Articles | Volume 21, issue 17
https://doi.org/10.5194/acp-21-13187-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-13187-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Chemical composition, optical properties, and oxidative potential of water- and methanol-soluble organic compounds emitted from the combustion of biomass materials and coal
Tao Cao
State Key Laboratory of Organic Geochemistry and Guangdong Provincial
Key Laboratory of Environmental Protection and Resources Utilization,
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou
510640, China
CAS Center for Excellence in Deep Earth Science, Guangzhou 510640,
China
University of Chinese Academy of Sciences, Beijing 100049, China
Meiju Li
State Key Laboratory of Organic Geochemistry and Guangdong Provincial
Key Laboratory of Environmental Protection and Resources Utilization,
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou
510640, China
CAS Center for Excellence in Deep Earth Science, Guangzhou 510640,
China
University of Chinese Academy of Sciences, Beijing 100049, China
Chunlin Zou
State Key Laboratory of Organic Geochemistry and Guangdong Provincial
Key Laboratory of Environmental Protection and Resources Utilization,
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou
510640, China
CAS Center for Excellence in Deep Earth Science, Guangzhou 510640,
China
University of Chinese Academy of Sciences, Beijing 100049, China
Xingjun Fan
College of Resource and Environment, Anhui Science and Technology
University, Anhui 233100, China
State Key Laboratory of Organic Geochemistry and Guangdong Provincial
Key Laboratory of Environmental Protection and Resources Utilization,
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou
510640, China
CAS Center for Excellence in Deep Earth Science, Guangzhou 510640,
China
Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution
and Control, Guangzhou 510640, China
Wanglu Jia
State Key Laboratory of Organic Geochemistry and Guangdong Provincial
Key Laboratory of Environmental Protection and Resources Utilization,
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou
510640, China
CAS Center for Excellence in Deep Earth Science, Guangzhou 510640,
China
Chiling Yu
State Key Laboratory of Organic Geochemistry and Guangdong Provincial
Key Laboratory of Environmental Protection and Resources Utilization,
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou
510640, China
CAS Center for Excellence in Deep Earth Science, Guangzhou 510640,
China
Zhiqiang Yu
State Key Laboratory of Organic Geochemistry and Guangdong Provincial
Key Laboratory of Environmental Protection and Resources Utilization,
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou
510640, China
CAS Center for Excellence in Deep Earth Science, Guangzhou 510640,
China
Ping'an Peng
State Key Laboratory of Organic Geochemistry and Guangdong Provincial
Key Laboratory of Environmental Protection and Resources Utilization,
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou
510640, China
CAS Center for Excellence in Deep Earth Science, Guangzhou 510640,
China
University of Chinese Academy of Sciences, Beijing 100049, China
Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution
and Control, Guangzhou 510640, China
Related authors
No articles found.
Jianfeng Wang, Chao Yang, Yuke Liu, Wenmin Jiang, Yun Li, Ting Zhang, Yijun Zheng, Yuhong Liao, Qiuli Huo, Li Fu, Yusheng Wang, Ping'an Peng, and Yongqiang Xiong
Solid Earth, 16, 819–839, https://doi.org/10.5194/se-16-819-2025, https://doi.org/10.5194/se-16-819-2025, 2025
Short summary
Short summary
The Wufeng–Longmaxi (WF-LMX) Formation is the most important shale gas play in China. Here, we present a feasible approach using nanoindentation to characterize the mechanical properties of the WF-LMX Formation. Mechanical properties varied synchronously with mineral and organic content across the vertical drilling profile, reflecting changes in lithology and sedimentary facies. The effect of shale constituents on micromechanics is essentially controlled by the sedimentary environment.
Tao Cao, Cuncun Xu, Hao Chen, Jianzhong Song, Jun Li, Haiyan Song, Bin Jiang, Yin Zhong, and Ping’an Peng
EGUsphere, https://doi.org/10.5194/egusphere-2025-561, https://doi.org/10.5194/egusphere-2025-561, 2025
Short summary
Short summary
This study investigated the evolution of biomass and coal combustion-derived WSOM during aqueous photochemical process. The results indicate that photochemical aging induces distinct changes in the optical and molecular properties of WSOM and more pronounced alterations were observed during ·OH photooxidation than direct photolysis. Notably, our results also demostrated that atmospheric photooxidation may represent a significant source of BC-like substances.
Wei Sun, Xiaodong Hu, Yuzhen Fu, Guohua Zhang, Yujiao Zhu, Xinfeng Wang, Caiqing Yan, Likun Xue, He Meng, Bin Jiang, Yuhong Liao, Xinming Wang, Ping'an Peng, and Xinhui Bi
Atmos. Chem. Phys., 24, 6987–6999, https://doi.org/10.5194/acp-24-6987-2024, https://doi.org/10.5194/acp-24-6987-2024, 2024
Short summary
Short summary
The formation pathways of nitrogen-containing compounds (NOCs) in the atmosphere remain unclear. We investigated the composition of aerosols and fog water by state-of-the-art mass spectrometry and compared the formation pathways of NOCs. We found that NOCs in aerosols were mainly formed through nitration reaction, while ammonia addition played a more important role in fog water. The results deepen our understanding of the processes of organic particulate pollution.
