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Abstract. The Indo-Gangetic Plain (IGP) experienced an
intensive air pollution episode during November 2017.
Weather Research and Forecasting model coupled to
Chemistry (WRF-Chem), a coupled meteorology–chemistry
model, was used to simulate this episode. In order to capture
PM2.5 peaks, we modified input chemical boundary condi-
tions and biomass burning emissions. The Community At-
mosphere Model with Chemistry (CAM-chem) and Modern-
Era Retrospective analysis for Research and Applications
Version 2 (MERRA-2) global models provided gaseous and
aerosol chemical boundary conditions, respectively. We also
incorporated Visible Infrared Imaging Radiometer Suite (VI-
IRS) active fire points to fill in missing fire emissions in the
Fire INventory from NCAR (FINN) and scaled by a factor of
7 for an 8 d period. Evaluations against various observations
indicated the model captured the temporal trend very well al-
though missed the peaks on 7, 8, and 10 November. Modeled
aerosol composition in Delhi showed secondary inorganic
aerosols (SIAs) and secondary organic aerosols (SOAs) com-
prised 30 % and 27 % of total PM2.5 concentration, respec-
tively, during November, with a modeled OC/BC ratio of
2.72. Back trajectories showed agricultural fires in Punjab
were the major source for extremely polluted days in Delhi.
Furthermore, high concentrations above the boundary lay-
ers in vertical profiles suggested either the plume rise in the
model released the emissions too high or the model did not
mix the smoke down fast enough. Results also showed long-
range-transported dust did not affect Delhi’s air quality dur-
ing the episode. Spatial plots showed averaged aerosol opti-

cal depth (AOD) of 0.58 (±0.4) over November. The model
AODs were biased high over central India and low over the
eastern IGP, indicating improving emissions in the eastern
IGP can significantly improve the air quality predictions. We
also found high ozone concentrations over the domain, which
indicates ozone should be considered in future air quality
management strategies alongside particulate matter.

1 Introduction

Ambient air pollution remains a major environmental is-
sue, even after significant worldwide efforts starting after the
deadly smog of London in 1952. It is the fifth-ranking risk
of death and a major threat to climate and ecosystems (Co-
hen et al., 2017; Ramanathan and Carmichael, 2008; Sitch
et al., 2007). Air pollution contains many species; particu-
late matter (PM) is currently the air pollutant of most con-
cern, especially in developing countries like India. India is
an emerging economy with a burgeoning population that has
accelerated its industrial activities in the last 3 decades, lead-
ing to widespread air pollution and resulting adverse health
effects. There are many Indian cities on the list of most pol-
luted cities of the world (World-Bank, 2018; Guttikunda et
al., 2014; WHO, 2016). Studies show that ozone and par-
ticulate matter with a diameter of less than 2.5 µm (PM2.5)
are attributed to more than 1 million individual premature
deaths in India (Cohen et al., 2017; GBD MAPS Working
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Group, 2018). David et al. (2019) found that anthropogenic
emissions within India led to about 80 % of the total prema-
ture deaths due to PM2.5 in India. Furthermore as industrial
activities are growing, emissions are increasing too; health
impacts attributed to long-term exposure to air pollution are
predicted to increase based on current policies (Conibear et
al., 2018a).

Short-term extreme pollution events lead to increased hos-
pital admissions and mortalities (Anenberg et al., 2018; Ra-
jak and Chattopadhyay, 2020). Forest and agricultural fires,
dust storms, increased local activities, and stagnant meteo-
rological conditions are major contributing factors in these
air pollution episodes (Beig et al., 2019; Jethva et al., 2018).
While forecasting models help authorities to notify people
of these extreme pollution events, hindcasting models help
scientists improve the capabilities of the models to predict
pollution events, identify the main responsible factors caus-
ing these events, and inform policy makers as they develop
pollution control strategies. However, the ability of air qual-
ity models for simulating short-term events highly depends
on the quality of input chemical data (i.e., emissions). For
example, the total amount of global fire emissions can dif-
fer by a factor of 3–4 based on the emission inventory used
(Pan et al., 2020). Furthermore, dust storms can travel long
distances and influence another region’s air quality (Ashrafi
et al., 2017; Beig et al., 2019). David et al. (2019) attributed
about 16 % of total premature PM2.5-related deaths to emis-
sions outside India. Moreover, studies of black carbon (BC)
in southern Asia have revealed that local emissions in west-
ern India can affect eastern and southern regions’ air qual-
ity (Kumar et al., 2015a). As a result, global models, which
provide boundary conditions needed by regional air quality
models, can significantly affect the simulated results (He et
al., 2019).

The Indo-Gangetic Plain (IGP) experiences high levels
of air pollution during the post-monsoon season (October
to early December) due to stagnant meteorological condi-
tions and higher air pollution emissions (Adhikary et al.,
2007; Marrapu et al., 2014). Figure 1a shows the averaged
aerosol optical depth (AOD) retrieved from the Visible In-
frared Imaging Radiometer Suite (VIIRS) remote sensing in-
strument during November 2017 over northern India. The
IGP region has the highest AOD values with the largest val-
ues in the northwestern parts, which is mostly due to crop
residue burning (Beig et al., 2020; Jethva et al., 2018; Liu
et al., 2018; Venkataraman et al., 2018; Vijayakumar et al.,
2016). Kulkarni et al. (2020) found India’s northwestern agri-
cultural fires could contribute up to 75 % of Delhi’s PM2.5
concentration.

Not only is there significant spatial variation over the
IGP, but also PM2.5 concentrations change on a daily ba-
sis (Fig. 1c). Delhi, the capital of India with annual aver-
age PM2.5 concentration of 120 µgm−3 (Amann et al., 2017),
experienced severe extreme air pollution during Novem-
ber 2017. Figure 1c shows the daily averaged PM2.5 concen-

trations measured with the US EPA instrument located at the
US Embassy in Delhi. Daily PM2.5 concentrations reached
values of more than 900 µgm−3, 15 (37.5) times higher than
24 h averaged Indian standards (World Health Organization
(WHO) guidelines) (WHO, 2006). However, it is clear that
no day is compliant with the air quality standard values. Af-
ter this extreme pollution episode, the Indian government of-
ficially initiated a comprehensive air quality plan called the
National Clean Air Programme (NCAP) to reduce the air pol-
lution (MoEF&CC, 2019).

Different groups have studied this period. Dekker et
al. (2019) attributed carbon monoxide (CO) accumulation
between 11 and 14 November to stagnant meteorological
conditions, specifically, to low wind speeds and shallow at-
mospheric boundary layers. Moreover, they argued regional
air pollution transport was mostly responsible for this ex-
treme pollution episode (Dekker et al., 2019). However,
Beig et al. (2019) concluded biomass burning emissions af-
ter post-monsoon crop productions, accompanied by long-
range-transported dust from the Middle East, led to very high
pollution levels although stagnant conditions favored it.

While the current focus of research groups and govern-
ments is on PM, ozone concentrations also show high values
during the post-monsoon season. Figure 1d shows measured
daily ozone concentrations at one Central Pollution Control
Board (CPCB) station in Delhi; concentrations exceeded In-
dia’s ozone air quality guidelines. Moreover, the ozone con-
centrations followed a similar daily variation to PM during
November 2017 (Fig. 1d). As a result, extreme pollution
episodes not only cause PM-related health issues but also
increase the risk of chronic obstructive pulmonary disease
(COPD) (the most important health outcome of ozone pollu-
tion) (Conibear et al., 2018b; US Environmental Protection
Agency, 2013).

Models usually underestimate the concentrations during
extreme pollution periods unless they apply chemical data
assimilation (Dekker et al., 2019; Kulkarni et al., 2020; Ku-
mar et al., 2015b, 2020). Moreover, there are different in-
put data in terms of chemical boundary conditions and fire
emissions that can affect air quality modeling results (He
et al., 2019). The main purpose of this study is to inves-
tigate the sensitivity of model predictions to the main in-
puts into the model. Prediction of extreme pollution events
is important as such events have major impacts on people
and also make a strong impression regarding the capabil-
ities of models. However, extreme events are hard to pre-
dict because they are often heavily impacted by episodic
emission sources. Here we take the approach of systemati-
cally exploring the impacts of different boundary conditions,
dust, fire, and anthropogenic emissions on the predictions
of the pollution episode in November 2017. A contempo-
rary way to try to capture such events in a prediction model
is to employ data assimilation (Kumar et al., 2020). The
data assimilation results compensate for deficiencies in the
inputs as well as for structural problems within the mod-
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Figure 1. WRF-Chem modeling domain, ground measurement stations, and observed air quality: (a) modeling domain and location of Delhi
(∗) and AERONET stations at Jaipur and Kanpur (N) and underlying VIIRS AOD (550 nm) averaged over November 2017; the black line
also shows the path that was used for vertical cross-section analysis. (b) Location of CPCB stations (black stars); US Embassy station (red
star); and North Campus, Delhi University (blue star). (c) Calendar map of averaged daily PM2.5 concentration measured at US Embassy,
(d) Calendar map of averaged daily ozone concentration measured at North Campus, Delhi University.

els. But the effectiveness of data assimilation improves as
the capabilities of the forward model improves. Therefore,
our results are also important for those using data assim-
ilation to improve predictability. In this study, we use the
Weather Research and Forecasting model coupled to Chem-
istry (WRF-Chem). Through a series of sensitivity experi-
ments, we evaluate the impacts of biomass burning emissions
coming from the Fire INventory from NCAR (FINN) and
Quick Fire Emissions Dataset (QFED); chemical boundary
conditions retrieved from the Model for Ozone and Related
chemical Tracers (MOZART), the Community Atmosphere
Model with Chemistry (CAM-chem), the Copernicus Atmo-
sphere Monitoring Service (CAMS), and Modern-Era Ret-
rospective analysis for Research and Applications Version 2
(MERRA-2) global models; the role of incorporating VIIRS
active fire hot spots to improve biomass burning emission in-
ventories and global models to improve chemical boundary
conditions; and changes in dust and anthropogenic emissions
on modeled PM2.5 concentration during November 2017. We
also evaluate ozone predictions.

