Articles | Volume 21, issue 4
https://doi.org/10.5194/acp-21-2837-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-2837-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Improving regional air quality predictions in the Indo-Gangetic Plain – case study of an intensive pollution episode in November 2017
Behrooz Roozitalab
CORRESPONDING AUTHOR
Center for Global and Regional Environmental Research, University of
Iowa, Iowa City, IA, USA
Chemical and Biochemical Engineering, University of Iowa, Iowa City,
IA, USA
Gregory R. Carmichael
CORRESPONDING AUTHOR
Center for Global and Regional Environmental Research, University of
Iowa, Iowa City, IA, USA
Chemical and Biochemical Engineering, University of Iowa, Iowa City,
IA, USA
Sarath K. Guttikunda
Urban Emissions, New Delhi, India
Related authors
Changmin Cho, Alessandro Franchin, Frank Flocke, Kirk Lesko, Courtney Owen, Samuel R. Hall, Kirk Ullmann, Eric C. Apel, Alan J. Hills, Rebecca S. Hornbrook, Behrooz Roozitalab, Daun Jeong, Glenn S. Diskin, Yonghoon Choi, Joshua P. DiGangi, Jason Miech, Glenn M. Wolfe, Thomas F. Hanisco, Jason M. St. Clair, Jin Liao, Erin R. Delaria, Abby Sebol, Reem A. Hannun, Paul O. Wennberg, Katherine Ball, Young Ro Lee, L. Gregory Huey, David J. Tanner, Linda Arterburn, Donald R. Blake, Nicola J. Blake, Barbara Barletta, Simone Meinardi, Kyung-Eun Min, Heejoo Kang, Woohui Nam, Armin Wisthaler, Felix Piel, Wojciech Wojnowski, Jack Dibb, and James Crawford
EGUsphere, https://doi.org/10.5194/egusphere-2025-6434, https://doi.org/10.5194/egusphere-2025-6434, 2026
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Ozone pollution is a challenge in Asian cities due to its nonlinear response to precursor controls. Using aircraft measurements, we examined how ozone production depends on nitrogen oxides and volatile organic compounds using a new isopleth-based approach. Ozone production is limited by nitrogen oxides in Metro Manila and Tainan–Kaohsiung, mixed in Bangkok, and limited by volatile organic compounds in Seoul. These results inform city-specific control strategies to reduce ozone in urban areas.
Changmin Cho, Alessandro Franchin, Frank Flocke, Kirk Lesko, Courtney Owen, Samuel R. Hall, Kirk Ullmann, Eric C. Apel, Alan J. Hills, Rebecca S. Hornbrook, Behrooz Roozitalab, Daun Jeong, Glenn S. Diskin, Yonghoon Choi, Joshua P. DiGangi, Jason Miech, Glenn M. Wolfe, Thomas F. Hanisco, Jason M. St. Clair, Jin Liao, Erin R. Delaria, Abby Sebol, Reem A. Hannun, Paul O. Wennberg, Katherine Ball, Young Ro Lee, L. Gregory Huey, David J. Tanner, Linda Arterburn, Donald R. Blake, Nicola J. Blake, Barbara Barletta, Simone Meinardi, Kyung-Eun Min, Heejoo Kang, Woohui Nam, Armin Wisthaler, Felix Piel, Wojciech Wojnowski, Jack Dibb, and James Crawford
EGUsphere, https://doi.org/10.5194/egusphere-2025-6434, https://doi.org/10.5194/egusphere-2025-6434, 2026
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Ozone pollution is a challenge in Asian cities due to its nonlinear response to precursor controls. Using aircraft measurements, we examined how ozone production depends on nitrogen oxides and volatile organic compounds using a new isopleth-based approach. Ozone production is limited by nitrogen oxides in Metro Manila and Tainan–Kaohsiung, mixed in Bangkok, and limited by volatile organic compounds in Seoul. These results inform city-specific control strategies to reduce ozone in urban areas.
