

Supplement of

${\rm SO}_2$ and ${\rm NH}_3$ emissions enhance organosulfur compounds and fine particle formation from the photooxidation of a typical aromatic hydrocarbon

Zhaomin Yang et al.

Correspondence to: Lin Du (lindu@sdu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

S1. Size-dependent wall loss correction method

In the present work, the size-dependent particle wall-loss rate constants were determined based on the SMPS-measured particle size distribution. The first-order loss rate constants (k_i) of particles in each size bin *i* across all measured sizes were firstly calculated as the slope of the corresponding ln-linear fit line:

$$\ln[M_i(t)] = -k_i t + C \tag{S1}$$

where M_i (µg m⁻³) is the mass concentration of particles in size bin *i* at time *t* (min) and *C* is an arbitrary constant. Then, the relationship between the k_i and the particle diameter ($d_{p,i}$) can be described as follows:

$$k_i(d_{p,i}) = ad_{p,i}^b + cd_{p,i}^{-d}$$
(S2)

The optimized fitted line shown in Fig. S1 can express well our independent seed experimental results. Parameters a, b, c, and d in Eq. (S2) were determined to be 5.5×10^{-6} , 1.05, 0.18, 1.19, respectively. Therefore, the size-dependent loss rate (*k*) of ammonium sulfate particles can be expressed as $k = 5.5 \times 10^{-6} \times d_p^{-1.05} + 0.18 \times d_p^{-1.19}$.

S2. The formed H₂SO₄ estimation and inorganic mixture experiments

In order to evaluate the SO_2 effects on SOA formation, we used the method of Ye et al. (2018) to calculate the contribution of the generated H_2SO_4 to the particle formation enhancement in TMB/NO_x/SO₂ photooxidation (Ye et al., 2018;Wyche et al., 2009), where we assumed the conversion of the consumed SO_2 into H_2SO_4 aerosol particles. The contribution of the formed H_2SO_4 to the increase in particle volume concentration was less than 100 % (Fig. S6), demonstrating that the enhanced SOA formation is also responsible for the increased particle volume concentration. Additionally, a previous study has shown that half of the reacted SO₂ can transform into sulfurcontaining species during the photooxidation of 1,3,5-trimethylbenzene/oorganic xylene/octane/toluene (Vivanco et al., 2011). HRMS measurements revealed the OSs production in this work, which may result in the decrease in the amount of H_2SO_4 in the particle phase. Therefore, the enhancement in aerosol particles by SO2 introduction cannot be solely attributed to inorganic aerosol formation. Pure SO₂ oxidation experiments without introducing TMB were also carried out. In the TMB/NO_x/SO₂ regime, the consumption of 9.9 and 23.3 ppb SO₂ could cause the particle volume concentration to increase by 32.9 and 89.2 μ m³ cm⁻³, respectively. However, in pure SO₂ oxidation experiments, the volume concentrations of the formed particles were only 25.3 and 43.2 μ m³ cm⁻³ when the consumptions of SO₂ were 9.5 and 24.2 ppb, respectively. Comparison of the results of TMB/NO_x/SO₂ and pure SO₂ oxidation experiments also demonstrates that the enhancement in aerosol particles by SO₂ introduction cannot be solely attributed to inorganic aerosol formation.

Exp.	Nucleation time (min)	Particle mean diameter (nm)	Initial particle growth rate (nm h ⁻¹)
1	70	125.5	46.53
2	15	109.9	20.09
3	10	121.2	27.42
4	10	130.6	31.09
5	100	123.1	23.51
6	20	118.5	19.30
7	10	112.4	22.14
8	10	136.5	29.82

 Table S1. Particle parameters for experiments 1–8.

Table S2. Summary of characteristic wavenumbers of selected functional groups.