This paper is organized as follows. First, the WRF-Chem
configuration; sensitivity experiments; and the observation
datasets, including ground measurements and satellite data,
are described. Then, after evaluating the model performance
for the best experiment, the impacts of using different
datasets as input data on modeled PM2.5 concentrations dur-
ing November 2017 are analyzed and discussed.

2 Methods

2.1 WRF-Chem configuration

WRF-Chem is a numerical modeling framework that solves
transport, chemistry, and physics of the atmosphere (Grell
et al., 2005). The online interaction between meteorology,
thermodynamic processes, and atmospheric chemistry makes
it a powerful and reliable model in the community. WRF-
Chem (version 4.0) with one domain centered on Delhi with
a 15 km horizontal grid resolution and 39 vertical layers was
used in this study. The domain was set to be big enough to
include the northwest biomass burning and urban emission
sources in the simulation process as they have been shown
to be contributors to poor air quality in the region in pre-
vious studies (Amann et al., 2017). In the following, we
present the model configuration for the base scenario (ID –
FINN_VIIRS_7Xperiod2).

The National Centers for Environmental Prediction
(NCEP) Global Forecast System (GFS) final analysis (FNL)
1× 1◦ and 6 h spatial and temporal resolution meteorologi-
cal fields (https://rda.ucar.edu/datasets/ds083.2/, last access:
22 January 2020) were used as initial and boundary condi-
tions for the meteorology. CAM-chem data (Buchholz, 2019)
with a horizontal resolution of 0.9× 1.25◦ and 56 vertical
levels provided chemical boundary conditions for gaseous
species. MERRA-2 reanalysis data with 0.625× 0.5◦ hori-
zontal and 72 vertical model levels were used for aerosol
species (Bosilovich et al., 2016). However, input data have
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uncertainties, and small uncertainties in nonlinear govern-
ing equations of numerical weather predictions can lead to
non-negligible errors in results (Xiu, 2010). As a result, re-
initialization of numerical weather prediction (NWP) mod-
els is suggested instead of free runs (Abdi-Oskouei et al.,
2020). In this study, the model ran for 30 h each day start-
ing at 00Z and the first 6 h of data was discarded to account
for daily spin-up. Meteorological initial and boundary con-
ditions and chemical boundary conditions were re-initialized
daily at 00Z using global models. However other than for the
first cycle in which global models provided initial chemical
conditions data, chemical fields from the previous cycle were
used as the next cycle’s initial chemical conditions. Table 1
summarizes the WRF-Chem physical and chemical configu-
ration options.

Studies have shown improvements for ozone simulations
in Delhi using more complicated chemistry mechanisms like
MOZART and CBMZ compared to simple mechanisms like
RACM and RADM (Gupta and Mohan, 2015; Sharma et
al., 2017). The MOZART gas-phase chemistry mechanism
and the four-bin Model for Simulating Aerosol Interactions
and Chemistry (MOSAIC-4bin) were used for modeling at-
mospheric chemistry and aerosol properties as suggested
in previous studies over India (Kumar et al., 2015a). The
MOZART version-4 mechanism was initially developed for
global modeling of ozone and other tracers in the troposphere
(Emmons et al., 2010). Although it includes 97 gas-phase
and bulk aerosols, all monoterpenes, which are important in
ozone chemistry, were initially lumped together. As a result,
Hodzic et al. (2015) added a detailed treatment of monoter-
penes and Knote et al. (2014) updated the isoprene oxida-
tion scheme in the MOZART mechanism in WRF-Chem.
MOSAIC is an aerosol model that considers a wide range
of aerosol species that are important on a regional scale
and treats the chemical and microphysical processes between
them including nucleation, coagulation, thermodynamics and
phase equilibrium, and gas–particle partitioning (Zaveri et
al., 2008). Hodzic and Jimenez (2011) updated the secondary
organic aerosol (SOA) formation mechanism, and the up-
dated version is available in WRF-Chem for performing re-
gional air quality modeling studies. MOSAIC-4bin, used in
the current study, calculates all the above-mentioned aerosol
physics and chemistry in four sectional aerosol size bins with
the assumption that each bin is internally mixed and all the
particles within a bin have the same chemical composition
(Zaveri et al., 2008).

In India, both anthropogenic and natural sources have
important impacts on air quality. Biomass and biofuel
use in the residential sector for heating and cooking pur-
poses make significant contributions to air quality in In-
dia (Conibear et al., 2018a; David et al., 2019; Venkatara-
man et al., 2018). Moreover, there are more than 1000
power plants and brick kilns in India that are major an-
thropogenic sources of SO2 and particulate matter, respec-
tively (Guttikunda and Calori, 2013). Other than these in-

dustrialized sources, the literature shows that biomass burn-
ing (e.g. agricultural waste burning) contributes to 37 %
of air pollution over the sub-continent (Kumar et al.,
2015a). The Hemispheric Transport of Air Pollution (HTAP
v2.2) (Janssens-Maenhout et al., 2015) emission inven-
tory of 2010 with a 0.1◦ horizontal resolution, mapped to
the MOZART–MOSAIC mechanism (https://www2.acom.
ucar.edu/wrf-chem/wrf-chem-tools-community, last access:
1 December 2020), was used as the base anthropogenic
emission inventory. Although the accuracy of urban anthro-
pogenic emission inventories has significant effects on air
quality modeling studies (Gupta and Mohan, 2015; Kumar
et al., 2012; Sharma et al., 2017), the focus of this paper is to
capture the air pollution due to regional sources; we did not
use higher-resolution emission inventories for Delhi.

The Fire INventory from NCAR, version 1.5 (FINNv1.5),
and Model of Emissions of Gases and Aerosols from Nature
(MEGAN v 2.0.4) were used as biomass burning emission
and biogenic emission inventories, respectively (Guenther et
al., 2006; Wiedinmyer et al., 2011). However, other studies
have noticed that uncertainties in FINN emissions can signif-
icantly modify the results (Kulkarni et al., 2020). Therefore,
two modifications were applied to FINN data to provide bet-
ter input data: filling missing fires using VIIRS fire radia-
tive power (FRP) data and scaling the fire emissions (scaling
procedure described in detail later). Liu et al. (2018) used
FRP values to approximate the stubble burning areas affect-
ing Delhi’s air quality. In their statistical study, 99 % of post-
monsoon FRP values were attributed to agricultural fires (Liu
et al., 2018). In this study, we used FRP values to improve fire
emissions. Specifically, we first regridded VIIRS 375 m reso-
lution FRP data to our domain. Then at each hour, for all grid
cells that have FINN emissions, we find the corresponding
mean VIIRS FRP and perform a linear regression between
FRP and emission flux. Afterwards, we apply the regres-
sion line parameters to VIIRS FRP for the grid cells that do
not have any FINN emissions, to estimate the flux. It should
be mentioned that all the available FRP data were utilized
disregarding the retrieval’s confidence level. Moreover, we
used VIIRS instead of MODIS data as they provided higher-
resolution active fire points data (375 m vs. 1 km), which is
an important point for small fires. For example, no active
fire points in the Moderate Resolution Imaging Spectrora-
diometer (MODIS) instrument were reported in 2018 post-
monsoon for Uttar Pradesh (Kulkarni et al., 2020). Figure 9
shows more fire grid cells in the eastern IGP and central India
when incorporating VIIRS data into the FINN inventory. We
acknowledge that this technique is a first-order approxima-
tion and can have large errors as FINN is based on burned-
area algorithms from MODIS-retrieved data; more detailed
research is required to improve the idea.

Dust storms are an important natural pollution source that
have caused many pollution events over some parts of India
(Kumar et al., 2014a). The Goddard Global Ozone Chem-
istry Aerosol Radiation and Transport (GOCART) mecha-
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nism was used to calculate the threshold wind velocity and
total dust emissions; about 70 % of the total mass was then
distributed between different bins of the other inorganic (OIN
aerosol component in WRF-Chem; OIN represents all pri-
mary inorganic PM) components in the model with the as-
sumption that the rest are larger than PM10 (Zhao et al.,
2010). This is based on a study in northern Africa, where
Zhao et al. (2010) allocated about 1 % of the dust to bins with
a diameter of less than 2.5 µm and 69 % of the dust in bin 4
(2.5–10 µm) and assumed the rest was bigger than 10 µm and
would not remain in the atmosphere for an influential period.

