
Supplement of Atmos. Chem. Phys., 21, 13187–13205, 2021
https://doi.org/10.5194/acp-21-13187-2021-supplement
© Author(s) 2021. CC BY 4.0 License.

Supplement of

Chemical composition, optical properties, and oxidative potential of water-
and methanol-soluble organic compounds emitted from the combustion of
biomass materials and coal
Tao Cao et al.

Correspondence to: Jianzhong Song (songjzh@gig.ac.cn)

The copyright of individual parts of the supplement might differ from the article licence.



S2 
 

CONTENTS: 22 

1. Biomass and coal samples 23 

2. Collection of smoke samples from BB and CC 24 

3. Extraction and fractionation of BrC 25 

4. Organic carbon/elemental carbon (OC/EC) and total organic carbon (TOC) analysis 26 

5. UV-visible properties 27 

6. Principal component analysis (PCA) 28 

7. Quality control 29 

8. Table S1. Region, excitation/emission wavelength maxima range and attribution of 30 

chromophores in BrC emitted from BB and CC 31 

9. Table S2. Results of DTT assay conducted on the WSOC, HULIS and MSOC of smoke 32 

samples 33 

10. Figure S1. The normalized UV-vis spectra by organic carbon contents of WSOC, HULIS, 34 

and MSOC fractions 35 

11. Figure S2. EEM fluorescence counter maps of corresponding WSOC, HULIS, MSOC of 36 

BB and CC smoke samples, presented as specific intensity (a.u. L(mg C-1)) 37 

12. Figure S3. 
1
H-NMR stacking diagram of corresponding WSOC, HULIS, MSOC of BB 38 

and CC smoke samples. The segment from 4.40 to 5.60 ppm was removed for NMR 39 

spectra due to MeOH and H2O residues. The peaks were assigned to specific compounds 40 

as follows: Levoglucosan (L), Phthlic acid (PA) 41 

 42 

  43 



S3 
 

S1. Biomass and coal samples 44 

In this study, six biomass materials and five types of coal were collected and burned to 45 

investigate the optical and chemical properties of brown carbon (BrC) fractions emitted from 46 

biomass burning (BB) and coal combustion (CC) smoke. The six biomass materials consisted 47 

of three types of crop straw (wheat straw [WS], rice straw [RS], and corn straw [CS]) and 48 

three types of wood (pine wood [PW], Chinese fir [CF], and white poplar [WP]). The three 49 

crop straws were chosen because they were the main types of crop straw burned in China. 50 

These crop straws are usually used as fuels for heating in the winter or cooking in rural areas 51 

throughout the year, and are also occasionally burned in agricultural fields after the harvest 52 

season (Ke et al., 2019). The three wood materials are widespread in forests and are 53 

commonly used as biomass fuels in some rural areas of China. The combustion of these crop 54 

straws and woods has been reported to make a significant contribution to the atmospheric 55 

aerosol in China (Fan et al., 2018; Shen et al., 2013). Therefore, these biomass materials were 56 

selected as representative biomass fuels for the study of BB-derived BrC. In this study, WS, 57 

RS, and CS were collected in the rural area of Bengbu, Anhui Province, China, while PW, CF, 58 

and WP were collected from a forest area in Lu’an, Anhui Province, China. Before the 59 

experiment, the crop straws and wood materials were washed with water and air dried for 60 

seven days. 61 

In some developing countries, such as China, coal is still an important fuel in rural areas 62 

and also makes a large contribution to the levels of atmospheric pollution. In this study, five 63 

coals were chosen for the investigation of their BrC fractions from CC. They consisted of 64 

four bituminous coals (B-1, B-2, B-3, and B-4, with volatile fractions of 34%, 32%, 25%, and 65 
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19%, respectively) and one anthracitic coal (with a volatile fraction of 3.3%). These five 66 

coals represented the major types of coal used for residential CC in China. After collection, 67 

the coals were washed with water three times to remove dust and then air-dried. Then raw 68 

coal was crushed, fully mixed, and made into coal briquettes. 69 

 70 

S2. Collection of smoke samples from BB and CC 71 

Samples of the smoke emitted from BB and CC were collected in a combustion and 72 

sampling system that was introduced in our previous studies (Fan et al., 2018; Li et al., 2018). 73 