Functional groups	Absorption frequencies (cm ⁻¹)	References	
organic nitrates (RONO ₂)	860, 1280, 1630–1640	(Bruns et al., 2010)	
sulfates (SO ₄ ²⁻)	612–615, 1103–1135	(Hawkins et al., 2010)	
aliphatic carbon (C-H)	2850-3000	(Zhong and Jang, 2014)	
esters (RC(O)OR')	1050–1160	(Hung et al., 2013)	
0-0	960	(Jia and Xu, 2018)	
C-N stretch	1315	(Liu et al., 2015)	
carboxylic acids	875–970, 1210–1320,	$(I_{\rm Lyperproduct} \circ 1, 2012)$	
(RC(O)OH)	1685–1740, 2500–3300	(Hung et al., 2013)	
aldehydes (RC(O)H)	1325–1450, 1720–1740	(Hung et al., 2013)	
ketones (RC(O)R')	1100–1170, 1715–1745	(Hung et al., 2013)	
alcohols (R-OH)	3200–3500	(Zhong and Jang, 2014)	

Molecular weight	Measured [M - H] ⁻	Suggested ion formula	Error (ppm) ^c	Retention times (min)	Proposed chemical structure ^d
146 ^{<i>a</i>, <i>b</i>}	145.01418	C ₅ H ₅ O ₅ -	-0.490	3.59	
162 ^{a, b}	161.04555	C6H9O5 ⁻	-0.468	3.89, 4.63, 4.99	о=
164 ^{a, b}	163.02481	C5H7O6 ⁻	-0.751	3.14	
176 ^{a, b}	175.06091	C7H11O5 ⁻	-1.620	17.77	о
178 ^{a, b}	177.04030	C ₆ H ₉ O ₆ -	-0.919	2.35, 8.80	о но о
231 ^{<i>a</i>, <i>b</i>}	230.06656	C9H12O6N-	-1.962	17.68, 15.03	O2NO OH
			Organosulfates	8	
226 ^b	225.00772	C ₆ H ₉ O ₇ S ⁻	1.219	4.10, 5.11	о — Солони от с
228 ^b	227.00150	$C_5H_7O_8S^-$	-2.059	20.48, 20.67	OH OSO3H OH OH
240 ^b	239.02271	C7H11O7S	-1.638	6.39, 7.76, 8.70	о с с с с с с с с с с с с с с с с с с с
242 ^b	241.00168	C ₆ H ₉ O ₈ S ⁻	-2.833	3.61, 4.21	O O O O O O O O O O O HO O O O O O O O
244 ^b	242.99619	C5H7O9S ⁻	-2.886	12.98, 13.30	

Table S3. Compounds detected in aerosol particles from TMB/NO_x and $TMB/NO_x/SO_2$ photooxidation using UPLC-HRMS.

Molecular weight	Measured [M - H] ⁻	Suggested ion formula	Error (ppm) ^c	Retention times (min)	Proposed chemical structure ^d
300 ^b	299.04395	C9H15O9S-	-0.938	3.56, 11.29, 11.85	HO ₃ SO OH
316 ^b	315.03867	C9H15O10S ⁻	-1.494	7.23	HO ₂ SO OH HO
345 ^b	344.02853	C9H14O11NS ⁻	-2.250	9.70	HO ₃ SO HO ₂ NO
214 ^b	212.98590	C ₈ H ₅ O ₅ S ⁻	-1.954	15.04	Unidentified
268 ^b	267.01724	$C_8H_{11}O_8S^-$	-2.879	10.41	Unidentified
			Organic sulfona	tes	
228 ^b	227.00159	C9H7O5S ⁻	-1.675	20.51, 20.68	
230 ^b	229.01706	C9H9O5S ⁻	-2.437	22.66, 22.94, 23.39	SO ₃ H OH

Table S3. Continued.

^{*a*} The products were observed in the TMB/NO_{*x*} photooxidation.

^b The products were detected in the TMB/NO_x/SO₂ photooxidation.

 c The molecular formula was assigned based on accurate mass measurements with a mass tolerance of \pm 5 ppm.

^{*d*} Only one possible isomer was shown here.