2.2 Sensitivity experiments

Three sets of experiments were performed to explore the im-
pact of using different global data (as either boundary condi-
tions or emissions) and dust emission formulations on PM2.5
and AOD predictions (Table 2). It should be mentioned that
all the modeling options and other input data remained un-
changed unless specified.

One set of experiments focused on the sensitivity of
the predictions to biomass burning emissions. First, we
compared the impacts of two different biomass burning
emission inventories, namely FINN and QFED (Koster et
al., 2015). Specifically, simulations using QFED (ID –
QFED_CAMCHEM) and FINN (ID – FINN_CAMCHEM)
were performed to understand the impact of different fire de-
tection algorithms. When using QFED, it should be men-
tioned that we mapped total CO values to VOC species in
the MOZART chemistry mechanism based on emission fac-
tors provided in the literature instead of using VOC emis-
sions directly from QFED (Akagi et al., 2011). Second, we
investigated whether FINN fire emissions were underesti-
mated for all the days (ID – FINN_10Xall), some days (ID –
FINN_10Xperiod1), or just 1 d before the pollution episode
on 5 November (ID – FINN_10Xday). Then after modify-
ing FINN using VIIRS FRP data, we performed a sensitiv-
ity test by changing the period for scaling fire emissions.
Specifically, we scaled fire emissions for a 15 d period be-
tween 3 and 17 November (ID – FINN_VIIRS_10Xperiod1)
and an 8 d period between 5 and 13 November (ID –
FINN_VIIRS_10Xperiod2). We also evaluated the perfor-
mance for a scaling factor of 10 in comparison with 7 (ID
– FINN_VIIRS_7Xperiod2). Anthropogenic emissions over
India also have high uncertainties (Saikawa et al., 2017).
As a result, we studied how increasing the anthropogenic
aerosol emissions by a factor of 2 affects the results (ID –
BASE_ANTHRO2X).

Another set of experiments evaluated the impacts of chem-
ical boundary conditions. Many global datasets can be used
in regional air quality modeling. Simulations were per-
formed using the global modeling systems CAM-chem (ID
– FINN_CAMCHEM), MOZART (ID – FINN_MOZART),
CAMS (ID – FINN_CAMS.), and a combination of CAM-
chem for gaseous and MERRA-2 for aerosol species (ID –

FINN_MERRA2). It is important to note that CAMS and
MERRA-2 are reanalysis models and use observed data to
improve the results. CAMS assimilates the MODIS and Ad-
vanced Along-Track Scanning Radiometer (AATSR) satel-
lite instruments’ AODs (Inness et al., 2019). MERRA-2 as-
similates AOD from multiple sources including MODIS, the
Multi-angle Imaging SpectroRadiometer (MISR), the Ad-
vanced Very High Resolution Radiometer (AVHRR), and the
AErosol RObotic NETwork (AERONET) although assimi-
lating some products has been stopped since 2014 (Randles
et al., 2017).

Finally, simulations were conducted for various dust emis-
sion modifications. In one simulation, we turned off the dust
emission option in the model (ID – NO_DUST), while in
another simulation, we increased total dust emissions by
factor of 5 to explore if dust emissions were underesti-
mated in the model (ID – DUST_5X). Moreover, we changed
the allocation of total dust to different bins of the MO-
SAIC module to see whether different allocation of aerosols
can contribute to the observed extreme pollution in Delhi
(ID – DUST_allocation). Specifically, we took 30 % from
the fourth bin (2.5–10 µm) and allocated 25 % of it to the
third bin (0.625–2.5 µm) and 5 % to the second bin (0.156–
0.625 µm). More allocation to bins 2 and 3 was not consid-
ered, as it was not realistic of the large-size nature of dust
aerosols. The FINN_10Xall scenario represents the simula-
tion with the turned-on dust option (original allocation) in the
model. Detailed results from experiments on boundary con-
ditions and dust emissions can be found in the Supplement.

2.3 Observation data

The model performance was evaluated using ground mea-
surements, spaceborne instruments, and global reanaly-
sis data. Specifically, we used data collected by the
CPCB over the domain for performing statistical analy-
sis. They include stations over Delhi (19 stations), Ra-
jasthan (10 stations), Haryana (4 stations), and Pun-
jab (3 stations). No additional quality control filters,
other than the ones by the CPCB (https://cpcb.nic.in/
quality-assurance-quality-control/, last access: 20 Febru-
ary 2021), were applied. We evaluated the results after ap-
plying the filters proposed by other studies (e.g., Kumar et
al., 2020); they had slight impacts on statistics (shown in
the Supplement). PM2.5 data measured by a US EPA instru-
ment at the US Embassy in Delhi were used as the reference
station data. Level-2 VIIRS remote sensing instrument data
on board the Suomi National Polar-orbiting Partnership (S-
NPP) were used for comparing the spatial pattern of AOD
and fire counts over the domain. Specifically, aerosol prod-
ucts with around a 6 km horizontal resolution based on the
Deep Blue algorithm (Hsu et al., 2019) and 375 m active fire
products based on the VNP14IMG algorithm (Schroeder et
al., 2014) were used. There are only two AERONET stations
in the domain (Fig. 1a). AERONET data at these two sites
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Table 1. Details of WRF-Chem physical and chemical setup configuration.

Process Method

Domain One domain (15 km horizontal resolution)
Land use MODIS 20 category
Time step 60 s based on CFL stability criterion (Courant et al., 1928)
Vertical layers 39 (top at 5 hPa)
Microphysics Morrison double-moment scheme (Morrison et al., 2005)
Longwave radiation RRTMG, called every 5 min
Shortwave radiation Goddard, called every 5 min
Planetary boundary layer MYNN level 3 (Nakanishi and Niino, 2009)
Land surface Noah land surface model (Wang et al., 2018)
Gas-phase chemistry MOZART-4, called every 10 min
Photolysis scheme New TUV, called every 10 min
Aerosol scheme MOSAIC-4bin (no aqueous-phase chemistry), called every 10 min
Dust GOCART (Ginoux et al., 2001)
Initial and boundary meteorology NCEP FNL

Table 2. List of scenarios performed in this study.

Simulation ID Initial or boundary chemical (gaseous
and aerosol) conditions

Biomass burning emission inventory Dust

Reference scenario

FINN_VIIRS_7Xperiod2 (base scenario) CAM-chem (gas) and MERRA-2
(aerosol)

7 times higher (FINN and VIIRS) for 5
to 13 Nov

GOCART

Biomass burning emission sensitivities

QFED_CAMCHEM CAM-chem (gas and aerosol) QFED GOCART
FINN_CAMCHEM CAM-chem (gas and aerosol) FINN GOCART
FINN_10Xall CAM-chem (gas) and MERRA-2

(aerosol)
10-times-higher FINN GOCART

FINN_10Xday CAM-chem (gas) and MERRA-2
(aerosol)

10-times-higher FINN for 5 Nov GOCART

FINN_10Xperiod1 CAM-chem (gas) and MERRA-2
(aerosol)

10-times-higher FINN for 3 to 17 Nov GOCART

FINN_VIIRS_10Xperiod1 CAM-chem (gas) and MERRA-2
(aerosol)

10 times higher (FINN and VIIRS) for
3 to 17 Nov

GOCART

FINN_VIIRS_10Xperiod2 CAM-chem (gas) and MERRA-2
(aerosol)

10 times higher (FINN and VIIRS) for
5 to 13 Nov

GOCART

Boundary condition sensitivities

FINN_MOZART MOZART (gas and aerosol) FINN GOCART
FINN_CAMS CAMS (gas and aerosol) FINN GOCART
FINN_MERRA-2 CAM-chem (gas) and MERRA-2

(aerosol)
FINN GOCART

Dust emission sensitivities

NO_DUST CAM-chem (gas) and MERRA-2
(aerosol)

10-times-higher FINN Turned off

DUST_5X CAM-chem (gas) and MERRA-2
(aerosol)

10-times-higher FINN 5-times-higher GO-
CART emissions

DUST_allocation CAM-chem (gas) and MERRA-2
(aerosol)

10-times-higher FINN GOCART, put 30 % of
bin 4 in bins 2 and 3

Anthropogenic emission sensitivity

BASE_ANTHRO2X Similar to base scenario (ID – FINN_ VIIRS_7Xperiod2) except anthropogenic aerosol emissions increased
by a factor of 2
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confirmed the reliability of VIIRS-retrieved data (Fig. S5).
MERRA-2 gridded data were also used to evaluate the model
performance. MERRA-2 reanalysis is based on the assimi-
lation of many meteorological data and the assimilation of
AOD from multiple satellites (Gelaro et al., 2017). The on-
ground continuous-monitoring station guidelines state that
instruments should sample at heights between 3–10 m. Ir-
respective of this condition, some of the CPCB stations are
placed on top of buildings with a restricted clean flow of air
(personal inspections). While we observed little impact of
this situation on the concentrations in a well-mixed layer, a
meteorological parameter like wind speed data can show er-
ratic behavior. As a result, we used MERRA-2 meteorolog-
ical data to evaluate the WRF-Chem simulations using 10 m
wind speed and direction, 2 m temperature, and surface water
vapor mixing ratio variables.