Lei Kong, Xiao Tang, Zifa Wang, Jiang Zhu, Jianjun Li, Huangjian Wu, Qizhong Wu, Huansheng Chen, Lili Zhu, Wei Wang, Bing Liu, Qian Wang, Duohong Chen, Yuepeng Pan, Jie Li, Lin Wu, and Gregory R. Carmichael
Earth Syst. Sci. Data, 16, 4351–4387, https://doi.org/10.5194/essd-16-4351-2024, https://doi.org/10.5194/essd-16-4351-2024, 2024
Short summary
Short summary
A new long-term inversed emission inventory for Chinese air quality (CAQIEI) is developed in this study, which contains constrained monthly emissions of NOx, SO2, CO, PM2.5, PM10, and NMVOCs in China from 2013 to 2020 with a horizontal resolution of 15 km. Emissions of different air pollutants and their changes during 2013–2020 were investigated and compared with previous emission inventories, which sheds new light on the complex variations of air pollutant emissions in China.
Sarath K. Guttikunda
EGUsphere, https://doi.org/10.5194/egusphere-2024-1712, https://doi.org/10.5194/egusphere-2024-1712, 2024
Preprint withdrawn
Short summary
Short summary
In the low- and middle-income countries, the path forward to act against the air pollution problem halts because of the “fear of the unknown” driven by lack of data, misconceptions, and complexities of the analytical systems. This manuscript is an attempt to catalogue examples that simplified the theory of air pollution to benefit public awareness activities for a broader audience and to present resources to bridge their knowledge gaps with the air pollution modelling community.
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-Mee Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Felix C. Seidel, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, https://doi.org/10.5194/acp-21-1507-2021, 2021
Short summary
Short summary
Southern Africa produces significant biomass burning emissions whose impacts on regional and global climate are poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA investigation designed to study the key processes that determine these climate impacts. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project, the dataset it produced, and the most important initial findings.
Cited articles
Abdi-Oskouei, M., Carmichael, G., Christiansen, M., Ferrada, G.,
Roozitalab, B., Sobhani, N., Wade, K., Czarnetzki, A., Pierce, R., and
Wagner, T.: Sensitivity of meteorological skill to selection of WRF-Chem
physical parameterizations and impact on ozone prediction during the Lake
Michigan Ozone Study (LMOS), J. Geophys. Res.-Atmos., 125, e2019JD031971, https://doi.org/10.1029/2019JD031971, 2020.
Adhikary, B., Carmichael, G. R., Tang, Y., Leung, L. R., Qian, Y., Schauer,
J. J., Stone, E. A., Ramanathan, V., and Ramana, M. V.: Characterization of
the seasonal cycle of south Asian aerosols: A regional-scale modeling
analysis, J. Geophys. Res.-Atmos., 112, D22
https://doi.org/10.1029/2006JD008143, 2007.
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.
Amann, M., Purohit, P., Bhanarkar, A. D., Bertok, I., Borken-Kleefeld, J.,
Cofala, J., Heyes, C., Kiesewetter, G., Klimont, Z., and Liu, J.: Managing
future air quality in megacities: A case study for
Delhi, Atmos. Environ., 161, 99–111, 2017.
Anenberg, S. C., Henze, D. K., Tinney, V., Kinney, P. L., Raich, W., Fann,
N., Malley, C. S., Roman, H., Lamsal, L., and Duncan, B.: Estimates of the
global burden of ambient PM2.5, ozone, and NO2 on asthma incidence and emergency room visits, Environ. Health Persp., 126, 107004, https://doi.org/10.1289/ehp3766, 2018.
Ashrafi, K., Motlagh, M. S., and Neyestani, S. E.: Dust storms modeling and
their impacts on air quality and radiation budget over Iran using WRF-Chem,
Air Qual. Atmos. Hlth., 10, 1059–1076, 2017.
Beig, G., Srinivas, R., Parkhi, N. S., Carmichael, G., Singh, S., Sahu, S.
K., Rathod, A., and Maji, S.: Anatomy of the winter 2017 air quality
emergency in Delhi, Sci. Total Environ., 681, 305–311, 2019.