Molecular	Measured	Suggested ion			0/0	
weight	ions	formula	Error (ppm) ^c	Retention times (min)	O/C	log10C* (µg m ⁻³)
74 ^a	72.99308	C ₂ HO ₃ -	-0.508	2.20	1.50	6.16
88 ^a	87.00876	C ₃ H ₃ O ₃ -	-0.100	3.02	1.00	6.18
150 a	149.0088	C ₄ H ₅ O ₆ ⁻	-1.882	2.35	1.50	2.16
114 ^a	113.02439	C ₅ H ₅ O ₃ ⁻	-0.231	9.65, 10.62	0.60	5.87
146 ^a	145.01407	C5H5O5 ⁻	-1.277	3.61	1.00	3.53
162 ^a	161.00876	C5H5O6 ⁻	4.311	2.78, 2.89	1.20	2.23
148 ^a	147.02985	C ₅ H ₇ O ₅ ⁻	-0.342	3.19	1.00	3.53
164 ^a	163.02470	C ₅ H ₇ O ₆ ⁻	-0.657	3.12	1.20	2.23
174 ^a	173.00879	C ₆ H ₅ O ₆ ⁻	4.188	3.34	1.00	2.20
128 ^a	127.04013	C ₆ H ₇ O ₃ -	0.497	14.71, 15.13	0.50	5.61
144 ^a	143.03482	$C_6H_7O_4$	-1.128	7.64,9.12, 11.53	0.67	4.58
160 ^a	159.03011	C ₆ H ₇ O ₅ -	1.314	9.34, 10.15, 12.77	0.83	3.43
176 ^a	175.02451	C ₆ H ₇ O ₆ -	4.520	4.20	1.00	2.20
146 ^a	145.05052	C ₆ H ₉ O ₄ -	-0.759	8.80	0.67	4.58
162 ^a	161.04543	C ₆ H ₉ O ₅ -	-0.753	3.87, 4.63, 4.98, 5.94	0.83	3.43
178 ^a	177.04028	C ₆ H ₉ O ₆ -	-1.005	2.35, 8.79	1.00	2.20
172 ^a	171.02988	C7H7O5	-0.116	6.63, 11.07, 12.96	0.71	3.28
188 ^a	187.02446	C7H7O6 ⁻	3.985	12.18	0.86	2.11
156 ^a	157.05048	C7H9O4 ⁻	-0.993	10.14, 11.11, 16.53	0.57	4.36
174 ^a	173.04514	C7H9O5	-2.376	5.64, 7.98, 9.91, 14.54	0.71	3.28
190 <i>ª</i>	189.03993	C7H9O6	3.003	3.70, 4.17, 8.33	0.86	2.11
160 ^a	159.06609	C7H11O4-	-1.234	14.35	0.57	4.36
176 ^a	175.06070	C7H11O5	-2.840	17.77	0.71	3.28
216 ^{<i>a</i>}	215.01923	C ₈ H ₇ O ₇ -	-2.324	9.96	0.88	0.79
186 ^a	185.04509	C ₈ H ₉ O ₅ -	-2.469	12.62	0.63	3.08
202 ^a	201.04025	C ₈ H ₉ O ₆ -	4.418	7.12, 12.36	0.75	1.97
188 ^a	187.06075	C ₈ H ₁₁ O ₅ -	-2.413	11.10, 11.84, 12.87	0.63	3.08
204 ^a	203.05577	C ₈ H ₁₁ O ₆ -	3.724	11.78, 12.20,	0.75	1.97
184 ^a	185.08040	$C_9H_{13}O_4^+$	-2.360	13.98, 16.27	0.44	3.81
216 ^a	215.05579	C ₉ H ₁₁ O ₆ -	-1.512	13.38, 16.76	0.67	1.79
232 ^a	231.05043	C9H11O7-	2.169	12.67,14.10, 19.52	0.78	0.66
202 ^a	201.07658	C9H13O5	-1.307	24.32	0.56	2.85
218 ^a	217.07117	C9H13O6-	2.314	16.44	0.67	1.79
234 ^a	233.06613	C9H13O7-	-2.336	11.06, 11.78	0.78	0.66
250 a	249.06107	C9H13O8-	-2.107	12.43	0.89	-0.53

Table S4. Observed C_cH_hO_oN_n products in both SO₂-free and SO₂-involved experiments with NH₃

addition.