The instrument was made of stainless steel and consisted of a combustion hood, clean air 74 

dilution, and injection ports, smoke pipe, mixing fan, mixing chamber, PM2.5 sampler 75 

(JCH-120F Intelligent medium flow PM sampler, Juchuang Environmental Protection Group 76 

Co., Ltd, Qindao, China), and exhaust port. The smoke samples emitted from BB and CC 77 

were then collected as follows: 78 

(1) Biomass burning smoke samples. The biomass fuels were first prepared as small 79 

pieces (length ~10 cm) and then placed on a combustion stove. After dropping 1 mL of 80 

alcohol on the biomass fuels they were ignited with an electronic gas lighter. The smoke 81 

particles were diluted and transported into the mixing chamber. Finally, smoke particles were 82 

collected on quartz fiber filters (Ø 90 mm: Whatman, Maidstone, UK) in a PM2.5 sampler at a 83 

flow rate of 80 L/min. Five complete experiments were conducted for each biomass fuel and 84 

five smoke PM2.5 filter samples were obtained. 85 

(2) Coal combustion smoke samples. The smoke particles emitted from the CC samples 86 

were also collected in the same combustion and sampling system. Sample collection was 87 
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conducted according to the method introduced by Li et al. (2018). Briefly, two anthracite 88 

briquettes were ignited in a burning coal honeycomb briquette stove and were then moved 89 

into the other coal stove. After the burning stage of coal was reached and smoke emissions 90 

were minimized, the coal stove was placed into the sampling system. Then, one honeycomb 91 

sample was placed in the pre-burned coal stove. The resulting smoke was diluted and passed 92 

into the mixing chamber. Finally, smoke samples were collected with the PM2.5 sampler at a 93 

flow rate of 80 L/min. To obtain sufficient smoke sample for the comprehensive 94 

characterization of the BrC fractions, each coal was burned at least for three cycles. All 95 

quartz filters were baked for 6 h at 450 ºC to remove any organics absorbed on the filters and 96 

then wrapped with baked aluminum foil. After sampling, the filter samples were re-wrapped 97 

with baked aluminum foil and stored in a refrigerator (−20 ºC) prior to analysis. 98 

Field blank quartz filters were collected before each group of combustion experiments 99 

under conditions in which the fuels were not ignited. The field blank filters were used to 100 

correct the mass of smoke PM2.5 and water-/methanol- soluble BrC, as well as the optical 101 

signals and DTT consumption by BrC. To prevent contamination of the following sample, the 102 

collection system was cleaned before each new combustion experiment. 103 

  104 

S3. Extraction and fractionation of BrC 105 

The BrC fractions (i.e., water-soluble organic compounds [WSOC], humic-like 106 

substances [HULIS], and methanol-soluble organic compounds [MSOC]) were obtained with 107 

solvent extraction and a solid-phase extraction (SPE) method, as indicated in our previous 108 

studies (Fan et al., 2018; Fan et al., 2016; Li et al., 2018). The filter samples were 109 
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ultrasonically extracted three times with 20 mL ultrapure water for 30 min. The extracts were 110 

filtered through a 0.22 μm polytetrafluoroethylene (PTFE) syringe filter to obtain the WSOC 111 

fraction. The HULIS fraction in WSOC was isolated with an SPE method (Chen and Bond, 112 

2010; Zhang et al., 2013; Cheng et al., 2016; Cheng et al., 2017). Briefly, the pH of the 113 

WSOC solution was acidified to 2 with HCl, and the solution introduced into a 114 

pre-conditioned SPE cartridge (Oasis HLB, 200 mg, Waters, Milford, MA, USA). The most 115 

hydrophilic species and inorganic salt ions or metal ions was removed by the cartridge, 116 

whereas the relatively hydrophobic HULIS fraction was retained. Then the SPE column was 117 

rinsed with pure water to remove inorganics and the retained organics were eluted with 118 

methanol. Finally, the HULIS solution was evaporated to dryness under a gentle nitrogen 119 

stream. It is noted that HULIS is less polar components of the WSOC, which were also 120 

usually refer to the relatively hydrophobic fraction of water-soluble organic carbon (Verma et 121 

al., 2012, Zheng et al., 2013, Katsumi et al., 2018). 122 

The MSOC was obtained by a method developed by Cheng et al. (2016). Briefly, the 123 

filter samples were immersed in 20 mL methanol (Macklin, >99.9%, Shanghai, China) for 2 h 124 

and then filtered through a 0.22 μm PTFE syringe filter (Jinteng, Tianjin, China). Static 125 

digestion without ultrasonic treatment can avoid the loss of particulate matter and facilitate 126 

the determination of dissolved organic matter content. Finally, the dried residual filters and 127 

untreated filters were analyzed to determine their carbon contents. 128 

 129 

S4. Organic carbon/elemental carbon (OC/EC) and total organic carbon (TOC) analysis 130 