We also compared MERRA-2 AOD (at 550 nm) and PM2.5
predictions with WRF-Chem results to evaluate how the as-
similation of AOD affected the predictions. The MERRA-2
PM2.5 was based on the mass mixing ratios of black carbon,
organic carbon, dust, sea salt, and sulfate. Since ammonium
concentration is not available, it is common in the litera-
ture to assume that sulfate ion will be completely neutral-
ized by ammonium and form ammonium sulfate, and there-
fore a factor of 1.375 was assumed in calculating inorganic
aerosol concentrations (Buchard et al., 2016; He et al., 2019;
Provençal et al., 2017). On the other hand, the literature sug-
gests organic carbon concentration should be multiplied by
1.4 to compensate for other missing organic compounds to
estimate the organic mass (Buchard et al., 2016; Chow et al.,
2015; He et al., 2019; Provençal et al., 2017; Turpin and Lim,
2001). However, Turpin and Lim (2001) argued that this scal-
ing factor should be 2.6 for biomass burning particles; we
used 2.6 according to our studied time period and potential
black carbon sources:

[PM]= [BC]+2.6·[OC]+1.375·[SO4]+[DUST]+[SS], (1)

where BC is black carbon, OC is organic carbon, SO4 is sul-
fate, DUST is dust, and SS is sea salt concentrations. As dust
and sea salt data are reported in multiple bins, different bins
should be used for different particle diameters.

The metrics we used to assess the performance of the sim-
ulations were the root mean square error (RMSE), mean er-
ror (ME), normalized mean bias (NMB), normalized mean
error (NME), and correlation coefficient (R) as defined in
the Supplement (Emery et al., 2017, 2001). Since low values
can have significant impacts on normalized values, which are
used in mean normalized metrics, normalized mean values
are better metrics and used in this study (Emery et al., 2017).

3 Results and discussions

3.1 Model performance

Our analysis comparing different simulations revealed that
the FINN_VIIRS_7Xperiod2 scenario had the best statisti-
cal performance of the configurations studied. This scenario
is called the base scenario, and we evaluate it in this sec-
tion. Performance of the base model in capturing the mete-
orological parameters was evaluated using MERRA-2 data
for 10 m wind speed and direction, 2 m temperature, and the
surface water vapor mixing ratio. Figure 2a–d show these
comparisons at the location of the US Embassy in Delhi
(28.59◦ N, 77.19◦ E). The model was able to capture the
general diurnal trend for all these variables and the sharp
shift in wind direction between 13 and 17 November, af-
ter the extreme pollution episode. Negatively biased wind
speed with an ME of 1.1 ms−1 and RMSE of 1.28 ms−1

shows the model generally underestimated wind speed, and
it was most predominant between 17 and 25 November. Fig-
ure 2c shows the model did not accurately capture night-
time 2 m temperature minima but captured the maximum val-
ues with an overall overestimated ME of 3.52 ◦C and RMSE
of 4.01 ◦C. The wind speed satisfied the benchmark RMSE
value of 2.0 ms−1, while temperature was higher than the tar-
geted ME goal of 2.0 ◦C (Emery et al., 2001). The representa-
tion error plays an important role in evaluating results due to
different horizontal resolutions in the model and MERRA-2
dataset (∼ 0.15×0.15 vs. 0.625×0.5◦), specifically in urban
areas. For instance, the same statistics for a rural area in Ra-
jasthan (27.0◦ N, 73.0◦ E; not shown) have smaller biases and
are compliant with benchmark values (RMSE of 0.99 ms−1

for wind speed and ME of 1.08 ◦C for 2 m temperature). For
the water vapor mixing ratio the model clearly captured the
daily variations, especially the increase after the pollution
episode (13 November). However, it showed a very sharp
day-to-night shift during the pollution episode days. The spa-
tial performance of the model averaged over November dur-
ing daytime hours (08:00 to 18:00 local time) is shown in
Fig. 2e–j. The sharp gradient between the Himalayan and
IGP regions in the northeast, the gradient between land and
sea in the southwest, and the slight gradient between differ-
ent land types in the northwest of the domain for both 10 m
wind speed and 2 m temperature were captured well. Over-
all, the model was able to capture the general daily variations
and spatial trends when compared to MERRA-2 data.

Figure 3 shows spatial distribution of the base scenario,
VIIRS data, and the bias for the 550 nm AOD, averaged over
all the days in November with 5 November as a day with
intensive fire emissions and 24 November as an illustrative
day after the extreme pollution episode. The model showed
high AODs over Delhi and Punjab, confirming satellite data.
Moreover, AODs were high over the western IGP, close to
major fires of Punjab, with a gradual gradient towards eastern
and central India. Dust emission sources at the border of Pak-
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Figure 2. Temporospatial meteorological performance of base scenario simulation: time series of simulated (green line) and MERRA-
2 (black dots) hourly (a) 10 m wind speed, (b) 10 m wind direction, (c) 2 m temperature, and (d) surface water vapor at US Embassy
coordinates. (e, f) Averaged daytime (08:00–18:00 LT) 10 m wind speed maps of model (e) and MERRA-2 (f). (g, h) Averaged daytime
(08:00–18:00 LT) 2 m temperature maps of simulations (g) and MERRA-2 (h). (i, j) Averaged daytime (08:00–18:00 LT) surface water vapor
mixing ratio (gkg−1) maps of model (i) and MERRA-2 (j).

istan also led to high AODs although they did not affect Delhi
as discussed in the Supplement. In general, the model under-
estimates AOD over the IGP and overestimates it elsewhere.
WRF-Chem predicted the averaged AOD over the whole do-
main for November 2017 to be 0.58 (±0.4), while VIIRS
data showed 0.43 (±0.26). AOD maps for 5 November show
the model generally underestimated AOD values for the en-
tire IGP region, except for Punjab. Moreover, the model un-
derestimated aerosol loadings over central India. Other stud-
ies have reported biased-low AOD and corresponding PM2.5
concentrations over other polluted regions (He et al., 2019;
Song et al., 2018). On the other hand, 24 November repre-
sented a day with no significant fire emissions. The model
did a good job capturing AOD values in the central parts
of India and around Delhi. However, the model missed high
AOD values in the eastern IGP. MERRA-2 data also did not
show high AODs over the western border with Pakistan and

did not capture extremely high AODs over Punjab, although
they showed AOD enhancements (Fig. S6).

Figure 4 shows time series of modeled, MERRA-2 prod-
uct, VIIRS-retrieved, and observed AOD at the AERONET
stations (location shown in Fig. 1). AOD values at Kan-
pur, a station in the eastern IGP, were more than 1.0 be-
fore the pollution episode, reached up to 2.0 during the
episode days, and decreased to values of between 0.5 and
1 for the rest of the days. The model captured the general
trend although missed high AODs between 9 and 13 Novem-
ber, while MERRA-2 successfully captured the AOD trend
through the whole month, including days with enhanced
AOD values. This shows that AOD assimilation in MERRA-
2 significantly improves AOD predictions. At Jaipur, located
in the southern IGP, the model overestimated AOD for the
first 5 d of November. During the pollution episode days,
the model is biased high compared to MERRA-2 and VI-
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IRS retrievals. AERONET data showed low AOD values
before the pollution episode but did not report values dur-
ing the pollution episode. This suggests, as one possibil-
ity, that PM concentrations were too high during this period
for the instrument to retrieve data. After the pollution pe-
riod, AOD values were lower than 0.5, showing relatively
low PM concentrations. In general, MERRA-2 showed better
performance in terms of NMB (Kanpur −1.3 % and Jaipur
−20.1 %) compared with our model (Kanpur: −27.4 % and
Jaipur: +29.9 %). Comparing averaged AOD with VIIRS re-
trievals for the BASE_ANTHRO2X scenario showed lower
bias over the IGP (Fig. S7). These results show the need for
improved estimates of biomass burning as well as anthro-
pogenic emissions. We also looked at the Ångström expo-
nent (AE) at Jaipur and Kanpur to understand if the model
captured the mode of the particles (Fig. S8). Over Jaipur the
model is biased high compared to AERONET data (NMB
30 %) and shows more finer aerosols in the model. After
20 November, both AERONET and VIIRS retrievals sug-
gest the dominance of coarser aerosols, while the AE for the
model does not follow the same trend. However, the modeled
PM2.5 / PM10 ratio shows more coarse aerosols compared to
the rest of the month (Fig. S9). Over Kanpur, the model AE
is biased high (NMB: 50.8 %). On the other hand, the model
shows closer AE values to VIIRS retrievals. For example,
both the model and VIIRS retrieval show similar reduction
in the AE on 8 and 9 November. Kumar et al. (2014b) also
reported slight AE overestimation in WRF-Chem during a
pre-monsoon dust storm at Kanpur and Jaipur. Furthermore,
the model and AERONET have a variational trend while
MERRA-2 is smooth during the whole month at both Jaipur
and Kanpur.

