Articles | Volume 21, issue 16
https://doi.org/10.5194/acp-21-12543-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-12543-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Analysis of aerosol–cloud interactions and their implications for precipitation formation using aircraft observations over the United Arab Emirates
National Center of Meteorology, Abu Dhabi 4815, United Arab Emirates
Sarah A. Tessendorf
Research Applications Laboratory, National Center for Atmospheric
Research, Boulder, CO 80307, USA
Courtney Weeks
Research Applications Laboratory, National Center for Atmospheric
Research, Boulder, CO 80307, USA
Roelof Bruintjes
Research Applications Laboratory, National Center for Atmospheric
Research, Boulder, CO 80307, USA
Lulin Xue
Research Applications Laboratory, National Center for Atmospheric
Research, Boulder, CO 80307, USA
Roy Rasmussen
Research Applications Laboratory, National Center for Atmospheric
Research, Boulder, CO 80307, USA
Paul Lawson
Stratton Park Engineering Company, Boulder, CO 80301, USA
Sarah Woods
Stratton Park Engineering Company, Boulder, CO 80301, USA
Marouane Temimi
Department of Civil, Environmental and Ocean Engineering, Stevens
Institute of Technology, Hoboken, NJ 07030, USA
Related authors
Istvan Geresdi, Lulin Xue, Sisi Chen, Youssef Wehbe, Roelof Bruintjes, Jared A. Lee, Roy M. Rasmussen, Wojciech W. Grabowski, Noemi Sarkadi, and Sarah A. Tessendorf
Atmos. Chem. Phys., 21, 16143–16159, https://doi.org/10.5194/acp-21-16143-2021, https://doi.org/10.5194/acp-21-16143-2021, 2021
Short summary
Short summary
By releasing soluble aerosols into the convective clouds, cloud seeding potentially enhances rainfall. The seeding impacts are hard to quantify with observations only. Numerical models that represent the detailed physics of aerosols, cloud and rain formation are used to investigate the seeding impacts on rain enhancement under different natural aerosol backgrounds and using different seeding materials. Our results indicate that seeding may enhance rainfall under certain conditions.
Ricardo Fonseca, Diana Francis, Michael Weston, Narendra Nelli, Sufian Farah, Youssef Wehbe, Taha AlHosari, Oriol Teixido, and Ruqaya Mohamed
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-597, https://doi.org/10.5194/acp-2021-597, 2021
Revised manuscript not accepted
Short summary
Short summary
High-sensitivity of summer convection and precipitation over the United Arab Emirates to aerosols properties and loadings.
Yufei Chu, Guo Lin, Min Deng, Lulin Xue, Weiwei Li, Hyeyum Hailey Shin, Jun A. Zhang, Hanqing Guo, and Zhien Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2490, https://doi.org/10.5194/egusphere-2025-2490, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We developed a new machine learning approach to estimate the height of the mixing layer in the lower atmosphere, which is important for predicting weather and air quality. By using daily temperature and heat patterns, the model learns how the atmosphere changes throughout the day. It gives accurate results across different locations and seasons, helping improve future climate and weather forecasts through better understanding of surface–atmosphere interactions.
Meilian Chen, Xiaoqin Jing, Jiaojiao Li, Jing Yang, Xiaobo Dong, Bart Geerts, Yan Yin, Baojun Chen, Lulin Xue, Mengyu Huang, Ping Tian, and Shaofeng Hua
Atmos. Chem. Phys., 25, 7581–7596, https://doi.org/10.5194/acp-25-7581-2025, https://doi.org/10.5194/acp-25-7581-2025, 2025
Short summary
Short summary
Several recent studies have reported complete cloud glaciation induced by airborne-based glaciogenic cloud seeding over plains. Since turbulence is an important factor to maintain clouds in a mixed phase, it is hypothesized that turbulence may have an impact on the seeding effect. This hypothesis is evident in the present study, which shows that turbulence can accelerate the impact of airborne glaciogenic seeding of stratiform clouds.