The OC and EC in smoke filter samples were measured using an OC/EC analyzer (TOT, 131 



S7 
 

Sunset Laboratory Inc., Portland, OR, USA). The analysis was conducted according to the 132 

National Institute of Occupational Safety and Health (NIOSH) 870 method (Chow et al., 133 

2001; Wu et al., 2016). The TOC content of WSOC and HULIS was determined by a 134 

high-temperature catalytic oxidation instrument (VCPH analyzer, Shimadzu, Kyoto, Japan) 135 

following the non-purgeable OC protocol. After the removal of inorganic carbon, the sample 136 

was oxidized at high temperature (680 C) and the peak area of CO2 was determined by a 137 

non-dispersive infrared detector. The content of the MSOC fraction was indirectly obtained 138 

by subtracting the TC concentrations of the extracted filters from that of the untreated filters. 139 

The experiments were all repeated three times and the concentrations reported here were 140 

corrected for their respective blank concentrations. 141 

In this study, the “μgC” was used as weight unit that referring to the mass of carbon for 142 

the OC, EC, WSOC, HULIS-C, and MSOC fractions. 143 

 144 

S5. UV-visible properties 145 

The UV-visible absorption spectra of the BrC fractions (i.e., WSOC, HULIS, and MSOC) 146 

were recorded between the wavelengths of 200 to 700 nm using a UV-2600 UV-vis 147 

spectrophotometer (Shimadzu, Japan). The sample solution was placed in a 1-cm quartz 148 

cuvette and analyzed at 1 nm intervals. Ultrapure water was used as a blank reference for the 149 

WSOC and HULIS solutions, while pure methanol was used for the MSOC fraction. The 150 

field blank sample solution was also used as the blank sample, and the interference from the 151 

instrument and operating blank was determined.  152 

The absorption Ångström exponent (AAE) is a measure of the spectral dependence of 153 
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the light absorption of BrC solutions (Cheng et al., 2016), which was calculated by the 154 

following equation: 155 

                     Aλ = Kλ
-AAE                         

(2) 156 

where Aλ is the absorbance derived from the spectrophotometer at a given wavelength λ (330–157 

400 nm) and K is a constant. 158 

The mass absorption efficiency at 365 nm (MAE365) is an important parameter used to 159 

characterize the light absorbing ability of BrC. It was obtained using the following equation: 160 

     MAE𝜆 =
𝐴𝜆

𝐶⋅𝐿
× ln(10)         (3) 161 

where Aλ is the absorbance at λ nm, c is the carbon concentration of BrC in solution (gC 162 

mL
−1

), and L is the absorbing path length.  163 

 164 

S6. Principal component analysis (PCA) 165 

PCA is a widely used chemometric procedure that can transform the original variables to 166 

the principal component by dimension reduction analysis. The principal component (two or 167 

three) generally contain most of the original variable information (Popovicheva et al., 2020). 168 

Thus, in this study, PCA was performed to find out the key factors that may affect the DTT 169 

activities from a series of characteristic of BrC fraction (MAE365, percentage content of four 170 

fluorophores, and percentage content of R-H, H-C-C=, H-C-O, and Ar-H groups). The main 171 

calculation is based on SPSS version 19 (IBM SPSS Statistics) (Shivani et al., 2019), and the 172 

confidence interval is 95%. 173 

 174 

S7. Quality control 175 
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The experimental blank and field blank were both analyzed in this study. The 176 

experimental blank was treated in the same method as it for smoke samples, which was used 177 

to assess the errors that may be introduced in the process of experimental operation and their 178 

repeatability. In this study, the average blank values of sextuple collections of WSOC, HULIS 179 

and MSOC were 0.28±0.07 μgC/cm
2
, 0.12±0.03μg C/cm

2
 and 0.38±0.09 μgC/cm

2
, 180 

respectively. The repeatability of analysis procedure was obtained based on one blank filter 181 

sample, which were 3.1%, 2.2% and 4.5% for WSOC, HULIS and MSOC, respectively. 182 