Beig, G., Sahu, S. K., Singh, V., Tikle, S., Sobhana, S. B., Gargeva, P.,
Ramakrishna, K., Rathod, A., and Murthy, B.: Objective evaluation of stubble
emission of North India and quantifying its impact on air quality of Delhi, Sci. Total Environ., 709, 136126, https://doi.org/10.1016/j.scitotenv.2019.136126, 2020.
Bosilovich, M. G., Lucchesi, R., and Suarez, M.: MERRA-2: File Specification. GMAO
Office Note No. 9 (Version 1.1), 73 pp., available at:
http://gmao.gsfc.nasa.gov/pubs/office_notes (last access: 24 February 2021), 2016.
Brioude, J., Arnold, D., Stohl, A., Cassiani, M., Morton, D., Seibert, P., Angevine, W., Evan, S., Dingwell, A., Fast, J. D., Easter, R. C., Pisso, I., Burkhart, J., and Wotawa, G.: The Lagrangian particle dispersion model FLEXPART-WRF version 3.1, Geosci. Model Dev., 6, 1889–1904, https://doi.org/10.5194/gmd-6-1889-2013, 2013.
Buchard, V., da Silva, A., Randles, C., Colarco, P., Ferrare, R., Hair, J.,
Hostetler, C., Tackett, J., and Winker, D.: Evaluation of the surface PM2.5 in version 1 of the NASA MERRA Aerosol Reanalysis over the United States, Atmos. Environ., 125, 100–111, 2016.
Chow, J. C., Lowenthal, D. H., Chen, L.-W. A., Wang, X., and Watson, J. G.:
Mass reconstruction methods for PM2.5: a review, Air Qual. Atmos. Hlth., 8, 243–263, 2015.
Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep,
K., Balakrishnan, K., Brunekreef, B., Dandona, L., and Dandona, R.:
Estimates and 25-year trends of the global burden of disease attributable to
ambient air pollution: an analysis of data from the Global Burden of
Diseases Study 2015, Lancet, 389, 1907–1918, 2017.
Conibear, L., Butt, E. W., Knote, C., Arnold, S. R., and Spracklen, D. V.:
Residential energy use emissions dominate health impacts from exposure to
ambient particulate matter in India, Nat. Commun., 9, 617, https://doi.org/10.1038/s41467-018-02986-7, 2018a.
Conibear, L., Butt, E. W., Knote, C., Spracklen, D. V., and Arnold, S. R.:
Current and Future Disease Burden From Ambient Ozone Exposure in India,
GeoHealth, 2, 334–355, 2018b.
Courant, R., Friedrichs, K., and Lewy, H.: Über die partiellen
Differenzengleichungen der mathematischen Physik, Math. Ann.,
100, 32–74, 1928.
Cusworth, D. H., Mickley, L. J., Sulprizio, M. P., Liu, T., Marlier, M. E.,
DeFries, R. S., Guttikunda, S. K., and Gupta, P.: Quantifying the influence
of agricultural fires in northwest India on urban air pollution in Delhi,
India, Environ. Res. Lett., 13, 044018, https://doi.org/10.1088/1748-9326/aab303, 2018.
David, L. M., Ravishankara, A., Kodros, J. K., Pierce, J. R., Venkataraman,
C., and Sadavarte, P.: Premature mortality due to PM2.5 over India: Effect of atmospheric transport and anthropogenic emissions, GeoHealth, 3, 2–10, 2019.
Dekker, I. N., Houweling, S., Pandey, S., Krol, M., Röckmann, T., Borsdorff, T., Landgraf, J., and Aben, I.: What caused the extreme CO concentrations during the 2017 high-pollution episode in India?, Atmos. Chem. Phys., 19, 3433–3445, https://doi.org/10.5194/acp-19-3433-2019, 2019.
Emery, C., Tai, E., and Yarwood, G.: Enhanced meteorological modeling and
performance evaluation for two Texas ozone episodes, Prepared for the Texas
natural resource conservation commission, ENVIRON International Corp, Novato, CA, available at: https://www.tceq.texas.gov/assets/public/implementation/air/am/contracts/reports/mm/EnhancedMetModelingAndPerformanceEvaluation.pdf (last access: 24 February 2021), 2001.