Xingjun Fan, Ao Cheng, Xufang Yu, Tao Cao, Dan Chen, Wenchao Ji, Yongbing Cai, Fande Meng, Jianzhong Song, and Ping'an Peng
Atmos. Chem. Phys., 24, 3769–3783, https://doi.org/10.5194/acp-24-3769-2024, https://doi.org/10.5194/acp-24-3769-2024, 2024
Short summary
Short summary
Molecular-level characteristics of high molecular weight (HMW) and low MW (LMW) humic-like substances (HULIS) were comprehensively investigated, where HMW HULIS had larger chromophores and larger molecular size than LMW HULIS and exhibited higher aromaticity and humification. Electrospray ionization high-resolution mass spectrometry revealed more aromatic molecules in HMW HULIS. HMW HULIS had more CHON compounds, while LMW HULIS had more CHO compounds.
Xiangyun Zhang, Jun Li, Sanyuan Zhu, Junwen Liu, Ping Ding, Shutao Gao, Chongguo Tian, Yingjun Chen, Ping'an Peng, and Gan Zhang
Atmos. Chem. Phys., 23, 7495–7502, https://doi.org/10.5194/acp-23-7495-2023, https://doi.org/10.5194/acp-23-7495-2023, 2023
Short summary
Short summary
The results show that 14C elemental carbon (EC) was not only related to the isolation method but also to the types and proportions of the biomass sources in the sample. The hydropyrolysis (Hypy) method, which can be used to isolate a highly stable portion of ECHypy and avoid charring, is a more effective and stable approach for the matrix-independent 14C quantification of EC in aerosols, and the 13C–ECHypy and non-fossil ECHypy values of SRM1649b were –24.9 ‰ and 11 %, respectively.
Jiao Tang, Jun Li, Shizhen Zhao, Guangcai Zhong, Yangzhi Mo, Hongxing Jiang, Bin Jiang, Yingjun Chen, Jianhui Tang, Chongguo Tian, Zheng Zong, Jabir Hussain Syed, Jianzhong Song, and Gan Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2023-403, https://doi.org/10.5194/egusphere-2023-403, 2023
Preprint archived
Short summary
Short summary
This study provides a comprehensive molecular identification of atmospheric common fluorescent components and deciphers their related formation pathways. The fluorescent components varied in molecular composition, and a dominant oxidation pathway for the formation of humic-like fluorescent components was suggested, notwithstanding their different precursor types. Our findings are expected to be helpful to further studies using the EEM-PARAFAC as a tool to study atmospheric BrC.
Tao Cao, Meiju Li, Cuncun Xu, Jianzhong Song, Xingjun Fan, Jun Li, Wanglu Jia, and Ping'an Peng
Atmos. Chem. Phys., 23, 2613–2625, https://doi.org/10.5194/acp-23-2613-2023, https://doi.org/10.5194/acp-23-2613-2023, 2023
Short summary
Short summary
This work comprehensively investigated the fluorescence data of light-absorbing organic compounds, water-soluble organic matter in different types of aerosol samples, soil dust, and fulvic and humic acids using an excitation–emission matrix (EEM) method and parallel factor modeling. The results revealed which light-absorbing species can be detected by EEM and also provided important information for identifying the chemical composition and possible sources of these species in atmospheric samples.
Chunlin Zou, Tao Cao, Meiju Li, Jianzhong Song, Bin Jiang, Wanglu Jia, Jun Li, Xiang Ding, Zhiqiang Yu, Gan Zhang, and Ping'an Peng
Atmos. Chem. Phys., 23, 963–979, https://doi.org/10.5194/acp-23-963-2023, https://doi.org/10.5194/acp-23-963-2023, 2023
Short summary
Short summary
In this study, PM2.5 samples were obtained during a winter haze event in Guangzhou, China, and light absorption and molecular composition of humic-like substances (HULIS) were investigated by UV–Vis spectrophotometry and ultrahigh-resolution mass spectrometry. The findings obtained present some differences from the results reported in other regions of China and significantly enhanced our understanding of HULIS evolution during haze bloom-decay processes in the subtropic region of southern China.
Ziyong Guo, Yuxiang Yang, Xiaodong Hu, Xiaocong Peng, Yuzhen Fu, Wei Sun, Guohua Zhang, Duohong Chen, Xinhui Bi, Xinming Wang, and Ping'an Peng
Atmos. Chem. Phys., 22, 4827–4839, https://doi.org/10.5194/acp-22-4827-2022, https://doi.org/10.5194/acp-22-4827-2022, 2022
Short summary
Short summary
We show that in-cloud aqueous processing facilitates the formation of brown carbon (BrC), based on the simultaneous measurements of the light-absorption properties of the cloud residuals, cloud interstitial, and cloud-free particles. While extensive laboratory evidence indicated the formation of BrC in aqueous phase, our study represents the first attempt to show the possibility in real clouds, which would have potential implications in the atmospheric evolution and radiation forcing of BrC.
Wei Sun, Yuzhen Fu, Guohua Zhang, Yuxiang Yang, Feng Jiang, Xiufeng Lian, Bin Jiang, Yuhong Liao, Xinhui Bi, Duohong Chen, Jianmin Chen, Xinming Wang, Jie Ou, Ping'an Peng, and Guoying Sheng
Atmos. Chem. Phys., 21, 16631–16644, https://doi.org/10.5194/acp-21-16631-2021, https://doi.org/10.5194/acp-21-16631-2021, 2021
Short summary
Short summary
We sampled cloud water at a remote mountain site and investigated the molecular characteristics. CHON and CHO are dominant in cloud water. No statistical difference in the oxidation state is observed between cloud water and interstitial PM2.5. Most of the formulas are aliphatic and olefinic species. CHON, with aromatic structures and organosulfates, are abundant, especially in nighttime samples. The in-cloud and multi-phase dark reactions likely contribute significantly.