Derek Ngo, Minghui Diao, Ryan J. Patnaude, Sarah Woods, and Glenn Diskin
Atmos. Chem. Phys., 25, 7007–7036, https://doi.org/10.5194/acp-25-7007-2025, https://doi.org/10.5194/acp-25-7007-2025, 2025
Short summary
Short summary
Key controlling factors of cirrus clouds were individually quantified using machine learning models based on global-scale in situ observations from 12 campaigns at 67° S–87° N. Relative humidity shows much larger effects on cirrus occurrences and ice water content (IWC) fluctuations than vertical velocity. Aerosol–cloud interactions are seen for both large and small aerosols, with higher IWC and ice crystal number concentration under higher aerosol concentrations. Large aerosols are more impactful than small aerosols.
Sisi Chen, Lulin Xue, Sarah A. Tessendorf, Thomas Chubb, Andrew Peace, Suzanne Kenyon, Johanna Speirs, Jamie Wolff, and Bill Petzke
Atmos. Chem. Phys., 25, 6703–6724, https://doi.org/10.5194/acp-25-6703-2025, https://doi.org/10.5194/acp-25-6703-2025, 2025
Short summary
Short summary
This study aims to investigate how cloud seeding affects snowfall in Australia's Snowy Mountains. By running simulations with different setups, we found that seeding impact varies greatly with weather conditions. Seeding increased snow in stable weather but sometimes reduced it in stormy weather. This helps us to better understand when seeding works best to boost water supplies.
Silvia M. Calderón, Noora Hyttinen, Harri Kokkola, Tomi Raatikainen, R. Paul Lawson, and Sami Romakkaniemi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2730, https://doi.org/10.5194/egusphere-2025-2730, 2025
Short summary
Short summary
Field campaigns suggest that secondary ice production (SIP) via millimeter-sized supercooled droplets is responsible for the rapid glaciation and precipitation development in summer cumulus congestus clouds that lack of ice nucleating particles. We used large-eddy-simulations with sectional representation of aerosol and hydrometeor microphysics that reproduced observed hydrometeor size distributions and explained how SIP boosted rates of aggregation processes that increase surface precipitation.
David L. Mitchell, Anne Emilie Garnier, and Sarah Woods
EGUsphere, https://doi.org/10.5194/egusphere-2024-3790, https://doi.org/10.5194/egusphere-2024-3790, 2024
Short summary
Short summary
Motivated by the need to better understand the physics of cirrus clouds, a satellite retrieval for cirrus cloud ice water content, ice particle number concentration and effective size was developed by exploiting relationships between cirrus cloud measurements made during field campaigns and cloud radiative properties measured by satellite. These retrievals tested favorably when compared against corresponding aircraft measurements and were found to depend on the visual opacity of the cloud.
Alexei Korolev, Zhipeng Qu, Jason Milbrandt, Ivan Heckman, Mélissa Cholette, Mengistu Wolde, Cuong Nguyen, Greg M. McFarquhar, Paul Lawson, and Ann M. Fridlind
Atmos. Chem. Phys., 24, 11849–11881, https://doi.org/10.5194/acp-24-11849-2024, https://doi.org/10.5194/acp-24-11849-2024, 2024
Short summary
Short summary
The phenomenon of high ice water content (HIWC) occurs in mesoscale convective systems (MCSs) when a large number of small ice particles with typical sizes of a few hundred micrometers is found at high altitudes. It was found that secondary ice production in the vicinity of the melting layer plays a key role in the formation and maintenance of HIWC. This study presents a conceptual model of the formation of HIWC in tropical MCSs based on in situ observations and numerical simulation.
McKenna Stanford, Ann Fridlind, Andrew Ackerman, Bastiaan van Diedenhoven, Qian Xiao, Jian Wang, Toshihisa Matsui, Daniel Hernandez-Deckers, and Paul Lawson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2413, https://doi.org/10.5194/egusphere-2024-2413, 2024
Short summary
Short summary
The evolution of cloud droplets, from the point they are activated by atmospheric aerosol to the formation of precipitation, is an important process relevant to understanding cloud-climate feedbacks. This study demonstrates a benchmark framework for using novel airborne measurements and retrievals to constrain high-resolution simulations of moderately deep cumulus clouds and pathways for scaling results to large-scale models and space-based observational platforms.