Emery, C., Liu, Z., Russell, A. G., Odman, M. T., Yarwood, G., and Kumar,
N.: Recommendations on statistics and benchmarks to assess photochemical
model performance, J. Air Waste Manage., 67, 582–598, 2017.
Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67, https://doi.org/10.5194/gmd-3-43-2010, 2010.
Gani, S., Bhandari, S., Seraj, S., Wang, D. S., Patel, K., Soni, P., Arub, Z., Habib, G., Hildebrandt Ruiz, L., and Apte, J. S.: Submicron aerosol composition in the world's most polluted megacity: the Delhi Aerosol Supersite study, Atmos. Chem. Phys., 19, 6843–6859, https://doi.org/10.5194/acp-19-6843-2019, 2019.
GBD MAPS Working Group: Burden of Disease Attributable to Major Air Pollution
Sources in India. Special Report 21, Health Effects Institute, Boston, MA,
available at: https://www.healtheffects.org/system/files/GBD-MAPS-SpecRep21-India-revised_0.pdf (last access: 24 February 2021), 2018.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., and Reichle, R.: The
modern-era retrospective analysis for research and applications, version 2
(MERRA-2), J. Climate, 30, 5419–5454, 2017.
Ghude, S. D., Chate, D., Jena, C., Beig, G., Kumar, R., Barth, M., Pfister,
G., Fadnavis, S., and Pithani, P.: Premature mortality in India due to PM2.5 and ozone exposure, Geophys. Res. Lett., 43, 4650–4658, 2016.
Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O.,
and Lin, S. J.: Sources and distributions of dust aerosols simulated with
the GOCART model, J. Geophys. Res.-Atmos., 106, 20255–20273, 2001.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G.,
Skamarock, W. C., and Eder, B.: Fully coupled “online” chemistry within
the WRF model, Atmos. Environ., 39, 6957–6975, 2005.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Gupta, M. and Mohan, M.: Validation of WRF/Chem model and sensitivity of
chemical mechanisms to ozone simulation over megacity Delhi, Atmos. Environ., 122, 220–229, 2015.
Guttikunda, S. K. and Calori, G.: A GIS based emissions inventory at 1 km × 1 km spatial resolution for air pollution analysis in Delhi, India, Atmos. Environ., 67, 101–111, 2013.
Guttikunda, S. K., Goel, R., and Pant, P.: Nature of air pollution, emission
sources, and management in the Indian cities, Atmos. Environ., 95,
501–510, 2014.
He, L., Lin, A., Chen, X., Zhou, H., Zhou, Z., and He, P.: Assessment of
MERRA-2 surface PM2.5 over the Yangtze river Basin: Ground-based
verification, spatiotemporal distribution and meteorological dependence,
Remote Sens., 11, 460, https://doi.org/10.3390/rs11040460, 2019.
Hodzic, A. and Jimenez, J. L.: Modeling anthropogenically controlled secondary organic aerosols in a megacity: a simplified framework for global and climate models, Geosci. Model Dev., 4, 901–917, https://doi.org/10.5194/gmd-4-901-2011, 2011.
Hodzic, A., Madronich, S., Kasibhatla, P. S., Tyndall, G., Aumont, B., Jimenez, J. L., Lee-Taylor, J., and Orlando, J.: Organic photolysis reactions in tropospheric aerosols: effect on secondary organic aerosol formation and lifetime, Atmos. Chem. Phys., 15, 9253–9269, https://doi.org/10.5194/acp-15-9253-2015, 2015.
Hsu, N., Lee, J., Sayer, A., Kim, W., Bettenhausen, C., and Tsay, S. C.:
VIIRS Deep Blue aerosol products over land: Extending the EOS long-term
aerosol data records, J. Geophys. Res.-Atmos., 124,
4026–4053, 2019.