Long Peng, Lei Li, Guohua Zhang, Xubing Du, Xinming Wang, Ping'an Peng, Guoying Sheng, and Xinhui Bi
Atmos. Chem. Phys., 21, 5605–5613, https://doi.org/10.5194/acp-21-5605-2021, https://doi.org/10.5194/acp-21-5605-2021, 2021
Short summary
Short summary
We build a novel system that utilizes an aerodynamic aerosol classifier (AAC) combined with a single-particle aerosol mass spectrometry (SPAMS) to simultaneously characterize the volume equivalent diameter (Dve), chemical compositions, and effective density (ρe) of individual particles in real time. A test of the AAC-SPAMS with both spherical and aspherical particles shows that the deviations between the measured and theoretical values are less than 6 %.
Qingqing Yu, Xiang Ding, Quanfu He, Weiqiang Yang, Ming Zhu, Sheng Li, Runqi Zhang, Ruqin Shen, Yanli Zhang, Xinhui Bi, Yuesi Wang, Ping'an Peng, and Xinming Wang
Atmos. Chem. Phys., 20, 14581–14595, https://doi.org/10.5194/acp-20-14581-2020, https://doi.org/10.5194/acp-20-14581-2020, 2020
Short summary
Short summary
We carried out a 1-year PM concurrent observation at 12 sites across six regions of China, and size-segregated PAHs were measured. We found both PAHs and BaPeq were concentrated in PM1.1, and northern China had higher PAHs' pollution and inhalation cancer risk than southern China. Nationwide increases in both PAH levels and inhalation cancer risk occurred in winter. We suggest reducing coal and biofuel consumption in the residential sector is an important option to mitigate PAHs' health risks.
Yuzhen Fu, Qinhao Lin, Guohua Zhang, Yuxiang Yang, Yiping Yang, Xiufeng Lian, Long Peng, Feng Jiang, Xinhui Bi, Lei Li, Yuanyuan Wang, Duohong Chen, Jie Ou, Xinming Wang, Ping'an Peng, Jianxi Zhu, and Guoying Sheng
Atmos. Chem. Phys., 20, 14063–14075, https://doi.org/10.5194/acp-20-14063-2020, https://doi.org/10.5194/acp-20-14063-2020, 2020
Short summary
Short summary
Based on the analysis of the morphology and mixing structure of the activated and unactivated particles, our results emphasize the role of in-cloud processes in the chemistry and microphysical properties of individual activated particles. Given that organic coatings may determine the particle hygroscopicity and heterogeneous chemical reactivity, the increase of OM-shelled particles upon in-cloud processes should have considerable implications for their evolution and climate impact.
Cited articles
Alexander, D. T. L., Crozier, P. A., and Anderson, J. R.: Brown carbon
spheres in East Asian outflow and their optical properties, Science, 321,
833–836, https://doi.org/10.1126/science.1155296, 2008.
Andrade-Eiroa, Á., Canle, M., and Cerdá, V.: Environmental
Applications of Excitation-Emission Spectrofluorimetry: An In-Depth Review
I, Appl. Spec. Rev., 48, 1–49, https://doi.org/10.1080/05704928.2012.692104,
2013.
Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, https://doi.org/10.5194/acp-6-3131-2006, 2006.
Atwi, K., Mondal, A., Pant, J., Cheng, Z., El Hajj, O., Ijeli, I., Handa,
H., and Saleh, R.: Physicochemical properties and cytotoxicity of brown
carbon produced under different combustion conditions, Atmos. Environ., 244, 117881, https://doi.org/10.1016/j.atmosenv.2020.117881, 2021.
Bai, Z., Zhang, L., Cheng, Y., Zhang, W., Mao, J., Chen, H., Li, L., Wang,
L., and Chen, J.: Water/Methanol-Insoluble Brown Carbon Can Dominate
Aerosol-Enhanced Light Absorption in Port Cities, Environ. Sci. Technol., 54, 14889–14898, https://doi.org/10.1021/acs.est.0c03844, 2020.
Bates, J. T., Fang, T., Verma, V., Zeng, L., Weber, R. J., Tolbert, P. E.,
Abrams, J. Y., Sarnat, S. E., Klein, M., Mulholland, J. A., and Russell, A.
G.: Review of Acellular Assays of Ambient Particulate Matter Oxidative
Potential: Methods and Relationships with Composition, Sources, and Health
Effects, Environ. Sci. Technol., 53, 4003–4019,
https://doi.org/10.1021/acs.est.8b03430, 2019.
Chalbot, M.-C. G., Brown, J., Chitranshi, P., Gamboa da Costa, G., Pollock, E. D., and Kavouras, I. G.: Functional characterization of the water-soluble organic carbon of size-fractionated aerosol in the southern Mississippi Valley, Atmos. Chem. Phys., 14, 6075–6088, https://doi.org/10.5194/acp-14-6075-2014, 2014a.
Chalbot, M.-C. G. and Kavouras, I. G.: Nuclear magnetic resonance spectroscopy
for determining the functional content of organic aerosols: a review,
Environ. Pollut., 191, 232–249, https://doi.org/10.1016/j.envpol.2014.04.034, 2014b.
Chalbot, M.-C. G., Chitranshi, P., da Costa, G. G., Pollock, E., and Kavouras,
I. G.: Characterization of water-soluble organic matter in urban aerosol by
(1)H-NMR spectroscopy, Atmos. Environ., 128, 235–245,
https://doi.org/10.1016/j.atmosenv.2015.12.067, 2016.