Chongzhi Yin, Shin-ichiro Shima, Lulin Xue, and Chunsong Lu
Geosci. Model Dev., 17, 5167–5189, https://doi.org/10.5194/gmd-17-5167-2024, https://doi.org/10.5194/gmd-17-5167-2024, 2024
Short summary
Short summary
We investigate numerical convergence properties of a particle-based numerical cloud microphysics model (SDM) and a double-moment bulk scheme for simulating a marine stratocumulus case, compare their results with model intercomparison project results, and present possible explanations for the different results of the SDM and the bulk scheme. Aerosol processes can be accurately simulated using SDM, and this may be an important factor affecting the behavior and morphology of marine stratocumulus.
Cenlin He, Prasanth Valayamkunnath, Michael Barlage, Fei Chen, David Gochis, Ryan Cabell, Tim Schneider, Roy Rasmussen, Guo-Yue Niu, Zong-Liang Yang, Dev Niyogi, and Michael Ek
Geosci. Model Dev., 16, 5131–5151, https://doi.org/10.5194/gmd-16-5131-2023, https://doi.org/10.5194/gmd-16-5131-2023, 2023
Short summary
Short summary
Noah-MP is one of the most widely used open-source community land surface models in the world, designed for applications ranging from uncoupled land surface and ecohydrological process studies to coupled numerical weather prediction and decadal climate simulations. To facilitate model developments and applications, we modernize Noah-MP by adopting modern Fortran code and data structures and standards, which substantially enhance model modularity, interoperability, and applicability.
Qian Xiao, Jiaoshi Zhang, Yang Wang, Luke D. Ziemba, Ewan Crosbie, Edward L. Winstead, Claire E. Robinson, Joshua P. DiGangi, Glenn S. Diskin, Jeffrey S. Reid, K. Sebastian Schmidt, Armin Sorooshian, Miguel Ricardo A. Hilario, Sarah Woods, Paul Lawson, Snorre A. Stamnes, and Jian Wang
Atmos. Chem. Phys., 23, 9853–9871, https://doi.org/10.5194/acp-23-9853-2023, https://doi.org/10.5194/acp-23-9853-2023, 2023
Short summary
Short summary
Using recent airborne measurements, we show that the influences of anthropogenic emissions, transport, convective clouds, and meteorology lead to new particle formation (NPF) under a variety of conditions and at different altitudes in tropical marine environments. NPF is enhanced by fresh urban emissions in convective outflow but is suppressed in air masses influenced by aged urban emissions where reactive precursors are mostly consumed while particle surface area remains relatively high.
Rose Marie Miller, Robert M. Rauber, Larry Di Girolamo, Matthew Rilloraza, Dongwei Fu, Greg M. McFarquhar, Stephen W. Nesbitt, Luke D. Ziemba, Sarah Woods, and Kenneth Lee Thornhill
Atmos. Chem. Phys., 23, 8959–8977, https://doi.org/10.5194/acp-23-8959-2023, https://doi.org/10.5194/acp-23-8959-2023, 2023
Short summary
Short summary
The influence of human-produced aerosols on clouds remains one of the uncertainties in radiative forcing of Earth’s climate. Measurements of aerosol chemistry from sources around the Philippines illustrate the linkage between aerosol chemical composition and cloud droplet characteristics. Differences in aerosol chemical composition in the marine layer from biomass burning, industrial, ship-produced, and marine aerosols are shown to impact cloud microphysical structure just above cloud base.
Rachid Abida, Narendra Nelli, Diana Francis, Olivier Masson, Ricardo Fonseca, Emmanuel Bosc, and Marouane Temimi
EGUsphere, https://doi.org/10.5194/egusphere-2023-956, https://doi.org/10.5194/egusphere-2023-956, 2023
Preprint archived
Short summary
Short summary
This study is the first application of the Eddy Covariance (EC) framework to measure the fog droplet deposition velocity in a hyperarid coastal site. The average deposition velocity of fog droplets is around 3 cm s-1. The ratio of the time-integrated ground deposition of 137Cs under foggy conditions to that under clear sky conditions, showed that the fog contributed to the total ground deposition of 137Cs by up to 40 %.
