wulfert, F.: Gas phase precursors to anthropogenic secondary organic aerosol: detailed observations of 1,3,5-trimethylbenzene photooxidation, Atmos. Chem. Phys., 9, 635–665, https://doi.org/10.5194/acp-9-635-2009, 2009.
Xu, L., Guo, H., Boyd, C. M., Klein, M., Bougiatioti, A., Cerully, K. M.,
Hite, J. R., Isaacman-VanWertz, G., Kreisberg, N. M., Knote, C., Olson, K.,
Koss, A., Goldstein, A. H., Hering, S. V., de Gouw, J., Baumann, K., Lee,
S.-H., Nenes, A., Weber, R. J., and Ng, N. L.: Effects of anthropogenic
emissions on aerosol formation from isoprene and monoterpenes in the
southeastern United States, P. Natl. Acad. Sci. USA, 112, 37–42,
https://doi.org/10.1073/pnas.1417609112, 2015.
Yang, Z., Tsona, N. T., Li, J., Wang, S., Xu, L., You, B., and Du, L.:
Effects of NOx and SO2 on the secondary organic aerosol formation
from the photooxidation of 1,3,5-trimethylbenzene: A new source of
organosulfates, Environ. Pollut., 264, 114742, https://doi.org/10.1016/j.envpol.2020.114742,
2020.
Ye, J., Abbatt, J. P. D., and Chan, A. W. H.: Novel pathway of SO2 oxidation in the atmosphere: reactions with monoterpene ozonolysis intermediates and secondary organic aerosol, Atmos. Chem. Phys., 18, 5549–5565, https://doi.org/10.5194/acp-18-5549-2018, 2018.
Yu, Z. and Jang, M.: Atmospheric Processes of Aromatic Hydrocarbons in the
Presence of Mineral Dust Particles in an Urban Environment, ACS Earth Space
Chem., 3, 2404–2414, https://doi.org/10.1021/acsearthspacechem.9b00195, 2019.
Zaytsev, A., Koss, A. R., Breitenlechner, M., Krechmer, J. E., Nihill, K. J., Lim, C. Y., Rowe, J. C., Cox, J. L., Moss, J., Roscioli, J. R., Canagaratna, M. R., Worsnop, D. R., Kroll, J. H., and Keutsch, F. N.: Mechanistic study of the formation of ring-retaining and ring-opening products from the oxidation of aromatic compounds under urban atmospheric conditions, Atmos. Chem. Phys., 19, 15117–15129, https://doi.org/10.5194/acp-19-15117-2019, 2019.
Zhang, G., Lian, X., Fu, Y., Lin, Q., Li, L., Song, W., Wang, Z., Tang, M., Chen, D., Bi, X., Wang, X., and Sheng, G.: High secondary formation of nitrogen-containing organics (NOCs) and its possible link to oxidized organics and ammonium, Atmos. Chem. Phys., 20, 1469–1481, https://doi.org/10.5194/acp-20-1469-2020, 2020.
Zhang, R., Wang, G., Guo, S., Zamora, M. L., Ying, Q., Lin, Y., Wang, W.,
Hu, M., and Wang, Y.: Formation of urban fine particulate matter, Chem.
Rev., 115, 3803–3855, https://doi.org/10.1021/acs.chemrev.5b00067, 2015.
Zhang, X., Cappa, C. D., Jathar, S. H., McVay, R. C., Ensber, J. J.,
Kleeman, M. J., and Seinfeld, J. H.: Influence of vapor wall loss in
laboratory chambers on yields of secondary organic aerosol, P. Natl. Acad. Sci. USA, 111, 5802–5807, 2014.
Zhang, Y., Chen, Y., Lei, Z., Olson, N. E., Riva, M., Koss, A. R., Zhang,
Z., Gold, A., Jayne, J. T., Worsnop, D. R., Onasch, T. B., Kroll, J. H.,
Turpin, B. J., Ault, A. P., and Surratt, J. D.: Joint Impacts of Acidity and
Viscosity on the Formation of Secondary Organic Aerosol from Isoprene
Epoxydiols (IEPOX) in Phase Separated Particles, ACS Earth Space Chem., 3,
2646–2658, https://doi.org/10.1021/acsearthspacechem.9b00209, 2019.
Zhao, D., Schmitt, S. H., Wang, M., Acir, I.-H., Tillmann, R., Tan, Z., Novelli, A., Fuchs, H., Pullinen, I., Wegener, R., Rohrer, F., Wildt, J., Kiendler-Scharr, A., Wahner, A., and Mentel, T. F.: Effects of NOx and SO2 on the secondary organic aerosol formation from photooxidation of α-pinene and limonene, Atmos. Chem. Phys., 18, 1611–1628, https://doi.org/10.5194/acp-18-1611-2018, 2018.
Zhu, Y., Sabaliauskas, K., Liu, X., Meng, H., Gao, H., Jeong, C.-H., Evans,
G. J., and Yao, X.: Comparative analysis of new particle formation events in
less and severely polluted urban atmosphere, Atmos. Environ., 98, 655–664,
https://doi.org/10.1016/j.atmosenv.2014.09.043, 2014.
Ziemann, P. J. and Atkinson, R.: Kinetics, products, and mechanisms of
secondary organic aerosol formation, Chem. Soc. Rev., 41, 6582–6605,
https://doi.org/10.1039/c2cs35122f, 2012.
Zou, Y., Deng, X. J., Zhu, D., Gong, D. C., Wang, H., Li, F., Tan, H. B., Deng, T., Mai, B. R., Liu, X. T., and Wang, B. G.: Characteristics of 1 year of observational data of VOCs, NOx and O3 at a suburban site in Guangzhou, China, Atmos. Chem. Phys., 15, 6625–6636, https://doi.org/10.5194/acp-15-6625-2015, 2015.
Short summary
The promotion effects of SO2 and NH3 on particle and organosulfur compound formation from 1,2,4-trimethylbenzene (TMB) photooxidation were observed for the first time. The enhanced organosulfur compounds included hitherto unidentified aromatic sulfonates and organosulfates (OSs). OSs were produced via acid-driven heterogeneous chemistry of hydroperoxides. The production of organosulfur compounds might provide a new pathway for the fate of TMB in regions with considerable SO2 emissions.
The promotion effects of SO2 and NH3 on particle and organosulfur compound formation from...
Altmetrics
Final-revised paper
Preprint