Huijnen, V., Wooster, M. J., Kaiser, J. W., Gaveau, D. L., Flemming, J.,
Parrington, M., Inness, A., Murdiyarso, D., Main, B., and Van Weele, M.:
Fire carbon emissions over maritime southeast Asia in 2015 largest since
1997, Sci. Rep.-UK, 6, 26886, https://doi.org/10.1038/srep26886, 2016.
Inness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A.-M., Dominguez, J. J., Engelen, R., Eskes, H., Flemming, J., Huijnen, V., Jones, L., Kipling, Z., Massart, S., Parrington, M., Peuch, V.-H., Razinger, M., Remy, S., Schulz, M., and Suttie, M.: The CAMS reanalysis of atmospheric composition, Atmos. Chem. Phys., 19, 3515–3556, https://doi.org/10.5194/acp-19-3515-2019, 2019.
Jain, S. and Sharma, T.: Social and Travel Lockdown Impact Considering
Coronavirus Disease (COVID-19) on Air Quality in Megacities of India:
Present Benefits, Future Challenges and Way Forward,
Aerosol Air Qual. Res., 20, 1222–1236, 2020.
Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmüller, R., Denier van der Gon, H., Kuenen, J. J. P., Klimont, Z., Frost, G., Darras, S., Koffi, B., and Li, M.: HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution, Atmos. Chem. Phys., 15, 11411–11432, https://doi.org/10.5194/acp-15-11411-2015, 2015.
Jat, R., Gurjar, B. R., and Lowe, D.: Regional pollution loading in winter
months over India using high resolution WRF-Chem
simulation, Atmos. Res., 249, 105326, https://doi.org/10.1016/j.atmosres.2020.105326, 2020.
Jethva, H., Chand, D., Torres, O., Gupta, P., Lyapustin, A., and Patadia,
F.: Agricultural burning and air quality over northern India: a synergistic
analysis using NASA's A-train satellite data and ground measurements,
Aerosol Air Qual. Res., 18, 1756–1773, 2018.
Karambelas, A., Holloway, T., Kinney, P. L., Fiore, A. M., DeFries, R.,
Kiesewetter, G., and Heyes, C.: Urban versus rural health impacts
attributable to PM2.5 and O3 in northern India, Environ. Res. Lett., 13, 064010, https://doi.org/10.1088/1748-9326/aac24d, 2018.
Knote, C., Hodzic, A., Jimenez, J. L., Volkamer, R., Orlando, J. J., Baidar, S., Brioude, J., Fast, J., Gentner, D. R., Goldstein, A. H., Hayes, P. L., Knighton, W. B., Oetjen, H., Setyan, A., Stark, H., Thalman, R., Tyndall, G., Washenfelder, R., Waxman, E., and Zhang, Q.: Simulation of semi-explicit mechanisms of SOA formation from glyoxal in aerosol in a 3D model, Atmos. Chem. Phys., 14, 6213–6239, https://doi.org/10.5194/acp-14-6213-2014, 2014.
Koster, R. D., Darmenov, A. S., and da Silva, A. M.: The Quick Fire Emissions Dataset (QFED): Documentation of Versions 2.1, 2.2 and 2.4, vol. 38, Technical Report Series on Global Modeling and Data Assimilation, available at: https://ntrs.nasa.gov/citations/20180005253 (last access: 24 February 2021), 2015.
Kulkarni, S. H., Ghude, S. D., Jena, C., Karumuri, R. K., Sinha, B., Sinha,
V., Kumar, R., Soni, V., and Khare, M.: How Much Does Large-Scale Crop
Residue Burning Affect the Air Quality in Delhi?,
Environ. Sci. Technol., 54, 4790–4799, 2020.
Kumar, R., Naja, M., Pfister, G. G., Barth, M. C., Wiedinmyer, C., and Brasseur, G. P.: Simulations over South Asia using the Weather Research and Forecasting model with Chemistry (WRF-Chem): chemistry evaluation and initial results, Geosci. Model Dev., 5, 619–648, https://doi.org/10.5194/gmd-5-619-2012, 2012.
