Articles | Volume 21, issue 4
https://doi.org/10.5194/acp-21-2551-2021
https://doi.org/10.5194/acp-21-2551-2021
Research article
 | 
19 Feb 2021
Research article |  | 19 Feb 2021

Exploratory experiments on pre-activated freezing nucleation on mercuric iodide

Gabor Vali

Related authors

Comment on “A universally applicable method of calculating confidence bands for ice nucleation spectra derived from droplet freezing experiments” by Fahy et al. (2022)
Gabor Vali
Atmos. Meas. Tech., 16, 4303–4306, https://doi.org/10.5194/amt-16-4303-2023,https://doi.org/10.5194/amt-16-4303-2023, 2023
Short summary
Revisiting the differential freezing nucleus spectra derived from drop-freezing experiments: methods of calculation, applications, and confidence limits
Gabor Vali
Atmos. Meas. Tech., 12, 1219–1231, https://doi.org/10.5194/amt-12-1219-2019,https://doi.org/10.5194/amt-12-1219-2019, 2019
Short summary
Technical Note: A proposal for ice nucleation terminology
G. Vali, P. J. DeMott, O. Möhler, and T. F. Whale
Atmos. Chem. Phys., 15, 10263–10270, https://doi.org/10.5194/acp-15-10263-2015,https://doi.org/10.5194/acp-15-10263-2015, 2015
Short summary
Time-dependent freezing rate parcel model
G. Vali and J. R. Snider
Atmos. Chem. Phys., 15, 2071–2079, https://doi.org/10.5194/acp-15-2071-2015,https://doi.org/10.5194/acp-15-2071-2015, 2015
Interpretation of freezing nucleation experiments: singular and stochastic; sites and surfaces
G. Vali
Atmos. Chem. Phys., 14, 5271–5294, https://doi.org/10.5194/acp-14-5271-2014,https://doi.org/10.5194/acp-14-5271-2014, 2014

Related subject area

Subject: Clouds and Precipitation | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Secondary ice production – no evidence of efficient rime-splintering mechanism
Johanna S. Seidel, Alexei A. Kiselev, Alice Keinert, Frank Stratmann, Thomas Leisner, and Susan Hartmann
Atmos. Chem. Phys., 24, 5247–5263, https://doi.org/10.5194/acp-24-5247-2024,https://doi.org/10.5194/acp-24-5247-2024, 2024
Short summary
Stable and unstable fall motions of plate-like ice crystal analogues
Jennifer R. Stout, Christopher D. Westbrook, Thorwald H. M. Stein, and Mark W. McCorquodale
EGUsphere, https://doi.org/10.5194/egusphere-2024-319,https://doi.org/10.5194/egusphere-2024-319, 2024
Short summary
Fragmentation of ice particles: laboratory experiments on graupel–graupel and graupel–snowflake collisions
Pierre Grzegorczyk, Sudha Yadav, Florian Zanger, Alexander Theis, Subir K. Mitra, Stephan Borrmann, and Miklós Szakáll
Atmos. Chem. Phys., 23, 13505–13521, https://doi.org/10.5194/acp-23-13505-2023,https://doi.org/10.5194/acp-23-13505-2023, 2023
Short summary
Molecular simulations reveal that heterogeneous ice nucleation occurs at higher temperatures in water under capillary tension
Elise Rosky, Will Cantrell, Tianshu Li, Issei Nakamura, and Raymond A. Shaw
Atmos. Chem. Phys., 23, 10625–10642, https://doi.org/10.5194/acp-23-10625-2023,https://doi.org/10.5194/acp-23-10625-2023, 2023
Short summary
Measurement of the collision rate coefficients between atmospheric ions and multiply charged aerosol particles in the CERN CLOUD chamber
Joschka Pfeifer, Naser G. A. Mahfouz, Benjamin C. Schulze, Serge Mathot, Dominik Stolzenburg, Rima Baalbaki, Zoé Brasseur, Lucia Caudillo, Lubna Dada, Manuel Granzin, Xu-Cheng He, Houssni Lamkaddam, Brandon Lopez, Vladimir Makhmutov, Ruby Marten, Bernhard Mentler, Tatjana Müller, Antti Onnela, Maxim Philippov, Ana A. Piedehierro, Birte Rörup, Meredith Schervish, Ping Tian, Nsikanabasi S. Umo, Dongyu S. Wang, Mingyi Wang, Stefan K. Weber, André Welti, Yusheng Wu, Marcel Zauner-Wieczorek, Antonio Amorim, Imad El Haddad, Markku Kulmala, Katrianne Lehtipalo, Tuukka Petäjä, António Tomé, Sander Mirme, Hanna E. Manninen, Neil M. Donahue, Richard C. Flagan, Andreas Kürten, Joachim Curtius, and Jasper Kirkby
Atmos. Chem. Phys., 23, 6703–6718, https://doi.org/10.5194/acp-23-6703-2023,https://doi.org/10.5194/acp-23-6703-2023, 2023
Short summary

Cited articles

Blank, L.: Statistical procedures for engineering, management, and science, McGraw-Hill Book Company, New York, USA, ISBN 0-07-005851-2, 649 pp., 1980. 
David, R. O., Marcolli, C., Fahrni, J., Qiu, Y. Q., Sirkin, Y. A. P., Molinero, V., Mahrt, F., Bruhwiler, D., Lohmann, U., and Kanji, Z. A.: Pore condensation and freezing is responsible for ice formation below water saturation for porous particles, P. Natl. Acad. Sci. USA, 116, 8184–8189, https://doi.org/10.1073/pnas.1813647116, 2019. 
David, R. O., Fahrni, J., Marcolli, C., Mahrt, F., Brühwiler, D., and Kanji, Z. A.: The role of contact angle and pore width on pore condensation and freezing, Atmos. Chem. Phys., 20, 9419–9440, https://doi.org/10.5194/acp-20-9419-2020, 2020. 
Edwards, G. R., Evans, L. F., and Zipper, A. F.: Two-dimensionsal phase changes in water adsorbed on ice- nucleating substrates, T. Faraday Soc., 66, 220–234, 1970. 
Evans, L. F.: Ice Nucleation Under Pressure and in Salt Solution, T. Faraday Soc., 540, 1–12, 1967. 
Download
Short summary
The freezing of water drops in clouds is a prime example for the role of ice-nucleating particles (INPs). Mercuric iodide particles and a few other substances can be conditioned to become very effective INPs after previous ice formation and moderate heating to melt temperatures, opening a new pathway to ice formation in the atmosphere and in other systems like tissue preservation, artificial snow making, and more.
Altmetrics
Final-revised paper
Preprint