Chen, Q., Miyazaki, Y., Kawamura, K., Matsumoto, K., Coburn, S., Volkamer,
R., Iwamoto, Y., Kagami, S., Deng, Y., Ogawa, S., Ramasamy, S., Kato, S.,
Ida, A., Kajii, Y., and Mochida, M.: Characterization of Chromophoric
Water-Soluble Organic Matter in Urban, Forest, and Marine Aerosols by
HR-ToF-AMS Analysis and Excitation-Emission Matrix Spectroscopy,
Environ. Sci. Technol., 50, 10351–10360,
https://doi.org/10.1021/acs.est.6b01643, 2016.
Chen, Q., Ikemori, F., Nakamura, Y., Vodicka, P., Kawamura, K., and Mochida,
M.: Structural and Light-Absorption Characteristics of Complex
Water-Insoluble Organic Mixtures in Urban Submicrometer Aerosols,
Environ. Sci. Technol., 51, 8293–8303,
https://doi.org/10.1021/acs.est.7b01630, 2017.
Chen, Q., Wang, M., Wang, Y., Zhang, L., Li, Y., and Han, Y.: Oxidative
Potential of Water-Soluble Matter Associated with Chromophoric Substances in
PM2.5 over Xi'an, China, Environ. Sci. Technol., 53,
8574–8584, https://doi.org/10.1021/acs.est.9b01976, 2019.
Chen, Q., Li, J., Hua, X., Jiang, X., Mu, Z., Wang, M., Wang, J., Shan, M.,
Yang, X., Fan, X., Song, J., Wang, Y., Guan, D., and Du, L.: Identification
of species and sources of atmospheric chromophores by fluorescence
excitation-emission matrix with parallel factor analysis, Sci. Tot. Environ., 718, 137322, https://doi.org/10.1016/j.scitotenv.2020.137322, 2020.
Chen, W., Westerhoff, P., Leenheer, J. A., and Booksh, K.: Fluorescence
excitation – Emission matrix regional integration to quantify spectra for
dissolved organic matter, Environ. Sci. Technol., 37,
5701–5710, https://doi.org/10.1021/es034354c, 2003.
Chen, Y. and Bond, T. C.: Light absorption by organic carbon from wood combustion, Atmos. Chem. Phys., 10, 1773–1787, https://doi.org/10.5194/acp-10-1773-2010, 2010.
Cheng, Y., He, K. B., Du, Z. Y., Engling, G., Liu, J. M., Ma, Y. L., Zheng,
M., and Weber, R. J.: The characteristics of brown carbon aerosol during
winter in Beijing, Atmos. Environ., 127, 355–364,
https://doi.org/10.1016/j.atmosenv.2015.12.035, 2016.
Cui, X., Zhou, D., Fan, W., Huo, M., Crittenden, J. C., Yu, Z., Ju, P., and
Wang, Y.: The effectiveness of coagulation for water reclamation from a
wastewater treatment plant that has a long hydraulic and sludge retention
times: A case study, Chemosphere, 157, 224–231,
https://doi.org/10.1016/j.chemosphere.2016.05.009, 2016.
Decesari, S., Mircea, M., Cavalli, F., Fuzzi, S., Moretti, F., Tagliavini,
E., and Facchini, M. C.: Source attribution of water-soluble organic aerosol
by nuclear magnetic resonance spectroscopy, Environ. Sci. Technol., 41, 2479–2484, https://doi.org/10.1021/es061711l, 2007.
Dong, Z., Jiang, N., Zhang, R., Xu, Q., Ying, Q., Li, Q., and Li, S.:
Molecular characteristics, source contributions, and exposure risks of
polycyclic aromatic hydrocarbons in the core city of Central Plains Economic
Region, China: Insights from the variation of haze levels, Sci. Tot. Environ., 757, 143885, https://doi.org/10.1016/j.scitotenv.2020.143885, 2021.
Dou, J., Lin, P., Kuang, B. Y., and Yu, J. Z.: Reactive Oxygen Species
Production Mediated by Humic-like Substances in Atmospheric Aerosols:
Enhancement Effects by Pyridine, Imidazole, and Their Derivatives,
Environ. Sci. Technol., 49, 6457–6465, https://doi.org/10.1021/es5059378,
2015.
Evangeliou, N., Kylling, A., Eckhardt, S., Myroniuk, V., Stebel, K., Paugam, R., Zibtsev, S., and Stohl, A.: Open fires in Greenland in summer 2017: transport, deposition and radiative effects of BC, OC and BrC emissions, Atmos. Chem. Phys., 19, 1393–1411, https://doi.org/10.5194/acp-19-1393-2019, 2019.
Fan, X. J., Song, J. Z., and Peng, P. A.: Comparison of isolation and
quantification methods to measure humic-like substances (HULIS) in
atmospheric particles, Atmos. Environ., 60, 366–374,
https://doi.org/10.1016/j.atmosenv.2012.06.063, 2012.
Fan, X., Wei, S., Zhu, M., Song, J., and Peng, P.: Comprehensive characterization of humic-like substances in smoke PM2.5 emitted from the combustion of biomass materials and fossil fuels, Atmos. Chem. Phys., 16, 13321–13340, https://doi.org/10.5194/acp-16-13321-2016, 2016.
Fan, X., Li, M., Cao, T., Cheng, C., Li, F., Xie, Y., Wei, S., Song, J., and
Peng, P. a.: Optical properties and oxidative potential of water-and
alkaline-soluble brown carbon in smoke particles emitted from laboratory
simulated biomass burning, Atmos. Environ., 194, 48–57,
https://doi.org/10.1016/j.atmosenv.2018.09.025, 2018.