Figure 5a shows time series plots of base scenario and ob-
served PM2.5 concentration at the US Embassy station. Ob-
served values were high throughout the month on the or-
der of 200 µgm−3 with diurnal variations due to changes
in the mixing heights. The extreme pollution episode be-
gan on 7 November, when PM2.5 concentrations increased
to more than 800 µgm−3. On 8 November, the values in-
creased even more to about 1000 µgm−3. PM2.5 concentra-
tions started decreasing on 9 November and continued de-
creasing through 10 November. However, values increased
again and were high between 11 and 13 November. After-
wards, they returned to ∼ 200 µgm−3 for the rest of the
month. The model accurately captured the magnitude and di-
urnal cycle for PM2.5 for non-episodic days. Moreover, the
model was able to see the sharp increase in concentration
in the beginning of the episode starting from 7 November
with reported PM2.5 concentrations of ∼ 650 µgm−3. This
sharp increase was captured after incorporating VIIRS data
into FINN emissions accompanied by scaling the emissions
by a factor of 7. In fact, increased emissions from fires in
agricultural fields in the northwest on previous days and fa-
vorable northwesterly winds, as shown in Fig. 2, explain this
concentration hike. However, the model underestimated the

concentrations for the next 3 d. Then, the model captured the
second enhancement. Although wind direction showed good
agreement with the MERRA-2 dataset and wind speed was
biased low and even more favorable for stagnant conditions,
modeled PM2.5 concentrations had a large negative bias for
the period between 8 and 10 November. This suggests ei-
ther low local anthropogenic emissions within Delhi or some
missing pollution sources upwind of Delhi that were not in-
cluded in the emission estimates led to underestimation.

Dekker et al. (2019) studied CO concentrations during
November 2017 using satellite observations, and they re-
ported low emissions as one of the reasons for large nega-
tive concentration biases, although they proposed unfavor-
able meteorological conditions as the main reason for high
CO concentrations in Delhi, between 11 and 14 Novem-
ber. Moreover, Cusworth et al. (2018) reported that MODIS-
based biomass burning emission inventories miss many small
fires over India. Beig et al. (2019) concluded that long-range-
transported dust coming from the Middle East was a major
source for this extreme pollution episode. Figure 5a shows
that MERRA-2 did not capture high surface PM2.5 concen-
trations after 8 November. Navinya et al. (2020) reported that
MERRA-2 underestimates PM2.5 over India, especially dur-
ing the post-monsoon season. More discussions on the ex-
treme pollution episode are provided in the following sec-
tion.

Starting on 13 November, the modeled concentrations
went down as winds shifted to easterlies and wind speed in-
creased. Beig et al. (2019) found PM2.5 concentrations af-
ter the pollution episode were lower compared with simi-
lar periods in previous years. Thereafter, the concentrations
went back to values for Delhi before the episode. The model
did a fairly good job of capturing the trend during non-
episode days (Table S4). Increasing anthropogenic emissions
(ID – BASE_ANTHRO2X) on simulation results overesti-
mated PM2.5 concentrations in the US Embassy location dur-
ing non-episode days (Fig. S7).

Figure 5b and c show the averaged PM2.5 maps for all
the hours over the studied region in the base simulation and
MERRA-2 dataset. The model was able to capture higher
concentrations over northwestern India and the border with
Pakistan where agricultural fire and dust emissions play the
most important role for extreme pollution episodes over IGP.
However, the model showed higher values than MERRA-2
over southern Punjab, a region with high biomass burning
emissions (Kulkarni et al., 2020). Since MERRA-2 assimi-
lates satellite AOD data as its major aerosol forcing, it will
not be able to capture high concentrations if satellite retrieval
algorithms miss corresponding high AODs.

Figure 5b and c also show that the model was biased high
over central India and biased low over the eastern IGP. These
results indicate improving emissions in the eastern IGP can
significantly improve the simulation results. Conibear et
al. (2018a) also reported limited success of models to capture
the spatial variability in PM2.5 over India in 2016, specifi-
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cally during winter. Table 3 provides statistics for 24 h aver-
aged PM2.5 concentrations for the base scenario simulation
for Delhi and its western states. Statistics for Delhi show an
NMB of −16.6 %, which passes the “criteria” benchmark of
30 %, while an NME of 27.6 % shows better performance and
complies with the benchmark “goal” of 35 % for the whole
month (Emery et al., 2017). A correlation coefficient of 0.48
is also higher than the benchmark criterion of 0.4. Statistics
significantly improve after excluding the 4 extremely pol-
luted days between 7 and 10 November and all are within
benchmark goals (Table S4). Kumar et al. (2020) assimilated
MODIS AOD into WRF-Chem in order to improve the air
quality forecasts over Delhi. In their study, the mean bias
for first-day forecast of PM2.5 concentration decreased from
−98.7 to −13.7 µg m−3. They also showed that the RMSE
decreased from 167.4 to 117.3 µgm−3. Our results from the
base scenario (mean bias of −42.38 µgm−3 and RMSE of
118.47 µgm−3) show comparable results to the data assimi-
lation technique, although both models are still biased low.

Statistics for the state of Haryana (4 stations) show good
performance (NMB of −7.5 % and correlation coefficient
of 0.4). The model was biased high for Rajasthan (10 sta-
tions, NMB 15.5 %) and Punjab (3 stations, NMB 17 %).
The model slightly overestimated PM2.5 concentrations dur-
ing the episode days in Rajasthan but captured the concen-
trations during the rest of the month (Fig. S10). In Punjab,
measured data did not report PM2.5 enhancement during the
extreme episode, while the model showed very high concen-
trations after scaling fire emissions by a factor of 7. However,
VIIRS satellite images (e.g., Fig. 9d) clearly show massive
agricultural fires in this state during November, and its sig-
nals were expected in the measured data. The overall scatter-
plots including the averaged values for each state show good
spatial performance of the base scenario (Fig. S11).

Although different meteorological parameters can be re-
sponsible for the biases, accuracy of anthropogenic emis-
sions is important. For example, recent local anthropogenic
emission inventories developed for Delhi have higher par-
ticle emissions than in the regional inventory used in this
study, which impacts modeled PM2.5 concentrations for
typical days (Kulkarni et al., 2020). We conducted the
BASE_ANTHRO2X scenario to investigate the effect of
uncertainties in the anthropogenic emissions. This sce-
nario increased PM2.5 concentrations in Delhi to up to ∼
150 µgm−3, which led to overestimation (in contrast to un-
derestimation in the base scenario) on many of the non-
episode days (Fig. S7). Although this scenario did not help
in capturing the high concentrations during the episode, it
confirms the need for better anthropogenic emissions. On the
other hand, it reduced the bias over the IGP (Fig. S7). These
results point out the need for best estimates of both anthro-
pogenic and biomass emissions. Maps also show that aver-
aged PM2.5 concentrations over most of India were higher
than the air quality standard.

3.2 Extreme-pollution-episode analysis

Figure 6a shows the box-and-whisker plots for daily PM2.5
concentration for the base scenario and all of the CPCB sta-
tions in Delhi. Over all CPCB stations in Delhi, 24 h aver-
aged measured values for PM2.5 ranged between 133 and
664 µgm−3, which is about 2 and 11 times higher, respec-
tively, than the India 24 h standard value of 60 µgm−3. The
model showed overall good performance for daily PM2.5
concentrations for days without extreme pollution (Table S4;
NMB of −2.44 and R of 0.7) and followed the observed
trend in the extreme pollution episode (Fig. 6), which sug-
gests the overall meteorology and transport patterns were
captured by the simulations. However, the model started the
episode on 6 November and significantly overestimated the
concentrations. The model captured the median for 7 Novem-
ber very well, although measured values span a wider range.
The model missed the high concentrations on 8 Novem-
ber, which led to underestimations on 9 and 10 November,
as well, regardless of capturing the decreasing trend. How-
ever, the model was able to simulate the second wave of the
episode starting on 11 November and accurately captured
the median and range of PM2.5 concentrations on 12 and
13 November. It is important to point out that the underes-
timation of PM on 9 and 10 November persisted for all of the
sensitivity cases performed. This suggests the transport in the
model during these days missed highly polluted source re-
gions or significant emission sources for these days were not
included in the inventories or both.