Molecular weight	Measured ions	Suggested ion formula	Error (ppm) ^c	Retention times (min)	O/C	log10C* (µg m ⁻³) ^d
250 ^a	249.06107	C9H13O8-	-2.107	12.43	0.89	-0.53
220 ^a	219.08690	C9H15O6 ⁻	-2.339	21.26	0.67	1.79
236 ^a	235.08188	C9H15O7 ⁻	-1.903	3.91, 4.34	0.78	0.66
252 ^a	251.07664	C9H15O8 ⁻	-2.372	3.63	0.89	-0.53
229 ^a	228.05083	$C_9H_{10}O_6N^-$	-2.338	10.19, 11.96	0.67	0.36
229 ^b	230.06591	$C_9H_{12}O_6N^+$	-3.365	25.17	0.67	0.36
231 ^a	230.06701	$C_9H_{12}O_6N^-$	-2.028	14.57, 15.01, 17.69	0.67	0.36
231 ^b	232.08087	$C_9H_{14}O_6N^+$	-2.981	9.43, 11.78	0.67	0.36
265 ^a	264.07187	$C_9H_{14}O_8N^-$	-2.350	18.69	0.89	-1.09
265 ^b	266.08615	$C_9H_{16}O_8N^+$	-3.351	17.14	0.89	-1.09
191 ^a	190.03529	C ₆ H ₈ O ₆ N ⁻	-2.192	2.65	1.00	1.36

Table S4. Continued.

^{*a*} The molecules were detected by UPLC-HRMS in the negative mode.

^b The molecules were detected by UPLC-HRMS in the positive mode.

^c The molecular formula was assigned based on accurate mass measurements with a mass tolerance of \pm 5 ppm.

^d The saturation mass concentrations of observed products were predicted based on the method of Li et al. (2016).

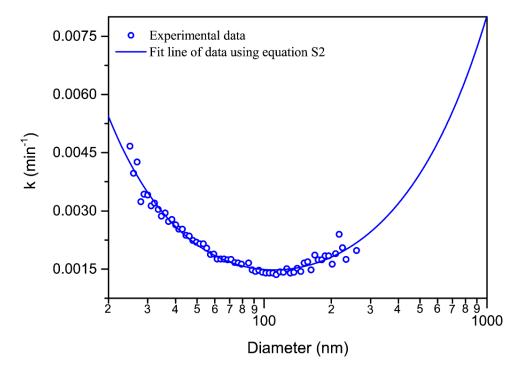


Figure S1. Wall loss rate constant of particles as a function of particle diameter.