Fan, X., Yu, X., Wang, Y., Xiao, X., Li, F., Xie, Y., Wei, S., Song, J., and
Peng, P. A.: The aging behaviors of chromophoric biomass burning brown
carbon during dark aqueous hydroxyl radical oxidation processes in
laboratory studies, Atmos. Environ., 205, 9–18,
https://doi.org/10.1016/j.atmosenv.2019.02.039, 2019.
Fan, X., Cao, T., Yu, X., Wang, Y., Xiao, X., Li, F., Xie, Y., Ji, W., Song, J., and Peng, P.: The evolutionary behavior of chromophoric brown carbon during ozone aging of fine particles from biomass burning, Atmos. Chem. Phys., 20, 4593–4605, https://doi.org/10.5194/acp-20-4593-2020, 2020.
Gao, D., Mulholland, J. A., Russell, A. G., and Weber, R. J.:
Characterization of water-insoluble oxidative potential of PM2.5 using the
dithiothreitol assay, Atmos. Environ., 224, 117327,
https://doi.org/10.1016/j.atmosenv.2020.117327, 2020.
Geng, C., Chen, J., Yang, X., Ren, L., Yin, B., Liu, X., and Bai, Z.:
Emission factors of polycyclic aromatic hydrocarbons from domestic coal
combustion in China, J. Environ. Sci., 26, 160–166,
https://doi.org/10.1016/s1001-0742(13)60393-9, 2014.
Hakimzadeh, M., Soleimanian, E., Mousavi, A., Borgini, A., De Marco, C.,
Ruprecht, A. A., and Sioutas, C.: The impact of biomass burning on the
oxidative potential of PM2.5 in the metropolitan area of Milan, Atmos. Environ., 224, 117328, https://doi.org/10.1016/j.atmosenv.2020.117328, 2020.
He, W. and Hur, J.: Conservative behavior of fluorescence EEM-PARAFAC
components in resin fractionation processes and its applicability for
characterizing dissolved organic matter, Water Res., 83, 217–226,
https://doi.org/10.1016/j.watres.2015.06.044, 2015.
Hoffer, A., Gelencsér, A., Guyon, P., Kiss, G., Schmid, O., Frank, G. P., Artaxo, P., and Andreae, M. O.: Optical properties of humic-like substances (HULIS) in biomass-burning aerosols, Atmos. Chem. Phys., 6, 3563–3570, https://doi.org/10.5194/acp-6-3563-2006, 2006.
Hou, C., Shao, L., Hu, W., Zhang, D., Zhao, C., Xing, J., Huang, X., and Hu,
M.: Characteristics and aging of traffic-derived particles in a highway
tunnel at a coastal city in southern China, Sci. Tot. Environ., 619, 1385–1393, https://doi.org/10.1016/j.scitotenv.2017.11.165, 2018.
Huang, R. J., Yang, L., Shen, J., Yuan, W., Gong, Y., Guo, J., Cao, W.,
Duan, J., Ni, H., Zhu, C., Dai, W., Li, Y., Chen, Y., Chen, Q., Wu, Y.,
Zhang, R., Dusek, U., O'Dowd, C., and Hoffmann, T.: Water-Insoluble Organics
Dominate Brown Carbon in Wintertime Urban Aerosol of China: Chemical
Characteristics and Optical Properties, Environ. Sci. Technol., 54, 7836–7847, https://doi.org/10.1021/acs.est.0c01149, 2020.
Huo, Y. Q., Li, M., Jiang, M. H., and Qi, W. M.: Light absorption properties
of HULIS in primary particulate matter produced by crop straw combustion
under different moisture contents and stacking modes, Atmos.
Environ., 191, 490–499, https://doi.org/10.1016/j.atmosenv.2018.08.038, 2018.
Izhar, S., Gupta, T., and Panday, A. K.: Improved method to apportion
optical absorption by black and brown carbon under the influence of haze and
fog at Lumbini, Nepal, on the Indo-Gangetic Plains, Environ. Pollut.,
263, 114640, https://doi.org/10.1016/j.envpol.2020.114640, 2020.
Jiang, H., Jang, M., Sabo-Attwood, T., and Robinson, S. E.: Oxidative
potential of secondary organic aerosols produced from photooxidation of
different hydrocarbons using outdoor chamber under ambient sunlight,
Atmos. Environ., 131, 382–389, https://doi.org/10.1016/j.atmosenv.2016.02.016, 2016.
Kim, H., Kim, J. Y., Jin, H. C., Lee, J. Y., and Lee, S. P.: Seasonal
variations in the light-absorbing properties of water-soluble and insoluble
organic aerosols in Seoul, Korea, Atmos. Environ., 129, 234–242,
https://doi.org/10.1016/j.atmosenv.2016.01.042, 2016.
Kramer, A. J., Rattanavaraha, W., Zhang, Z., Gold, A., Surratt, J. D., and
Lin, Y.-H.: Assessing the oxidative potential of isoprene-derived epoxides
and secondary organic aerosol, Atmos. Environ., 130, 211–218,
https://doi.org/10.1016/j.atmosenv.2015.10.018, 2016.
Kumar, N. K., Corbin, J. C., Bruns, E. A., Massabó, D., Slowik, J. G., Drinovec, L., Močnik, G., Prati, P., Vlachou, A., Baltensperger, U., Gysel, M., El-Haddad, I., and Prévôt, A. S. H.: Production of particulate brown carbon during atmospheric aging of residential wood-burning emissions, Atmos. Chem. Phys., 18, 17843–17861, https://doi.org/10.5194/acp-18-17843-2018, 2018.