Sisi Chen, Lulin Xue, Sarah Tessendorf, Kyoko Ikeda, Courtney Weeks, Roy Rasmussen, Melvin Kunkel, Derek Blestrud, Shaun Parkinson, Melinda Meadows, and Nick Dawson
Atmos. Chem. Phys., 23, 5217–5231, https://doi.org/10.5194/acp-23-5217-2023, https://doi.org/10.5194/acp-23-5217-2023, 2023
Short summary
Short summary
The possible mechanism of effective ice growth in the cloud-top generating cells in winter orographic clouds is explored using a newly developed ultra-high-resolution cloud microphysics model. Simulations demonstrate that a high availability of moisture and liquid water is critical for producing large ice particles. Fluctuations in temperature and moisture down to millimeter scales due to cloud turbulence can substantially affect the growth history of the individual cloud particles.
Yabin Gou, Haonan Chen, Hong Zhu, and Lulin Xue
Atmos. Chem. Phys., 23, 2439–2463, https://doi.org/10.5194/acp-23-2439-2023, https://doi.org/10.5194/acp-23-2439-2023, 2023
Short summary
Short summary
This article investigates the complex precipitation microphysics associated with super typhoon Lekima using a host of in situ and remote sensing observations, including rain gauge and disdrometer data, as well as polarimetric radar observations. The impacts of precipitation microphysics on multi-source data consistency and radar precipitation estimation are quantified. It is concluded that the dynamical precipitation microphysical processes must be considered in radar precipitation estimation.
Ewan Crosbie, Luke D. Ziemba, Michael A. Shook, Claire E. Robinson, Edward L. Winstead, K. Lee Thornhill, Rachel A. Braun, Alexander B. MacDonald, Connor Stahl, Armin Sorooshian, Susan C. van den Heever, Joshua P. DiGangi, Glenn S. Diskin, Sarah Woods, Paola Bañaga, Matthew D. Brown, Francesca Gallo, Miguel Ricardo A. Hilario, Carolyn E. Jordan, Gabrielle R. Leung, Richard H. Moore, Kevin J. Sanchez, Taylor J. Shingler, and Elizabeth B. Wiggins
Atmos. Chem. Phys., 22, 13269–13302, https://doi.org/10.5194/acp-22-13269-2022, https://doi.org/10.5194/acp-22-13269-2022, 2022
Short summary
Short summary
The linkage between cloud droplet and aerosol particle chemical composition was analyzed using samples collected in a polluted tropical marine environment. Variations in the droplet composition were related to physical and dynamical processes in clouds to assess their relative significance across three cases that spanned a range of rainfall amounts. In spite of the pollution, sea salt still remained a major contributor to the droplet composition and was preferentially enhanced in rainwater.
Eva-Lou Edwards, Jeffrey S. Reid, Peng Xian, Sharon P. Burton, Anthony L. Cook, Ewan C. Crosbie, Marta A. Fenn, Richard A. Ferrare, Sean W. Freeman, John W. Hair, David B. Harper, Chris A. Hostetler, Claire E. Robinson, Amy Jo Scarino, Michael A. Shook, G. Alexander Sokolowsky, Susan C. van den Heever, Edward L. Winstead, Sarah Woods, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 12961–12983, https://doi.org/10.5194/acp-22-12961-2022, https://doi.org/10.5194/acp-22-12961-2022, 2022
Short summary
Short summary
This study compares NAAPS-RA model simulations of aerosol optical thickness (AOT) and extinction to those retrieved with a high spectral resolution lidar near the Philippines. Agreement for AOT was good, and extinction agreement was strongest below 1500 m. Substituting dropsonde relative humidities into NAAPS-RA did not drastically improve agreement, and we discuss potential reasons why. Accurately modeling future conditions in this region is crucial due to its susceptibility to climate change.