Back trajectories can be used to provide insights into mod-
eled concentrations during the extreme pollution episode.
Back trajectories were calculated for releasing 10 000 air
parcels at 100 m above ground level and over eastern Delhi
using the FLEXible PARTicle dispersion model (FLEX-
PART) with inputs from WRF-Chem output (Brioude et al.,
2013). Figure 7 shows 72 h mean back trajectory maps for
6, 7, 8, 9, and 10 November. The releasing times are 00:00
(red line; denoted by the suffix _00 in the text below) and
12:00 (blue line; denoted by the suffix _12 in the text be-
low) UTC on each day. Also plotted are the fire (gray line)
and anthropogenic (black line) emissions along the trajec-
tory. The model started to build up PM2.5 concentrations on
6 November and was biased high (Fig. 6a). Back trajecto-
ries for 6 November_00 show PM2.5 concentrations were
majorly due to anthropogenic emissions (Fig. 7a). However,
6 November_12 trajectories in Fig. 7c show a spike in fire
emissions at previous hours (backward hours 5 and 30),
which immediately led to high PM2.5 concentrations. More-
over, trajectory paths for this day reveal that emissions be-
longed to fires east of Delhi. Figure 9 shows that the fires
east of Delhi in the base scenario are due to incorporating
VIIRS data into the fire emissions. Therefore, high-biased
PM2.5 concentration may be related to the scaling factor ap-
plied to eastern Delhi fires. On 7 November, the model per-
fectly captured the PM2.5 median (Fig. 6a). Back trajecto-
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Figure 3. Spatial distributions of AOD at 550 nm averaged over the whole of November (a–c), 5 November (d–f), and 24 November (g–i).
WRF-Chem maps represent base scenario results. Differences between model and VIIRS are also shown.

ries for 7 November_00 (Fig. 7d, e) show the beginning of
a shift in wind direction and PM2.5 concentration was ex-
clusively due to fire emissions on 5 November (backward
hour 40). Compared to 7 November_00, fire emission foot-
prints for 7 November_12 trajectories are smaller, while local
anthropogenic emissions are higher (Fig. 7f). Back trajecto-
ries for 8 November show the northern parts’ contribution
for both releasing times, although trajectories for 8 Novem-

ber_00 crossed through central parts of Punjab. Moreover, lo-
cal anthropogenic emission sources affected 8 November_00
trajectories. The model underestimated PM2.5 concentrations
on 8 November, which can be partly related to errors in trans-
port as the trajectories for 8 November_12 crossed eastern
parts of Punjab. However, other physical processes or lower
anthropogenic emissions can also be responsible for low-
biased concentrations. Delhi’s air quality for 9 November_00
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Figure 4. Time series of modeled (green line), VIIRS-retrieved (blue triangles), MERRA-2 (red line), and AERONET (black dots) AOD at
550 nm during November 2017 at (a) Jaipur and (b) Kanpur.

Figure 5. Temporospatial air quality performance of base scenario simulation: (a) time series of simulated (green line), MERRA-2 (red line),
and ground measurement (black dots) hourly PM2.5 concentration at US Embassy coordinates. (b, c) Hourly averaged PM2.5 concentration
maps of model regridded to MERRA-2 resolution (b) and MERRA-2 (c).

was still being affected by northern parts, while trajectories
for 9 November_12 shifted towards the east. Since trajecto-
ries for 9 November do not show any fire or anthropogenic
emission pulse, the model missed either the dynamics of that
day or emission sources. Trajectories for 10 November show
eastern flow, again, and no fire emission contribution.

To further understand the regional-scale transport of the
smoke plumes, we plotted a cross section of PM2.5 over the
path from Punjab through Delhi (Fig. 8, path line shown
in Fig. 1). PM2.5 concentrations showed typical values for
5 November_00 although they still exceeded the standard
limits. For 5 November_12, concentrations significantly in-
creased over Punjab area because of fires, and the winds
brought them on a path towards Delhi. The Punjab’s smoke
had not yet completely crossed Delhi on 6 November as back
trajectories for 00:00 and 12:00 UTC hours also showed the
effects of anthropogenic emissions and fires in eastern Delhi.
On the other hand, a significant amount of smoke was above
the boundary layer as shown in the 6 November_12 panel.
Due to shifting winds on 7 November (as shown in Fig. 2),

the smoke upwind of Delhi blew over Delhi and led to ex-
tremely high concentrations. Although the model captured
the median on 7 November, it missed the maximum extent
of observed values. Cross sections on 8, 9, and 10 November
show Punjab’s residual smoke in the boundary layer, while
we saw the model underestimated PM2.5 concentrations on
these days. Measured PM2.5 concentrations over Delhi show
a decreasing trend between 8 and 10 November (Fig. 6). Ver-
tical profiles for the base scenario also show the model cap-
tured a high biomass burning emission period on 6 November
(Fig. 12). However, it also showed high amounts of smoke
above the planetary boundary layer (PBL). Cross sections
for 11 to 14 November can be found in the Supplement
(Fig. S12). These results suggest that plume rise in the model
released the emissions too high or the model did not mix the
smoke down fast enough. Using an ECMWF map, Vijayaku-
mar et al. (2016) showed agricultural fires can transport parti-
cles via the upper troposphere and subside over Delhi. Social
reasons can also be important as the first reaction of people
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Table 3. Mean (± standard deviation), normalized mean bias (NMB), normalized mean error (NME), and Pearson’s correlation co-
efficient (R) averaged for all CPCB stations in different states during November 2017. Model values are for the base scenario
(FINN_VIIRS_7Xpeiod2). Mean values are for hourly data, while NMB, NME, and R relate 24 h averaged values.

State Hourly obs. mean (±SD) Hourly model mean (±SD) 24 h NMB 24 h NME 24 h R

(µgm−3) (µgm−3) (%) (%) (%)

Delhi 255.5 (±146.6) 213.9 (±113.9) −16.6 27.6 0.48
Haryana 177.7 (±77.6) 165.8 (±89.9) −7.5 29.5 0.40
Punjab 139.9 (±54.7) 166.7 (±198.3) 17 55.5 0.24
Rajasthan 123.4 (±62.7) 147.7 (±62.7) 15.5 34.4 0.22

during hazy days is to drive to work which directly (exhaust
emissions) and indirectly (road dust) worsens air pollution.

3.3 Sensitivity to changes in biomass burning emission
inventories

Biomass burning emissions used in the base scenario in or-
der to capture the extreme pollution episode were tuned after
exploring how these inventories influenced PM2.5 concen-
trations (Table S3). First, we looked at two different emis-
sion inventories based on different methodologies and hori-
zontal resolutions, specifically, FINNv1.5 and QFEDv2.5r1.
Both inventories rely on MODIS data; FINN is based on ac-
tive fire points and estimates of burned area, whereas QFED
uses an FRP approach (Pan et al., 2020). Figure 9 shows the
grid cells with biomass burning emissions based on QFED
(panel a), FINN (panel b), and FINN_VIIRS composition
(panel c), used in the base scenario, accompanied by active
fire points seen by VIIRS (panel d) based on the Fire Infor-
mation for Resource Management System (FIRMS) product
for 5 November. It shows FINN captured more fire points in
the domain although missed some in the eastern IGP and cen-
tral India while QFED missed almost all of the fire points in
Punjab on that specific day. As a result, the QFED simulation
did not show any major signal for PM2.5 concentration on
7 November, whereas the experiment using the FINN inven-
tory (ID – FINN_CAMCHEM) followed the measured start
of the episode period, regardless of its low-biased PM2.5 con-
centrations (Fig. S13). In general, results using the QFED in-
ventory had worse statistics (Fig. 11 and Table S3), which is
mostly due to the inability of the inventory to capture the fire
points over the domain, and it can be attributed to both the
technique and the resolution as QFED data have a ∼ 10 km
resolution, whereas FINN data have a ∼ 1 km resolution.
Pan et al. (2020) found high uncertainty between different
biomass burning emission inventories over Southeast Asia.
They showed FINN is, in general, a better dataset for trop-
ical regions as its 2 d continuous fire emissions compensate
for the lack of daily MODIS coverage used in QFED (Pan
et al., 2020; Wiedinmyer et al., 2011). Dekker et al. (2019)
increased the GFAS biomass burning emission inventory by
a factor of 5, did not see any improvement to CO simulation,
and reported about a 2 % contribution from fires to Delhi’s

air quality. Our results confirm that FINN provides better
biomass burning emissions for India for this period and shed
light on the importance of choosing a proper biomass burning
emission inventory for a specific domain.

However, the signals from the simulation using the FINN
biomass burning emission inventory were not high enough as
it recorded a maximum concentration of 400 µgm−3 while
the corresponding measured value was 680 µgm−3. Since
observation data are sporadic over India and there were not
many ground measurement stations available, sophisticated
techniques such as inversion modeling were not feasible
(Saide et al., 2015). As a result, manual tuning of the emis-
sion data was performed. The first attempt was to understand
if FINN was required to be increased for the whole month; a
15 d period around the episode; or just on 5 November, which
had many fire points in Punjab (Fig. 9). Figure 10 shows
PM2.5 time series averaged over all CPCB stations based on
these scenarios. Increasing FINN emissions for the whole
month (ID – FINN_10Xall) led to an overestimation in the
first 5 d of November, but it significantly helped in capturing
high peaks on 7 and 8 November. Moreover, it increased the
concentrations on 12 and 13 November regardless of missing
the peaks. However, it did not show any improvements be-
tween 9 and 12 November, which suggests that the included
fires did not influence Delhi’s air quality during this period.
On the other hand, increasing FINN emission data by a factor
of 10 for all days led to very high PM2.5 concentrations on
later days (20–27 November). This showed that FINN data
were not systematically biased low. In other words, these
results suggest that the FINN algorithm underestimated the
magnitude of only some fires emission amounts. Some stud-
ies have shown that thick fires can be identified as clouds
in retrieval algorithms (Dekker et al., 2019; Huijnen et al.,
2016). As another experiment, we increased FINN emissions
only on 5 November since that day had original high val-
ues in the inventory (ID – FINN_10Xday). This experiment
resulted in better PM2.5 concentrations in the last third of
November. However, it captured only the high concentra-
tions of 7 November and missed the peak of 8 November
as well as underestimated concentrations on some other days
including 13 November. Finally, we multiplied the fire emis-
sions by 10 for a 15 d period between 3 and 17 November
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Figure 6. Box-and-whisker plots of observed (black) and modeled daily PM2.5 concentration averaged over all CPCB stations in Delhi:
(a) FINN_VIIRS_7Xperiod2, (b) FINN_VIIRS_10Xperiod2, and (c) FINN_ VIIRS_10Xperiod1. Shaded area shows the time window when
biomass burning emissions were increased.