Kumar, V., Rajput, P., and Goel, A.: Atmospheric abundance of HULIS during
wintertime in Indo-Gangetic Plain: impact of biomass burning emissions,
J. Atmos. Chem., 75, 385–398, https://doi.org/10.1007/s10874-018-9381-4,
2018.
Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of atmospheric
brown carbon, Chem. Rev., 115, 4335–4382, https://doi.org/10.1021/cr5006167, 2015.
Lawaetz, A. J., and Stedmon, C. A.: Fluorescence Intensity Calibration Using
the Raman Scatter Peak of Water, Appl. Spec., 63, 936–940,
https://doi.org/10.1366/000370209788964548, 2009.
Li, M., Fan, X., Zhu, M., Zou, C., Song, J., Wei, S., Jia, W., and Peng, P.:
Abundances and light absorption properties of brown carbon emitted from
residential coal combustion in China, Environ. Sci. Technol., 53, 595–603,
https://doi.org/10.1021/acs.est.8b05630, 2019.
Li, R., Han, Y., Wang, L., Shang, Y., and Chen, Y.: Differences in oxidative
potential of black carbon from three combustion emission sources in China,
J. Environ. Manage., 240, 57–65,
https://doi.org/10.1016/j.jenvman.2019.03.070, 2019.
Li, X., Han, J., Hopke, P. K., Hu, J., Shu, Q., Chang, Q., and Ying, Q.: Quantifying primary and secondary humic-like substances in urban aerosol based on emission source characterization and a source-oriented air quality model, Atmos. Chem. Phys., 19, 2327–2341, https://doi.org/10.5194/acp-19-2327-2019, 2019.
Li, J., Chen, Q., Hua, X., Chang, T., and Wang, Y.: Occurrence and sources
of chromophoric organic carbon in fine particulate matter over Xi'an, China,
Sci. Total Environ., 725, 138290,
https://doi.org/10.1016/j.scitotenv.2020.138290, 2020a.
Li, J., Zhang, Q., Wang, G., Li, J., Wu, C., Liu, L., Wang, J., Jiang, W., Li, L., Ho, K. F., and Cao, J.: Optical properties and molecular compositions of water-soluble and water-insoluble brown carbon (BrC) aerosols in northwest China, Atmos. Chem. Phys., 20, 4889–4904, https://doi.org/10.5194/acp-20-4889-2020, 2020b.
Lin, M. and Yu, J. Z.: Dithiothreitol (DTT) concentration effect and its
implications on the applicability of DTT assay to evaluate the oxidative
potential of atmospheric aerosol samples, Environ. Pollut., 251,
938–944, https://doi.org/10.1016/j.envpol.2019.05.074, 2019.
Lin, P. and Yu, J. Z.: Generation of reactive oxygen species mediated by
humic-like substances in atmospheric aerosols, Environ. Sci. Technol., 45, 10362–10368, https://doi.org/10.1021/es2028229, 2011.
Lin, P., Laskin, J., Nizkorodov, S. A., and Laskin, A.: Revealing Brown
Carbon Chromophores Produced in Reactions of Methylglyoxal with Ammonium
Sulfate, Environ. Sci. Technol., 49, 14257–14266,
https://doi.org/10.1021/acs.est.5b03608, 2015.
Lin, P., Aiona, P. K., Li, Y., Shiraiwa, M., Laskin, J., Nizkorodov, S. A.,
and Laskin, A.: Molecular Characterization of Brown Carbon in Biomass
Burning Aerosol Particles, Environ. Sci. Technol., 50,
11815–11824, https://doi.org/10.1021/acs.est.6b03024, 2016.
Ma, Y., Cheng, Y., Qiu, X., Cao, G., Fang, Y., Wang, J., Zhu, T., Yu, J., and Hu, D.: Sources and oxidative potential of water-soluble humic-like substances (HULISWS) in fine particulate matter (PM2.5) in Beijing, Atmos. Chem. Phys., 18, 5607–5617, https://doi.org/10.5194/acp-18-5607-2018, 2018.
Matos, J. T. V., Freire, S. M. S. C., Duarte, R. M. B. O., and Duarte, A.
C.: Natural organic matter in urban aerosols: Comparison between water and
alkaline soluble components using excitation-emission matrix fluorescence
spectroscopy and multiway data analysis, Atmos. Environ., 102, 1–10,
https://doi.org/10.1016/j.atmosenv.2014.11.042, 2015.
Mostofa, K. M. G., Wu, F. C., Liu, C. Q., Vione, D., Yoshioka, T., Sakugawa,
H., and Tanoue, E.: Photochemical, microbial and metal complexation behavior
of fluorescent dissolved organic matter in the aquatic environments,
Geochem. J., 45, 235–254, 2011.
Moufarrej, L., Courcot, D., and Ledoux, F.: Assessment of the PM2.5
oxidative potential in a coastal industrial city in Northern France:
Relationships with chemical composition, local emissions and long range
sources, Sci. Total Environ., 748, 141448,
10.1016/j.scitotenv.2020.141448, 2020.
Mukherjee, A., Dey, S., Rana, A., Jia, S., Banerjee, S., and Sarkar, S.:
Sources and atmospheric processing of brown carbon and HULIS in the
Indo-Gangetic Plain: Insights from compositional analysis, Environ. Pollut., 267, 115440, https://doi.org/10.1016/j.envpol.2020.115440, 2020.
Murphy, K. R., Butler, K. D., Spencer, R. G. M., Stedmon, C. A., Boehme, J.
R., and Aiken, G. R.: Measurement of Dissolved Organic Matter Fluorescence
in Aquatic Environments: An Interlaboratory Comparison, Environ. Sci. Technol., 44, 9405–9412, https://doi.org/10.1021/es102362t, 2010.