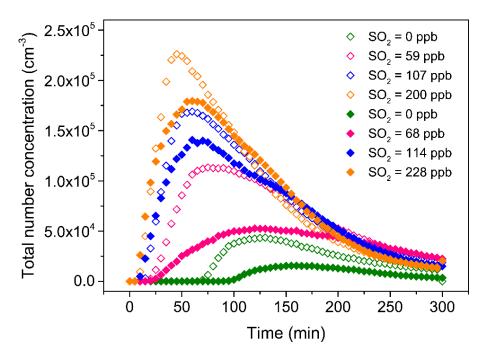
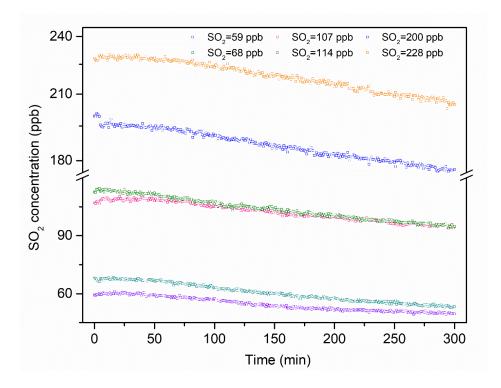
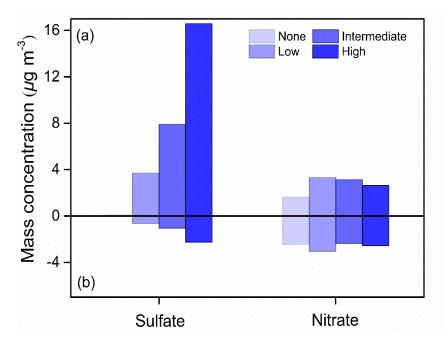
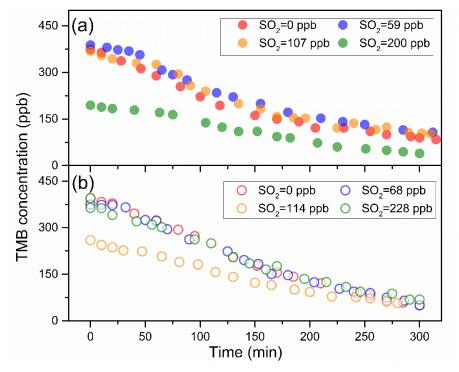
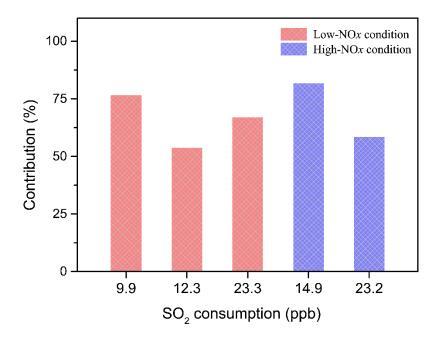
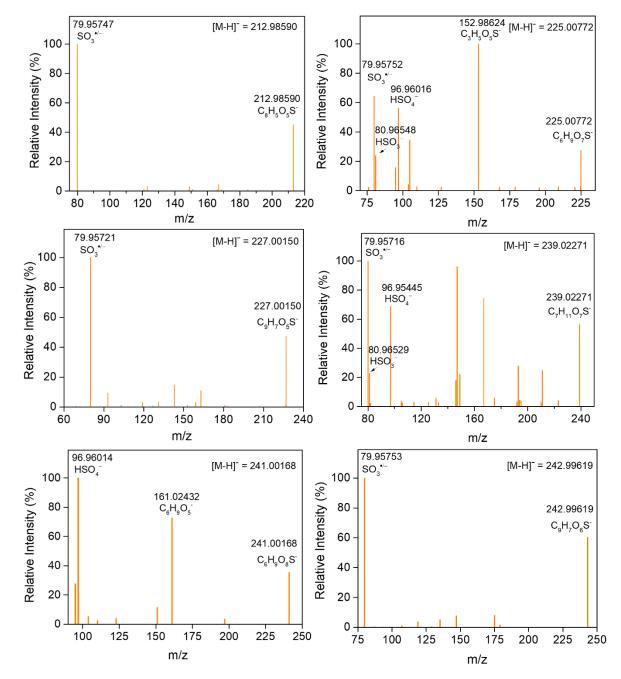
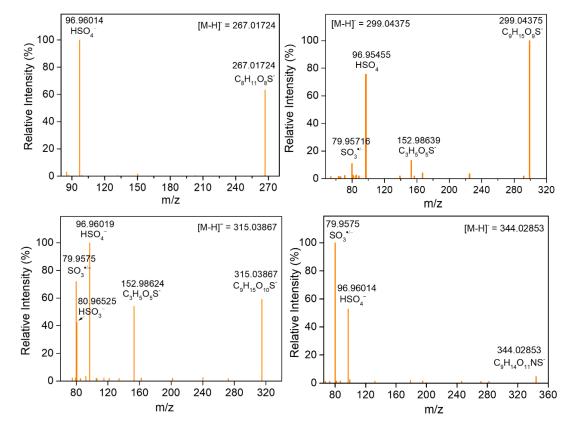


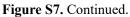
Figure S2. The total number concentrations of ultrafine particles (< 100 nm) as a function of reaction time (Exps. 1–8). The open symbols and solid symbols represent low- and high-NOx experiments, respectively.