(ID – FINN_10Xperiod1). In this way, we were able to cap-
ture the peaks on 7 and 8 November, see major contributions
between 12 and 14 November, and see realistic values be-
tween 19 and 27 November. It should be mentioned this 15 d
period was chosen arbitrarily and better scaling factors could
be achieved by implementing tracers in the model, which is
beyond the scope of this paper.

Although this experiment significantly improved the sta-
tistical performance for the CPCB stations, the model spa-
tially underestimated concentrations over the eastern IGP
(Fig. S14). Moreover, we observed lower fire grid cells in
the FINN inventory compared to VIIRS active fire points
(Fig. 9). As a result, we tested how incorporating VIIRS data
into FINN in order to fill missing fire grid cells would im-
prove the results. Figure 10 shows how incorporating VIIRS
data improved the performance on 12 and 13 November (ID –
FINN_VIIRS_10Xperiod1). However, the model started the
episode too early on 6 November and overestimated PM2.5
concentrations after the episode. This suggests that the 15 d

period for increasing FINN emissions could be too long; we
then changed the scaling period from 15 to 8 d between 5 and
13 November (ID – FINN_VIIRS_10Xperiod2). This mod-
ification led to higher PM2.5 concentrations on 7 November
as Fig. 6 shows. Moreover, the model was still biased high
on after-episode days, which led to choosing the increasing
factor of 7 (ID – FINN_VIIRS_ 7Xperiod2) as our best ex-
periment.

Figure 11a shows a Taylor diagram for hourly PM2.5
concentrations based on the studied experiments, repre-
senting their statistical performance, for all the days in
November. It shows that switching between different ex-
periments mostly improved the standard deviation values.
The QFED_CAMCHEM experiment had the lowest stan-
dard deviation but missed high PM2.5 concentration values.
On the other hand, three experiments using VIIRS-integrated
fire emissions had standard deviations closer to the mea-
sured value. Although the base scenario had good statisti-
cal metrics, the standard deviation and correlation coefficient
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Figure 7. Back trajectory plots of PM2.5 concentration (base scenario) on different days for 72 h: in each row, the map shows the back
trajectory path for the mass mean location for releasing 10 000 particles over eastern Delhi at 00:00 UTC (red line) and 12:00 UTC (blue
line), where the underlying map shows FINN grid cells on that day. Time series show PM2.5 concentrations (primary y axis) and emis-
sions (secondary y axis) for anthropogenic (black dots) and FINN (gray line) inventories along the path. Dates are (a–c) 6 November,
(d–f) 7 November, (g–i) 8 November, (j–l) 9 November, and (m–o) 10 November. The times 00:00 and 12:00 UTC denote 05:30 and 17:30
local time, respectively.

were lower compared to the other two VIIRS-included and
BASE_ANTHRO2X scenarios for all the days. The reason
for this is that overestimation of other scenarios for 7 Novem-
ber and after-episode days compensates for underestimation
between 8 and 10 November. Figure 11b shows the same
variables for all the days except 8, 9, and 10 November. It
shows that the base scenario had the best statistical perfor-
mance for days without extreme pollution.

Figure 12 shows vertical profiles of PM2.5 as a function of
time at the US Embassy coordinates for variations using the
FINN inventory and MERRA-2. Increasing the emissions in
the FINN inventory significantly increased PM2.5 concentra-
tions both vertically and temporally. Although the concen-

trations became closer to MERRA-2 data, the timing for the
peak of the boundary layer on 6 November was different. By
incorporating VIIRS data into FINN and adding more fire
emissions, the boundary layer values peaked on 6 November
earlier and look much more like MERRA-2 data. Figure 12
also shows more particles at altitudes above the boundary
layer, which do not influence surface concentrations. Fur-
thermore, it suggests the scaling factor for the base scenario
could have been smaller than 7 if the aerosols had been in
the boundary layer. This can be partly related to the plume
rise module in WRF-Chem that may have emitted species
at altitudes that were too high. Increasing emissions also in-
directly influenced modeled air quality over Delhi. As our

https://doi.org/10.5194/acp-21-2837-2021 Atmos. Chem. Phys., 21, 2837–2860, 2021



2852 B. Roozitalab et al.: Improving regional air quality predictions in the Indo-Gangetic Plain

Figure 8. Vertical cross section of PM2.5 concentration along the path shown in Fig. 1 for the days between 5 and 10 November. For each
day, two snapshots are shown at 00:00 UTC (05:30 local time) and 12:00 UTC (17:30 local time). The orange star shows the location of Delhi
on the path. The white line shows the PBL height across the path.

Figure 9. Spatial fire coverage in different datasets for 5 November: (a) QFED fire grid cells; (b) FINN fire grid cells; (c) FINN fire grid
cells, missing points filled with VIIRS; and (d) VIIRS active fire points and corresponding FRP values.

model configuration included feedbacks, absorbing aerosols
in the atmosphere (products of fire emissions) decreased the
surface solar radiation budget, changed the dynamics of the
atmosphere, reduced the PBL height (PBLH), and increased
aerosol concentrations. In other words, a higher PBLH leads
to lower concentrations. For example, Murthy et al. (2020)
found that PM2.5 concentration decreased by up to 14 µgm−3

for a 100 m increase in the PBLH. Figure 12 also shows the
interactions between the PBLH and PM2.5 concentration at
the location of the US Embassy. By increasing the FINN
inventory by a factor of 7, the PBL height decreased by
∼ 50 % on 6 November, (compare FINN_VIIRS_7Xperiod2
and FINN_MERRA-2 panels in Fig. 12). However, a mea-
sured PBLH dataset can provide better insights. As a result,

another study is required to compare modeled PBL heights
to observed data (e.g., Nakoudi et al., 2019) and study the ef-
fects of different PBL parameterization modules on aerosol
concentrations. Vertical profiles for other experiments using
FINN can be found in the Supplement (Fig. S15).

We also performed two sets of experiments to understand
if long-range-transported dust from the Middle East or in-
boundary dust emissions impacted air quality in Delhi. Our
sensitivity tests suggest that dust had a very low contribution
to air quality in Delhi during November 2017. A detailed dis-
cussion on its impacts is presented in the Supplement.
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Figure 10. Time series of model PM2.5 sensitivity to a 10-times increase in the FINN emission inventory for different periods: FINN_VIIRS_
10Xperiod1, 3 to 17 November; FINN_10Xperiod1, 3 to 17 November; FINN_10xday, 5 November; and FINN_10Xall, all days. Black dots
represent ground measurement data averaged over all CPCB stations in Delhi.

Figure 11. Taylor diagram of hourly PM2.5 concentration based on different simulation scenarios for (a) all the days and (b) all the days
except 8, 9, and 10 November. Plus signs denote experiments after incorporating VIIRS data into FINN; circles denote different experiments
on the biomass burning emission inventory; triangles denote dust emission experiments; and squares denote chemical boundary condition
experiments. Green colors show best performance in each experiment. The black star denotes standard deviation of all CPCB stations
averaged in Delhi. The statistics plotted are standard deviation on the radial axis and Pearson’s correlation coefficient (R) on the angular axis,
and the gray lines indicate normalized centered RMSE (CRMSE).

3.4 Aerosol composition in Delhi

We analyzed the modeled PM2.5 composition, both in con-
centrations and by mass fraction, at the location of the US
Embassy in Delhi (Fig. S16). Secondary aerosols (secondary
organic aerosols (SOAs) and secondary inorganic aerosols
(SIAs) consisting of ammonium (NH4), nitrate (NO3), and
sulfate (SO4)) comprised 57 % of the total averaged PM2.5
concentration while primary aerosols (BC, organic carbon
(OC), and OIN) constituted the rest. Gani et al. (2019) mea-
sured PM1 in Delhi and reported 50 %–70 % for secondary
aerosols, with PM1 constituting ∼ 85 % of PM2.5 concen-
tration. SOAs, individually, comprise 27 % of the aerosol
mass, while SIAs account for 30 % of the mass. Among in-
organic species, NO3, NH4, and SO4 comprise 19 %, 7 %,

and 4 %, respectively. Gani et al. (2019) reported the same
ranked order but with different percentages. A major contri-
bution of NO3 in winter is also reported in other studies (Pant
et al., 2015). The BC fraction was 7 %, which is very close
to the measured fraction of 6.4 % in wintertime PM1 (Gani
et al., 2019). Pant et al. (2015) reported averaged OC and
elemental carbon concentrations of 104.4 and 46.3 µgm−3,
respectively, which is consistent with our OC/BC ratio of
2.72. Comparing modeled BC1 data with available data for
this period (Gani et al., 2019) shows an overall measured-
to-modeled ratio of 1.22, which is consistent with the range
other studies reported (Kumar et al., 2015b; Moorthy et al.,
2013).
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Figure 12. Vertical cross section of PM2.5 sensitivity to major changes in the FINN emission inventory at US Embassy coordinates:
(a) MERRA-2 data as true values, (b) FINN_VIIRS_7Xperiod2, (c) FINN_10Xperiod, and (d) FINN_MERRA2. Black lines represent
planetary boundary layer height. Vertical black line crossing all panels shows boundary layer peak on 6 November for MERRA-2 and other
experiments.