The field blank filter (ambient and ignition coal (for coal combustion only)) were 183 

collected follow the procedure for sampling smoke PM2.5 samples, but without ignited fuel 184 

samples. The field blank filters were treated as the method for smoke samples. The average 185 

values of WSOC, HULIS and MSOC were 1.8±0.2 μgC/cm
2
, 0.7±0.1 μgC/cm

2
 and 5.3±0.9 186 

μgC/cm
2
, respectively. They were much less than the values of that in smoke particle. 187 

In the present study, all the BrC results were blank-corrected by subtracting an average 188 

field blank value for each sample. The data were present as a mean ± standard deviation 189 

based on triplicate analysis of filter sample for each combustion experiment.  190 

 191 

  192 
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Table S1. Region, excitation/emission wavelength maxima range and attribution of chromophores in BrC 193 

emitted from BB and CC 194 

Region λex max(nm) λem max(nm) Fluorescent compounds References 

I 220-250 290-320 protein-like amino acid (Cui et al., 2016; Coble, 

1996) 

II 220-250 320-380 protein-like UV region (Mostofa et al., 2011; 

Mounier et al., 2010) 

III 220-250 380-460 fulvic-like (Chen et al., 2003; 

Santos et al., 2012) 

IV 250-380 280-380 tryptophan-like/microbial 

byproduct 

(Santos et al., 2012; Cui 

et al., 2016) 

V 250-380 380-460 humic-like organic (Chen et al., 2003; Qin 

et al., 2018) 

 195 

 196 

 197 

 198 

 199 

 200 

Table S2. Results of DTT assay conducted on the WSOC, HULIS and MSOC of smoke samples 201 

  Calculated by PM mass(pmol/min/μg) 

 Samples WSOC HULIS MSOC 

Biomass 

burning 

WS 4.5±3.8 3.2±2.8 85±12 

RS 6.1±0.5 5.5±0.6 84±5.6 

CS 7.4±1.4 3.0±0.7 69±11 

PW 5.9±3.3 3.1±0.3 9.1±1.5 

CF 5.5±2.3 3.2±0.9 14±6.9 

WP 5.6±2.8 2.6±1.0 11±7.6 

Coal 

combustion 

B-1 1.6±0.2 1.1±0.1 7.7±0.8 

B-2 2.1±0.2 1.5±0.1 11±3.2 

B-3 0.5±0.1 0.5±0.1 3.2±1.7 

B-4 1.9±0.5 0.9±0.2 3.1±1.0 

AN 0.7±0.2 0.4±0.1 6.7±2.9 

a
 error bars represent standard deviation based on quadruplicate test 202 

 203 

 204 

  205 
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 207 

 208 

 209 

 210 

 211 

 212 

 213 

 214 

 215 

 216 

 217 

 218 

 219 

 220 

Figure S1. The normalized UV-vis spectra by organic carbon contents of WSOC, HULIS, 221 

and MSOC fractions 222 
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 344 

Figure S2. EEM fluorescence counter maps of corresponding WSOC, HULIS, MSOC of BB 345 

and CC smoke samples, presented as specific intensity (a.u. L(mg C
-1

)) 346 

  347 

200 220 240 260 280 300 320 340 360 380 400

300

350

400

450

500

Excitation (nm)

E
m

is
si

o
n

 (
n

m
)

0.000

10.550

21.100

31.650

42.200

52.750

63.300

73.850

84.400

I

II

III

IV

V

T1 T2

B-3

WSOC

200 220 240 260 280 300 320 340 360 380 400

300

350

400

450

500 B-3

HULIS

Excitation (nm)

0.000

7.050

14.100

21.150

28.200

35.250

42.300

49.350

56.400

I

II

III

IV

V

T1 T2

200 220 240 260 280 300 320 340 360 380 400

300

350

400

450

500 B-3

MSOC

Excitation (nm)

0.000

15.813

31.625

47.438

63.250

79.063

94.875

110.688

126.500

I

II

III

IV

V

T2T1

200 220 240 260 280 300 320 340 360 380 400

300

350

400

450

500

Excitation (nm)

E
m

is
si

o
n

 (
n

m
)