Murphy, K. R., Hambly, A., Singh, S., Henderson, R. K., Baker, A., Stuetz,
R., and Khan, S. J.: Organic matter fluorescence in municipal water
recycling schemes: toward a unified PARAFAC model, Environ. Sci. Technol., 45, 2909–2916, https://doi.org/10.1021/es103015e, 2011.
Murphy, K. R., Stedmon, C. A., Graeber, D., and Bro, R.: Fluorescence
spectroscopy and multi-way techniques. PARAFAC, Anal. Meth., 5, 6557,
https://doi.org/10.1039/c3ay41160e, 2013.
Nozière, B., González, N. J. D., Borg-Karlson, A.-K., Pei, Y.,
Redeby, J. P., Krejci, R., Dommen, J., Prevot, A. S. H., and Anthonsen, T.:
Atmospheric chemistry in stereo: A new look at secondary organic aerosols
from isoprene, Geophys. Res. Lett., 38, L11807,
https://doi.org/10.1029/2011gl047323, 2011.
Paglione, M., Saarikoski, S., Carbone, S., Hillamo, R., Facchini, M. C., Finessi, E., Giulianelli, L., Carbone, C., Fuzzi, S., Moretti, F., Tagliavini, E., Swietlicki, E., Eriksson Stenström, K., Prévôt, A. S. H., Massoli, P., Canaragatna, M., Worsnop, D., and Decesari, S.: Primary and secondary biomass burning aerosols determined by proton nuclear magnetic resonance (1H-NMR) spectroscopy during the 2008 EUCAARI campaign in the Po Valley (Italy), Atmos. Chem. Phys., 14, 5089–5110, https://doi.org/10.5194/acp-14-5089-2014, 2014.
Park, S.-S. and Yu, J.: Chemical and light absorption properties of
humic-like substances from biomass burning emissions under controlled
combustion experiments, Atmos. Environ., 136, 114–122,
https://doi.org/10.1016/j.atmosenv.2016.04.022, 2016.
Park, S.-S., Sim, S. Y., Bae, M.-S., and Schauer, J. J.: Size distribution
of water-soluble components in particulate matter emitted from biomass
burning, Atmos. Environ., 73, 62–72, https://doi.org/10.1016/j.atmosenv.2013.03.025,
2013.
Pietrogrande, M. C., Bertoli, I., Clauser, G., Dalpiaz, C., Dell'Anna, R.,
Lazzeri, P., Lenzi, W., and Russo, M.: Chemical composition and oxidative
potential of atmospheric particles heavily impacted by residential wood
burning in the alpine region of northern Italy, Atmos. Environ.,
253, 118360, https://doi.org/10.1016/j.atmosenv.2021.118360, 2021.
Qin, J., Zhang, L., Zhou, X., Duan, J., Mu, S., Xiao, K., Hu, J., and Tan,
J.: Fluorescence fingerprinting properties for exploring water-soluble
organic compounds in PM2.5 in an industrial city of northwest China,
Atmos. Environ., 184, 203–211, https://doi.org/10.1016/j.atmosenv.2018.04.049, 2018.
Sannigrahi, P., Sullivan, A. P., Weber, R. J., and Ingall, E. D.:
Characterization of water-soluble organic carbon in urban atmospheric
aerosols using solid-state C-13 NMR spectroscopy, Environ. Sci. Technol., 40, 666–672, https://doi.org/10.1021/es051150i, 2006.
Santos, P. S., Otero, M., Duarte, R. M., and Duarte, A. C.: Spectroscopic
characterization of dissolved organic matter isolated from rainwater,
Chemosphere, 74, 1053–1061, https://doi.org/10.1016/j.chemosphere.2008.10.061, 2009.
Santos, P. S., Santos, E. B., and Duarte, A. C.: First spectroscopic study
on the structural features of dissolved organic matter isolated from
rainwater in different seasons, Sci. Total Environ., 426,
172–179, https://doi.org/10.1016/j.scitotenv.2012.03.023, 2012.
Seo, I., Lee, K., Bae, M. S., Park, M., Maskey, S., Seo, A., Borlaza, L. J.
S., Cosep, E. M. R., and Park, K.: Comparison of physical and chemical
characteristics and oxidative potential of fine particles emitted from rice
straw and pine stem burning, Environ. Pollut., 267, 115599,
https://doi.org/10.1016/j.envpol.2020.115599, 2020.
Shen, G., Chen, Y., Wei, S., Fu, X., Zhu, Y., and Tao, S.: Mass absorption
efficiency of elemental carbon for source samples from residential biomass
and coal combustions, Atmos. Environ., 79, 79–84,
https://doi.org/10.1016/j.atmosenv.2013.05.082, 2013.
Singh, G. K., Choudhary, V., Rajeev, P., Paul, D., and Gupta, T.:
Understanding the origin of carbonaceous aerosols during periods of
extensive biomass burning in northern India, Environ. Pollut., 270,
116082, https://doi.org/10.1016/j.envpol.2020.116082, 2021.
Sun, J., Zhi, G., Hitzenberger, R., Chen, Y., Tian, C., Zhang, Y., Feng, Y., Cheng, M., Zhang, Y., Cai, J., Chen, F., Qiu, Y., Jiang, Z., Li, J., Zhang, G., and Mo, Y.: Emission factors and light absorption properties of brown carbon from household coal combustion in China, Atmos. Chem. Phys., 17, 4769–4780, https://doi.org/10.5194/acp-17-4769-2017, 2017.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010.