Dongwei Fu, Larry Di Girolamo, Robert M. Rauber, Greg M. McFarquhar, Stephen W. Nesbitt, Jesse Loveridge, Yulan Hong, Bastiaan van Diedenhoven, Brian Cairns, Mikhail D. Alexandrov, Paul Lawson, Sarah Woods, Simone Tanelli, Sebastian Schmidt, Chris Hostetler, and Amy Jo Scarino
Atmos. Chem. Phys., 22, 8259–8285, https://doi.org/10.5194/acp-22-8259-2022, https://doi.org/10.5194/acp-22-8259-2022, 2022
Short summary
Short summary
Satellite-retrieved cloud microphysics are widely used in climate research because of their central role in water and energy cycles. Here, we provide the first detailed investigation of retrieved cloud drop sizes from in situ and various satellite and airborne remote sensing techniques applied to real cumulus cloud fields. We conclude that the most widely used passive remote sensing method employed in climate research produces high biases of 6–8 µm (60 %–80 %) caused by 3-D radiative effects.
Istvan Geresdi, Lulin Xue, Sisi Chen, Youssef Wehbe, Roelof Bruintjes, Jared A. Lee, Roy M. Rasmussen, Wojciech W. Grabowski, Noemi Sarkadi, and Sarah A. Tessendorf
Atmos. Chem. Phys., 21, 16143–16159, https://doi.org/10.5194/acp-21-16143-2021, https://doi.org/10.5194/acp-21-16143-2021, 2021
Short summary
Short summary
By releasing soluble aerosols into the convective clouds, cloud seeding potentially enhances rainfall. The seeding impacts are hard to quantify with observations only. Numerical models that represent the detailed physics of aerosols, cloud and rain formation are used to investigate the seeding impacts on rain enhancement under different natural aerosol backgrounds and using different seeding materials. Our results indicate that seeding may enhance rainfall under certain conditions.
Trude Eidhammer, Adam Booth, Sven Decker, Lu Li, Michael Barlage, David Gochis, Roy Rasmussen, Kjetil Melvold, Atle Nesje, and Stefan Sobolowski
Hydrol. Earth Syst. Sci., 25, 4275–4297, https://doi.org/10.5194/hess-25-4275-2021, https://doi.org/10.5194/hess-25-4275-2021, 2021
Short summary
Short summary
We coupled a detailed snow–ice model (Crocus) to represent glaciers in the Weather Research and Forecasting (WRF)-Hydro model and tested it on a well-studied glacier. Several observational systems were used to evaluate the system, i.e., satellites, ground-penetrating radar (used over the glacier for snow depth) and stake observations for glacier mass balance and discharge measurements in rivers from the glacier. Results showed improvements in the streamflow projections when including the model.
Ricardo Fonseca, Diana Francis, Michael Weston, Narendra Nelli, Sufian Farah, Youssef Wehbe, Taha AlHosari, Oriol Teixido, and Ruqaya Mohamed
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-597, https://doi.org/10.5194/acp-2021-597, 2021
Revised manuscript not accepted
Short summary
Short summary
High-sensitivity of summer convection and precipitation over the United Arab Emirates to aerosols properties and loadings.
Diana Francis, Kyle S. Mattingly, Stef Lhermitte, Marouane Temimi, and Petra Heil
The Cryosphere, 15, 2147–2165, https://doi.org/10.5194/tc-15-2147-2021, https://doi.org/10.5194/tc-15-2147-2021, 2021
Short summary
Short summary
The unexpected September 2019 calving event from the Amery Ice Shelf, the largest since 1963 and which occurred almost a decade earlier than expected, was triggered by atmospheric extremes. Explosive twin polar cyclones provided a deterministic role in this event by creating oceanward sea surface slope triggering the calving. The observed record-anomalous atmospheric conditions were promoted by blocking ridges and Antarctic-wide anomalous poleward transport of heat and moisture.
Oliver Branch, Thomas Schwitalla, Marouane Temimi, Ricardo Fonseca, Narendra Nelli, Michael Weston, Josipa Milovac, and Volker Wulfmeyer
Geosci. Model Dev., 14, 1615–1637, https://doi.org/10.5194/gmd-14-1615-2021, https://doi.org/10.5194/gmd-14-1615-2021, 2021
Short summary
Short summary
Effective numerical weather forecasting is vital in arid regions like the United Arab Emirates where extreme events like heat waves, flash floods, and dust storms are becoming more severe. This study employs a high-resolution simulation with the WRF-NOAHMP model, and the output is compared with seasonal observation data from 50 weather stations. This type of verification is vital to identify model deficiencies and improve forecasting systems for arid regions.