Kumar, R., Barth, M. C., Madronich, S., Naja, M., Carmichael, G. R., Pfister, G. G., Knote, C., Brasseur, G. P., Ojha, N., and Sarangi, T.: Effects of dust aerosols on tropospheric chemistry during a typical pre-monsoon season dust storm in northern India, Atmos. Chem. Phys., 14, 6813–6834, https://doi.org/10.5194/acp-14-6813-2014, 2014a.
Kumar, R., Barth, M. C., Pfister, G. G., Naja, M., and Brasseur, G. P.: WRF-Chem simulations of a typical pre-monsoon dust storm in northern India: influences on aerosol optical properties and radiation budget, Atmos. Chem. Phys., 14, 2431–2446, https://doi.org/10.5194/acp-14-2431-2014, 2014b.
Kumar, R., Barth, M. C., Nair, V. S., Pfister, G. G., Suresh Babu, S., Satheesh, S. K., Krishna Moorthy, K., Carmichael, G. R., Lu, Z., and Streets, D. G.: Sources of black carbon aerosols in South Asia and surrounding regions during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB), Atmos. Chem. Phys., 15, 5415–5428, https://doi.org/10.5194/acp-15-5415-2015, 2015a.
Kumar, R., Barth, M., Pfister, G., Nair, V., Ghude, S. D., and Ojha, N.:
What controls the seasonal cycle of black carbon aerosols in India?, J. Geophys. Res.-Atmos., 120, 7788–7812, 2015b.
Kumar, R., Ghude, S. D., Biswas, M., Jena, C., Alessandrini, S., Debnath,
S., Kulkarni, S., Sperati, S., Soni, V. K., and Nanjundiah, R. S.: Enhancing
Accuracy of Air Quality and Temperature Forecasts During Paddy Crop Residue
Burning Season in Delhi Via Chemical Data Assimilation, J. Geophys. Res.-Atmos., 125, e2020JD033019, https://doi.org/10.1029/2020JD033019, 2020.
Liu, T., Marlier, M. E., DeFries, R. S., Westervelt, D. M., Xia, K. R.,
Fiore, A. M., Mickley, L. J., Cusworth, D. H., and Milly, G.: Seasonal
impact of regional outdoor biomass burning on air pollution in three Indian
cities: Delhi, Bengaluru, and Pune, Atmos. Environ., 172, 83–92,
2018.
Marrapu, P., Cheng, Y., Beig, G., Sahu, S., Srinivas, R., and Carmichael, G. R.: Air quality in Delhi during the Commonwealth Games, Atmos. Chem. Phys., 14, 10619–10630, https://doi.org/10.5194/acp-14-10619-2014, 2014.
MoEF&CC: Nation Clean Air Programme (NCAP),
Ministry of Environment, Forest & Climate Change, India,
122 pp., 2019.
Moorthy, K. K., Beegum, S. N., Srivastava, N., Satheesh, S., Chin, M.,
Blond, N., Babu, S. S., and Singh, S.: Performance evaluation of chemistry
transport models over India, Atmos. Environ., 71, 210–225, 2013.
Morrison, H., Curry, J., and Khvorostyanov, V.: A new double-moment
microphysics parameterization for application in cloud and climate models,
Part I: Description, J. Atmos. Sci., 62, 1665–1677, 2005.
Murthy, B., Latha, R., Tiwari, A., Rathod, A., Singh, S., and Beig, G.:
Impact of mixing layer height on air quality in winter,
J. Atmos. Sol.-Terr. Phy., 197, 105157, https://doi.org/10.1016/j.jastp.2019.105157, 2020.
Nakanishi, M. and Niino, H.: Development of an improved turbulence closure
model for the atmospheric boundary layer,
J. Meteorol. Soc. Jpn., 87, 895–912, 2009.
Nakoudi, K., Giannakaki, E., Dandou, A., Tombrou, M., and Komppula, M.: Planetary boundary layer height by means of lidar and numerical simulations over New Delhi, India, Atmos. Meas. Tech., 12, 2595–2610, https://doi.org/10.5194/amt-12-2595-2019, 2019.