3.5 Ozone concentration analysis

Figure 13a shows the box-and-whisker plots for daytime
(08:00–18:00 LT) ozone concentration for the base scenario
and all of the CPCB stations in Delhi. Observed values
ranged between 10 and 110 ppb, and the range between
lower and upper quartiles was about 20 ppb, showing high
ozone variability over Delhi. Moreover, observed values
were higher during the extreme pollution episode. This in-
dicates particles are not the only issue during PM pollution
episodes in Delhi. The modeled median was in the range of
observed values, especially on non-episode days. However,
the model overestimated ozone concentrations on 7 Novem-
ber. Moreover, the range of observed ozone concentrations
was wider than that of modeled values. In general, the model
captured the trend fairly well with the correlation coefficient
of 0.57 but was biased high with an NMB of 18 % for day-
time hours throughout the whole of November. High-biased
ozone concentration in Delhi is reported in other studies
(Gupta and Mohan, 2015).

Figure 13b shows the daytime ozone concentration maps
averaged over November 2017. Central regions of India show
higher ozone concentrations compared to the northern IGP
region. On the other hand, ozone concentration in urban re-
gions were lower than in rural areas. This is due to lower
ozone production in regions of higher NOx emissions in
urban areas (Ghude et al., 2016; Karambelas et al., 2018).
Averaged ozone concentration over the domain through-

out November 2017 was 77 ppb using the base scenario.
Ozone concentrations decreased by up to 27 ppb when us-
ing a scenario without any modifications to aerosol emissions
(Fig. S17). Regardless, the averaged values are 9–17 ppb
higher than the annual averaged concentration of 60 ppb in
the year 2011 (Ghude et al., 2016). Overall, high measured
and modeled ozone concentrations and positive correlation
with PM2.5 are concerning and demand more studies. More-
over, recent observed values over Delhi indicated that, dur-
ing the COVID-19 pandemic when many activities were sus-
pended, PM2.5 concentration went down while the trend in
and range of ozone concentration remained unchanged (Jain
and Sharma, 2020).

3.6 Study limitations

In this study, we used a simple framework to modify fire
emissions with satellite data. Specifically, we used VIIRS
data to fill FINN emissions, which are based on MODIS re-
trievals. We used VIIRS data as they had a higher resolution
(375 m) for active fire points. Furthermore, we used linear re-
gression to find the relation between VIIRS FRP and FINN
emissions of available grid cells and applied that to FRP val-
ues in VIIRS to estimate the emissions. We acknowledge
these are first estimates and the performance of this tech-
nique using MODIS data and more complicated statistical
works needs to be studied further.
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Figure 13. Daytime (08:00–18:00 LT) ozone modeling performance in the base scenario. (a) Box-and-whisker plots of observed (black) and
modeled (purple) concentrations averaged over all CPCB stations in Delhi. (b) November 2017 daytime-averaged concentrations.

During this study, we did not focus on improving anthro-
pogenic emissions over the region. However anthropogenic
emissions are low in global emission inventories and need
to be improved (Jat et al., 2020). Moreover, very low biased
concentrations for some days and trajectory results suggest
the existence of some other sources, primarily anthropogenic
sources, upwind of Delhi that should be studied more.

Furthermore, geostationary satellites can significantly im-
prove our technique as more retrievals could improve the ac-
curacy. In this study, VIIRS or MODIS provided only one or
two retrievals in 1 d for each point, while recently launched
geostationary satellites, such as GEMS, would provide high-
temporal-frequency data that could improve emission inven-
tories.

The choice of the scaling factor for increasing fire emis-
sions was arbitrary in this study. Due to scarcity of observa-
tion data, we were not able to apply complicated mathemati-
cal scaling techniques based on data assimilation to scale the
fire emissions (Saide et al., 2015). A low number of observa-
tion data also limited our statistical assessments. Agricultural
fire emissions are small and vary day to day, and atmospheric
dynamics can significantly change their fate. We did not fo-
cus on the physics and dynamics of WRF-Chem as they were
beyond the scope of this study. These are important limita-
tions that readers have to keep in mind when assessing the
results.

4 Summary and conclusion

In this study, we used WRF-Chem to improve the air qual-
ity modeling during an extreme pollution episode in Novem-
ber 2017 in the IGP. Various modifications on chemical
boundary conditions and biomass burning emissions were
tested. Multiple datasets, including ground measurements of
PM2.5, surface measurements and satellite AOD, and reanal-
ysis models, were used to evaluate the model. In our best
scenario, the CAM-chem and MERRA-2 global models pro-
vided gaseous and aerosol chemical boundary conditions, re-

spectively. Moreover, active fire points in the VIIRS remote
sensing instrument were used to fill the missing fire emission
sources in FINN biomass burning emissions. Furthermore,
the modified FINN emissions were scaled by a factor of 7 for
an 8 d period to capture peak PM2.5 concentrations. Averaged
for all CPCB stations in Delhi during all the days in Novem-
ber, the 24 h averaged NMB, NME, and R were −16.6 %,
27.6 %, and 0.48, respectively, satisfying suggested bench-
mark criteria (Emery et al., 2017). These metrics signifi-
cantly improved when excluding 4 extremely polluted days
between 7 and 10 November and all were within benchmark
goals (Emery et al., 2017). Overall, we improved modeling
results by combining different available datasets with each
other.

The spatial performance of the model was also evalu-
ated using VIIRS AOD. The model overestimated AOD over
the domain with a monthly averaged value of 0.58 (±0.4),
confirming other studies (Kulkarni et al., 2020). Specifi-
cally, the model captured high AODs over Delhi and Pun-
jab, overestimated AODs over central India, and underesti-
mated AODs over the eastern IGP. Our results indicate im-
proving emissions, mostly anthropogenic emissions, in the
eastern IGP can significantly improve the air quality pre-
dictions. Our modeling results revealed secondary aerosols
comprised 57 % of total PM2.5 concentration during Novem-
ber, confirming measurement studies (Gani et al., 2019). Sec-
ondary organic aerosols individually comprised 27 % of the
total aerosol mass, while secondary inorganics accounted for
30 % of the mass.

Back trajectories and vertical profiles were used to study
the extreme-pollution-episode sources. Back trajectories
showed a shift in trajectories from east to north on 7 Novem-
ber. As a result, agricultural fire emissions were transported
from Punjab to Delhi. The trajectories remained on a north-
ern path for 3 d and then shifted again to east. However, the
model underestimated the concentrations on these days. Ver-
tical profiles showed a lot of smoke above boundary layers.
These results indicated either the plume rise in the model re-
leased the emissions too high or the model did not mix the
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smoke down fast enough. Social reasons can also add to high
PM2.5 concentrations during extreme pollution episodes, as
people prefer to use their personal vehicles more often.

We also evaluated how QFED and FINN biomass burn-
ing emission inventories affected PM2.5 concentration results
over Delhi. QFED had worse statistics, which is mostly due
to the inability of the inventory to capture the fire points
over the domain. This can be attributed to both the technique
and the resolution as QFED data have a ∼ 10 km resolution,
whereas FINN data have a∼ 1 km resolution, and other stud-
ies have shown FINN provides better data for India (Pan et
al., 2020). We also found FINN underestimated fire emis-
sions for some extremely high emission days and needed to
be scaled. This can be mostly because satellite retrievals re-
ported thick smoke as clouds and missed it, as shown in other
studies (Dekker et al., 2019).

The base scenario was chosen after evaluating the re-
sults for various chemical boundary conditions, including the
CAM-chem, MERRA-2, MOZART, and CAMS global mod-
els. We found long-range-transported dust from the Middle
East did not affect Delhi’s air quality during the extreme pol-
lution episode. Moreover, we found MERRA-2 provided bet-
ter aerosol products over India, although studies have shown
it underestimates aerosols over India (Navinya et al., 2020).
We also found in-domain dust emission sources at the border
with Pakistan did not affect Delhi’s air quality.

While the focus of the current study was on PM, we
found high ozone concentration in northern India. Averaged
daytime ozone concentration over the domain was 77 ppb
for November 2017, using the base scenario. Although the
model overestimated ozone concentrations in Delhi by an
NMB of 18 %, it indicates ozone is a problem that needs to
be considered.

In general, air quality in the IGP region is influenced by
both local and regional sources. Although availability of new
satellites such as GEMS, which covers some parts of India,
can improve air quality predictions using data assimilation
techniques, local emission inventories can vary day by day
and significantly affect the modeling results. More works are
required to quantify these impacts. Moreover, ozone concen-
trations showed a positive correlation with PM2.5 over the
IGP. This suggests that control strategies should consider the
regional co-benefits of PM2.5 and ozone perturbations simul-
taneously, which is the focus of our future work.
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