Verma, V., Rico-Martinez, R., Kotra, N., King, L., Liu, J., Snell, T. W.,
and Weber, R. J.: Contribution of water-soluble and insoluble components and
their hydrophobic/hydrophilic subfractions to the reactive oxygen
species-generating potential of fine ambient aerosols, Environ. Sci. Technol., 46, 11384–11392, https://doi.org/10.1021/es302484r, 2012.
Verma, V., Fang, T., Guo, H., King, L., Bates, J. T., Peltier, R. E., Edgerton, E., Russell, A. G., and Weber, R. J.: Reactive oxygen species associated with water-soluble PM2.5 in the southeastern United States: spatiotemporal trends and source apportionment, Atmos. Chem. Phys., 14, 12915–12930, https://doi.org/10.5194/acp-14-12915-2014, 2014.
Verma, V., Wang, Y., El-Afifi, R., Fang, T., Rowland, J., Russell, A. G.,
and Weber, R. J.: Fractionating ambient humic-like substances (HULIS) for
their reactive oxygen species activity – Assessing the importance of
quinones and atmospheric aging, Atmos. Environ., 120, 351–359,
https://doi.org/10.1016/j.atmosenv.2015.09.010, 2015.
Win, M. S., Tian, Z., Zhao, H., Xiao, K., Peng, J., Shang, Y., Wu, M., Xiu,
G., Lu, S., Yonemochi, S., and Wang, Q.: Atmospheric HULIS and its ability
to mediate the reactive oxygen species (ROS): A review, J. Environ. Sci., 71, 13–31, https://doi.org/10.1016/j.jes.2017.12.004, 2018.
Wong, J. P. S., Tsagkaraki, M., Tsiodra, I., Mihalopoulos, N., Violaki, K.,
Kanakidou, M., Sciare, J., Nenes, A., and Weber, R. J.: Effects of
Atmospheric Processing on the Oxidative Potential of Biomass Burning Organic
Aerosols, Environ. Sci. Technol., 53, 6747–6756,
https://doi.org/10.1021/acs.est.9b01034, 2019.
Wu, D., Wang, Z., Chen, J., Kong, S., Fu, X., Deng, H., Shao, G., and Wu,
G.: Polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM2.5 and PM10 at
a coal-based industrial city: Implication for PAH control at industrial
agglomeration regions, China, Atmos. Res., 149, 217–229,
https://doi.org/10.1016/j.atmosres.2014.06.012, 2014.
Wu, G., Wan, X., Ram, K., Li, P., Liu, B., Yin, Y., Fu, P., Loewen, M., Gao,
S., Kang, S., Kawamura, K., Wang, Y., and Cong, Z.: Light absorption,
fluorescence properties and sources of brown carbon aerosols in the
Southeast Tibetan Plateau, Environ. Pollut., 257, 113616,
https://doi.org/10.1016/j.envpol.2019.113616, 2020.
Wu, X., Liu, W., Gao, H., Alfaro, D., Sun, S., Lei, R., Jia, T., and Zheng,
M.: Coordinated effects of air pollution control devices on PAH emissions in
coal-fired power plants and industrial boilers, Sci. Total Environ., 756, 144063, https://doi.org/10.1016/j.scitotenv.2020.144063, 2021.
Yan, C., Zheng, M., Sullivan, A. P., Bosch, C., Desyaterik, Y., Andersson,
A., Li, X., Guo, X., Zhou, T., Gustafsson, Ö., and Collett, J. L.:
Chemical characteristics and light-absorbing property of water-soluble
organic carbon in Beijing: Biomass burning contributions, Atmos. Environ., 121, 4–12, https://doi.org/10.1016/j.atmosenv.2015.05.005, 2015.
Yu, S., Liu, W., Xu, Y., Yi, K., Zhou, M., Tao, S., and Liu, W.:
Characteristics and oxidative potential of atmospheric PM2.5 in Beijing:
Source apportionment and seasonal variation, Sci. Total Environ., 650, 277–287, https://doi.org/10.1016/j.scitotenv.2018.09.021, 2019.
Zhang, X., Lin, Y. H., Surratt, J. D., and Weber, R. J.: Sources,
composition and absorption Angstrom exponent of light-absorbing organic
components in aerosol extracts from the Los Angeles Basin, Environ. Sci. Technol., 47, 3685–3693, https://doi.org/10.1021/es305047b, 2013.
Zhu, J., Chen, Y., Shang, J., and Zhu, T.: Effects of air/fuel ratio and
ozone aging on physicochemical properties and oxidative potential of soot
particles, Chemosphere, 220, 883–891, https://doi.org/10.1016/j.chemosphere.2018.12.107,
2019.
Zou, C., Li, M., Cao, T., Zhu, M., Fan, X., Peng, S., Song, J., Jiang, B.,
Jia, W., Yu, C., Song, H., Yu, Z., Li, J., Zhang, G., and Peng, P. A.:
Comparison of solid phase extraction methods for the measurement of
humic-like substances (HULIS) in atmospheric particles, Atmos. Environ., 225, 117370, https://doi.org/10.1016/j.atmosenv.2020.117370, 2020.
Short summary
Brown carbon (BrC) fractions derived from biomass burning and coal combustion including water- and methanol-soluble organic carbon were comprehensively characterized for their optical and chemical properties, as well as oxidative potential. Moreover, the key components or functional groups that were responsible for the reactive oxygen species (ROS) generation capacity of BrC were also discussed. These findings are useful for estimation of their environmental, climate, and health impacts.
Brown carbon (BrC) fractions derived from biomass burning and coal combustion including water-...
Altmetrics
Final-revised paper
Preprint