Navinya, C. D., Vinoj, V., and Pandey, S. K.: Evaluation of PM2.5 Surface Concentrations Simulated by NASA's MERRA Version 2 Aerosol Reanalysis over India and its Relation to the Air Quality Index, Aerosol Air Qual. Res., 20, 1329–1339, 2020.
Pan, X., Ichoku, C., Chin, M., Bian, H., Darmenov, A., Colarco, P., Ellison, L., Kucsera, T., da Silva, A. M., Wang, J., Oda, T., and Cui, G.: Six global biomass burning emission datasets: intercomparison and application in one global aerosol model, Atmos. Chem. Phys., 20, 969–994, https://doi.org/10.5194/acp-20-969-2020, 2020.
Pant, P., Shukla, A., Kohl, S. D., Chow, J. C., Watson, J. G., and Harrison,
R. M.: Characterization of ambient PM2.5 at a pollution hotspot in New
Delhi, India and inference of sources, Atmos. Environ., 109, 178–189, 2015.
Provençal, S., Buchard, V., da Silva, A. M., Leduc, R., Barrette, N.,
Elhacham, E., and Wang, S.-H.: Evaluation of PM2.5 surface concentration
simulated by Version 1 of the NASA's MERRA Aerosol Reanalysis over Israel
and Taiwan, Aerosol Air Qual. Res., 17, 253–261, https://doi.org/10.4209/aaqr.2016.04.0145, 2017.
Rajak, R. and Chattopadhyay, A.: Short and long-term exposure to ambient
air pollution and impact on health in India: a systematic review,
Int. J. Environ. Heal. R., 30, 593–617, https://doi.org/10.1080/09603123.2019.1612042, 2020.
Ramanathan, V. and Carmichael, G.: Global and regional climate changes due
to black carbon, Nat. Geosci., 1, 221–227,
https://doi.org/10.1038/ngeo156, 2008.
Randles, C., da Silva, A. M., Buchard, V., Colarco, P., Darmenov, A.,
Govindaraju, R., Smirnov, A., Holben, B., Ferrare, R., and Hair, J.: The
MERRA-2 aerosol reanalysis, 1980 onward, Part I: System description and data
assimilation evaluation, J. Climate, 30, 6823–6850, 2017.
Saide, P. E., Peterson, D. A., da Silva, A. M., Anderson, B., Ziemba, L. D.,
Diskin, G., Sachse, G., Hair, J., Butler, C., and Fenn, M.: Revealing
important nocturnal and day-to-day variations in fire smoke emissions
through a multiplatform inversion, Geophys. Res. Lett., 42, 3609–3618, 2015.
Saikawa, E., Trail, M., Zhong, M., Wu, Q., Young, C. L., Janssens-Maenhout,
G., Klimont, Z., Wagner, F., Kurokawa, J.-I., and Nagpure, A. S.:
Uncertainties in emissions estimates of greenhouse gases and air pollutants
in India and their impacts on regional air quality, Environ. Res. Lett., 12, 065002, https://doi.org/10.1088/1748-9326/aa6cb4, 2017.
Schroeder, W., Oliva, P., Giglio, L., and Csiszar, I. A.: The New VIIRS 375
m active fire detection data product: Algorithm description and initial
assessment, Remote Sens. Environ., 143, 85–96, 2014.
Sharma, A., Ojha, N., Pozzer, A., Mar, K. A., Beig, G., Lelieveld, J., and Gunthe, S. S.: WRF-Chem simulated surface ozone over south Asia during the pre-monsoon: effects of emission inventories and chemical mechanisms, Atmos. Chem. Phys., 17, 14393–14413, https://doi.org/10.5194/acp-17-14393-2017, 2017.
Sitch, S., Cox, P., Collins, W., and Huntingford, C.: Indirect radiative
forcing of climate change through ozone effects on the land-carbon sink,
Nature, 448, 791–794, 2007.