0.000

10.675

21.350

32.025

42.700

53.375

64.050

74.725

85.400

I

II

III

IV

V

T2
T1

B-4

WSOC

200 220 240 260 280 300 320 340 360 380 400

300

350

400

450

500 B-4

HULIS

Excitation (nm)

0.000

7.100

14.200

21.300

28.400

35.500

42.600

49.700

56.800

I

II

III

IV

V

T2
T1

200 220 240 260 280 300 320 340 360 380 400

300

350

400

450

500 B-4

MSOC

Excitation (nm)

0.000

5.925

11.850

17.775

23.700

29.625

35.550

41.475

47.400

I

II

III

IV

V

T2
T1

200 220 240 260 280 300 320 340 360 380 400

300

350

400

450

500

Excitation (nm)

E
m

is
si

o
n

 (
n

m
)

0.000

4.075

8.150

12.225

16.300

20.375

24.450

28.525

32.600

I

II

III

IV

V

T2

T1

AN

WSOC

200 220 240 260 280 300 320 340 360 380 400

300

350

400

450

500 AN

HULIS

Excitation (nm)

0.000

6.450

12.900

19.350

25.800

32.250

38.700

45.150

51.600

I

II

III

IV

V

T2
T1

200 220 240 260 280 300 320 340 360 380 400

300

350

400

450

500 AN

MSOC

Excitation (nm)

0.000

12.125

24.750

37.375

50.000

62.625

75.250

87.875

100.500

I

II

III

IV

V

T2
T1



S15 
 

 348 

 349 

 350 

 351 

 352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

  365 

 366 

 367 

 368 

 369 

9 8 7 6 5 4 3 2 1 0

R-H
H-C-C=

H-C-O

 

Ar-H

L

L

 

PA

PA

L

 

Chemical Shift (ppm)

RS WSOC 

RS HULIS 

RS MSOC 

9 8 7 6 5 4 3 2 1 0

R-H
H-C-C=

H-C-O

 

Ar-H

L

L  

PA

L

 

Chemical Shift (ppm)

CS WSOC 

CS HULIS 

CS MSOC 



S16 
 

 370 

 371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 

9 8 7 6 5 4 3 2 1 0

L

 
 

Ar-H

H-C-O

H-C-C=
R-H

L

 

L

 

Chemical Shift (ppm)

CF WSOC 

CF HULIS 

CF MSOC 

PW WSOC 

PW HULIS 

PW MSOC 

9 8 7 6 5 4 3 2 1 0

R-H
H-C-C=

H-C-O

 

Ar-H

L  

L

 

Chemical Shift (ppm)



S17 
 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

 399 

 400 

 401 

 402 

 403 

 404 

 405 

 406 

 407 

 408 

 409 

 410 

 411 

 412 

 413 

9 8 7 6 5 4 3 2 1 0

R-H
H-C-C=

H-C-O

 Ar-H

 

L

 

Chemical Shift (ppm)

WP WSOC 

WP HULIS 

WP MSOC 

9 8 7 6 5 4 3 2 1 0

R-H

H-C-C=H-C-O
 Ar-H

 
 

Chemical Shift (ppm)

B-2 WSOC 

B-2 HULIS 

B-2 MSOC 



S18 
 

 414 

 415 

 416 

 417 

 418 

 419 

 420 

 421 

 422 

 423 

 424 

 425 

 426 

 427 

 428 

 429 

 430 

 431 

 432 

 433 

 434 

 435 

9 8 7 6 5 4 3 2 1 0

R-H

H-C-C=

H-C-O

 Ar-H

 
 

Chemical Shift (ppm)

B-3 WSOC 

B-3 HULIS 

B-3 MSOC 

9 8 7 6 5 4 3 2 1 0

R-H

H-C-C=H-C-O
 

Ar-H

 
 

Chemical Shift (ppm)

B-4 WSOC 

B-4 HULIS 

B-4 MSOC 



S19 
 

 436 

 437 

 438 

 439 

 440 

 441 

 442 

 443 

 444 

Figure S3. 
1
H-NMR stacking diagram of corresponding WSOC, HULIS, MSOC of BB and 445 

CC smoke samples. The segment from 4.40 to 5.60 ppm was removed for NMR spectra due 446 

to MeOH and H2O residues. The peaks were assigned to specific compounds as follows: 447 

Levoglucosan (L), Phthlic acid (PA). 448 
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