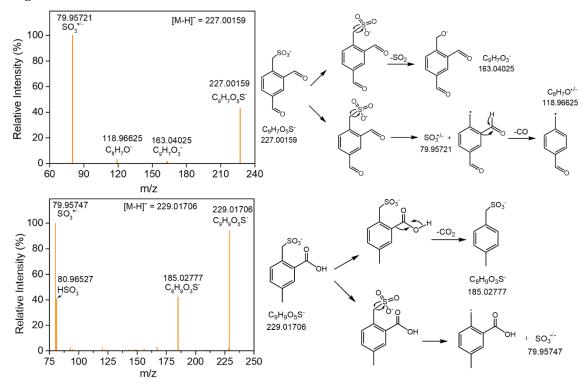




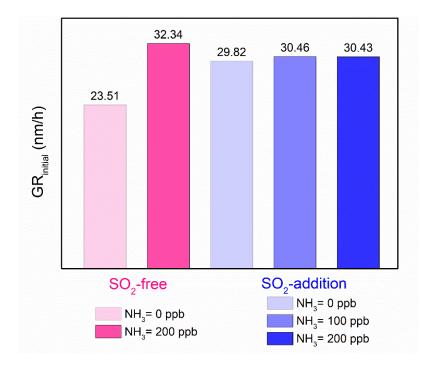

Figure S3. Decay of SO₂ during the photooxidation of TMB (Exps. 2–4, 6–8).

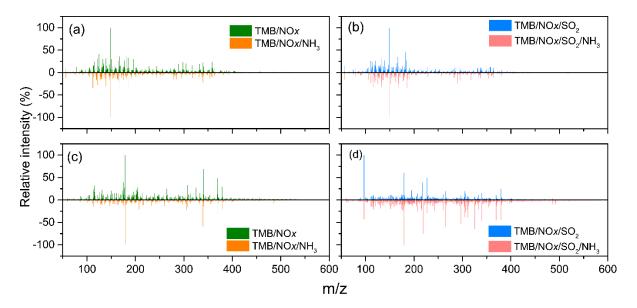

Figure S4. The particle sulfate and nitrate loadings for aerosol samples collected from the photooxidation of TMB under low- (a) and high- NO_x (b) conditions with SO₂ introduction. None: $SO_2 = 0$ ppb; low: $SO_2 = 50-70$ ppb intermediate: $SO_2 = 100-120$ ppb; high: $SO_2 = 200-230$ ppb.

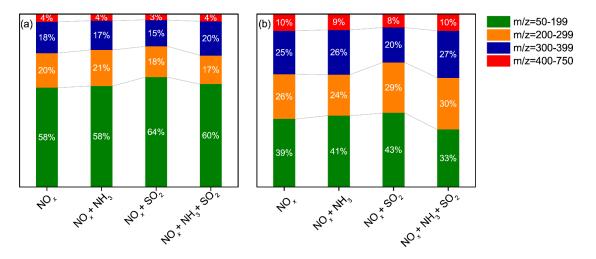

Figure S5. Time profiles of TMB for photooxidation experiments under low- (a) and high- $NO_x(b)$ conditions with different SO₂ levels.




Figure S6. Contribution (%) of the formed H_2SO_4 to the increased particle volume concentration during low-NO_x and high-NO_x experiments.


Figure S7. MS/MS spectra of organosulfates generated from the photooxidation of TMB in the presence of SO₂.




Figure S8. MS/MS spectra and fragmentation schemes of ion at m/z 227.00159 and 229.01706 observed in aerosol particles from TMB photooxidation in the presence of SO₂.