Song, Z., Fu, D., Zhang, X., Wu, Y., Xia, X., He, J., Han, X., Zhang, R.,
and Che, H.: Diurnal and seasonal variability of PM2.5 and AOD in North
China plain: Comparison of MERRA-2 products and ground measurements, Atmos. Environ., 191, 70–78, 2018.
Turpin, B. J. and Lim, H.-J.: Species contributions to PM2.5 mass
concentrations: Revisiting common assumptions for estimating organic mass,
Aerosol. Sci. Tech., 35, 602–610, 2001.
US Environmental Protection Agency: Integrated science assessment for ozone and related photochemical oxidants, EPA 600/R-10/076F, available at:
https://www.epa.gov/isa/integrated-science-assessment-isa-ozone-and-related-photochemical-oxidants (last access: 24 February 2021), 2013.
Venkataraman, C., Brauer, M., Tibrewal, K., Sadavarte, P., Ma, Q., Cohen, A., Chaliyakunnel, S., Frostad, J., Klimont, Z., Martin, R. V., Millet, D. B., Philip, S., Walker, K., and Wang, S.: Source influence on emission pathways and ambient PM2.5 pollution over India (2015–2050), Atmos. Chem. Phys., 18, 8017–8039, https://doi.org/10.5194/acp-18-8017-2018, 2018.
Vijayakumar, K., Safai, P., Devara, P., Rao, S. V. B., and Jayasankar, C.:
Effects of agriculture crop residue burning on aerosol properties and
long-range transport over northern India: a study using satellite data and
model simulations, Atmos. Res., 178, 155–163, 2016.
Wang, W., Bruyere, C., Duda, M., Dudhia, J., Gill, D., Kavulich, M., Keene,
K., Lin, H., Michalakes, J., and Rizvi, S.: User's Guides for the Advanced
Research WRF (ARW) Modeling System, version 3, available at: https://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3/contents.html (last access: 24 February 2021), 2018.
WHO: WHO Air quality guidelines for particulate matter, ozone, nitrogen
dioxide and sulfur dioxide: global update 2005: summary of risk assessment, World Health Organization, Geneva, Switzerland, available at:
https://apps.who.int/iris/handle/10665/69477 (last access: 24 February 2021), 2006.
WHO: WHO global urban ambient air pollution database (update 2016), Geneva,
Diunduh, WHO, Switzerland, available at: https://www.who.int/airpollution/data/cities-2016/en/ (last access: 24 February 2021), 2016.
Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., and Soja, A. J.: The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning, Geosci. Model Dev., 4, 625–641, https://doi.org/10.5194/gmd-4-625-2011, 2011.
World-Bank: India: Systematic Countary Diagnostic, Realizing the promise of
prosperity, World Bank 126284-IN, available at: http://documents.worldbank.org/curated/en/629571528745663 168/India-Systematic-country-diagnostic-realizing-the-promise-of-prosperity (last access: 24 February 2021), 2018.
Xiu, D.: Numerical methods for stochastic computations: a spectral method
approach, Princeton, New Jersey, USA, 127 pp.,
https://doi.org/10.2307/j.ctv7h0skv, 2010.
Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for
simulating aerosol interactions and chemistry (MOSAIC), J. Geophys. Res.-Atmos., 113, D13204, https://doi.org/10.1029/2007JD008782, 2008.
Zhao, C., Liu, X., Leung, L. R., Johnson, B., McFarlane, S. A., Gustafson Jr., W. I., Fast, J. D., and Easter, R.: The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: modeling sensitivities to dust emissions and aerosol size treatments, Atmos. Chem. Phys., 10, 8821–8838, https://doi.org/10.5194/acp-10-8821-2010, 2010.
Short summary
We used air quality modeling to study an extreme pollution episode in November 2017 in India. We found both local and regional emissions contribute to high pollution levels. The extreme pollution values were the result of agricultural fires in the northwest of India. Ozone should be considered in future air quality management strategies.
We used air quality modeling to study an extreme pollution episode in November 2017 in India. We...
Altmetrics
Final-revised paper
Preprint