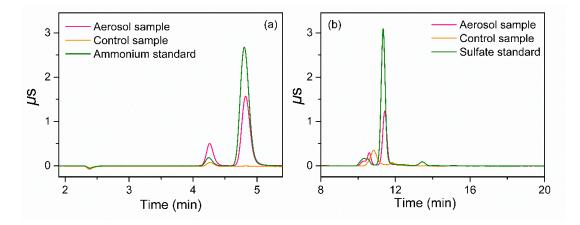

Figure S9. Observed initial growth rates of aerosol particles under SO₂-free and SO₂-added (~ 230 ppb) conditions (Exps. 5, 8, 10–12).

Figure S10. High-resolution mass spectra of aerosol particles from TMB photooxidation with/without NH₃ introduction. Panels a–b: positive ion mode. Panels c–d: negative ion mode.

Figure S11. Relative contributions (% by abundance) of ions detected by UPLC-HRMS in the positive mode (a) and negative mode (b) for aerosol particles collected from different experiments (Exps. 5, 8, 10, 12).

Figure S12. Ion chromatography results for aerosol particles formed from the photooxidation of TMB in the presence of SO_2 and NH_3 . Panel (a): Ammonium. Panel (b): Sulfate

References

Bruns, E. A., Perraud, V., Zelenyuk, A., Ezell, M. J., Johnson, S. N., Yu, Y., Imre, D., Finlayson-Pitts, B. J., and Alexander, M. L.: Comparison of FTIR and particle mass spectrometry for the measurement of particulate organic nitrates, Environ. Sci. Technol., 44, 1056-1061, 10.1021/es9029864, 2010.

Hawkins, L. N., Russell, L. M., Covert, D. S., Quinn, P. K., and Bates, T. S.: Carboxylic acids, sulfates, and organosulfates in processed continental organic aerosol over the southeast Pacific Ocean during VOCALS-REx 2008, J. Geophys. Res., 115, D13201, 10.1029/2009jd013276, 2010.

Hung, H. M., Chen, Y. Q., and Martin, S. T.: Reactive aging of films of secondary organic material studied by infrared spectroscopy, J. Phys. Chem. A, 117, 108-116, 10.1021/jp309470z, 2013.

Jia, L., and Xu, Y.: Different roles of water in secondary organic aerosol formation from toluene and isoprene, Atmos. Chem. Phys., 18, 8137-8154, 10.5194/acp-18-8137-2018, 2018.

Li, Y., Pöschl, U., and Shiraiwa, M.: Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols, Atmos. Chem. Phys., 16, 3327-3344, 10.5194/acp-16-3327-2016, 2016.

Liu, Y., Liggio, J., Staebler, R., and Li, S. M.: Reactive uptake of ammonia to secondary organic aerosols: kinetics of organonitrogen formation, Atmos. Chem. Phys., 15, 13569-13584, 10.5194/acp-15-13569-2015, 2015.

Vivanco, M. G., Santiago, M., Martinez-Tarifa, A., Borras, E., Rodenas, M., Garcia-Diego, C., and Sanchez, M.: SOA formation in a photoreactor from a mixture of organic gases and HONO for different experimental conditions, Atmos. Environ., 45, 708-715, 10.1016/j.atmosenv.2010.09.059, 2011.

Wyche, K. P., Monks, P. S., Ellis, A. M., Cordell, R. L., Parker, A. E., Whyte, C., Metzger, A., Dommen, J., Duplissy, J., Prevot, A. S. H., Baltensperger, U., Rickard, A. R., and Wulfert, F.: Gas phase precursors to anthropogenic secondary organic aerosol: detailed observations of 1,3,5-trimethylbenzene photooxidation, Atmos. Chem. Phys., 9, 635-665, 10.5194/acp-9-635-2009, 2009.

Ye, J., Abbatt, J. P. D., and Chan, A. W. H.: Novel pathway of SO₂ oxidation in the atmosphere: reactions with monoterpene ozonolysis intermediates and secondary organic aerosol, Atmos. Chem. Phys., 18, 5549-5565, 10.5194/acp-18-5549-2018, 2018.

Zhong, M., and Jang, M.: Dynamic light absorption of biomass-burning organic carbon photochemically aged under natural sunlight, Atmos. Chem. Phys., 14, 1517-1525, 10.5194/acp-14-1517-2014, 2014.