Martina Krämer, Christian Rolf, Nicole Spelten, Armin Afchine, David Fahey, Eric Jensen, Sergey Khaykin, Thomas Kuhn, Paul Lawson, Alexey Lykov, Laura L. Pan, Martin Riese, Andrew Rollins, Fred Stroh, Troy Thornberry, Veronika Wolf, Sarah Woods, Peter Spichtinger, Johannes Quaas, and Odran Sourdeval
Atmos. Chem. Phys., 20, 12569–12608, https://doi.org/10.5194/acp-20-12569-2020, https://doi.org/10.5194/acp-20-12569-2020, 2020
Short summary
Short summary
To improve the representations of cirrus clouds in climate predictions, extended knowledge of their properties and geographical distribution is required. This study presents extensive airborne in situ and satellite remote sensing climatologies of cirrus and humidity, which serve as a guide to cirrus clouds. Further, exemplary radiative characteristics of cirrus types and also in situ observations of tropical tropopause layer cirrus and humidity in the Asian monsoon anticyclone are shown.
Sisi Chen, Lulin Xue, and Man-Kong Yau
Atmos. Chem. Phys., 20, 10111–10124, https://doi.org/10.5194/acp-20-10111-2020, https://doi.org/10.5194/acp-20-10111-2020, 2020
Short summary
Short summary
This study employs a parcel–DNS (direct numerical simulation) modeling framework to accurately resolve the aerosol–droplet–turbulence interactions in an ascending air parcel. The effect of turbulence, aerosol hygroscopicity, and aerosol mass loading on droplet growth and rain formation is investigated through a series of in-cloud seeding experiments in which hygroscopic particles were seeded near the cloud base.
Cited articles
Abade, G. C., Grabowski, W. W., and Pawlowska, H.: Broadening of cloud
droplet spectra through eddy hopping: Turbulent entraining parcel
simulations, J. Atmos. Sci., 75, 3365–3379, 2018.
Abuelgasim, A. and Farahat, A.: Effect of dust loadings, meteorological
conditions, and local emissions on aerosol mixing and loading variability
over highly urbanized semiarid countries: United Arab Emirates case study,
J. Atmos. Sol.-Terr. Phy., 199, 105215, https://doi.org/10.1016/j.jastp.2020.105215, 2020.
Al Hosari, T., Al Mandous, A., Wehbe, Y., Shalaby, A., Al Shamsi, N., Al Naqbi, H., Al Yazeedi, O., Al Mazroui, A., and Farrah, S.: The UAE Cloud Seeding Program: A Statistical and Physical Evaluation, Atmosphere, 12, 1013, https://doi.org/10.3390/atmos12081013, 2021.
Almazroui, A. and Farrah, S.: The UAE seeks leading position in global rain
enhancement research, Journal of Weather Modification, 49, 54–59, 2017.
Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Whale, T. F., Baustian, K.
J., Carslaw, K. S., Dobbie, S., O'Sullivan, D., and Malkin, T. L.: The
importance of feldspar for ice nucleation by mineral dust in mixed-phase
clouds, Nature, 498, 355–358, 2013.
Bartlett, J.: The effect of revised collision efficiencies on the growth of
cloud droplets by coalescence, Q. J. Roy. Meteor.
Soc., 96, 730–738, 1970.
Beegum, S. N., Gherboudj, I., Chaouch, N., Temimi, M., and Ghedira, H.:
Simulation and analysis of synoptic scale dust storms over the Arabian
Peninsula, Atmos. Res., 199, 62–81, 2018.
Beswick, K. M., Gallagher, M. W., Webb, A. R., Norton, E. G., and Perry, F.: Application of the Aventech AIMMS20AQ airborne probe for turbulence measurements during the Convective Storm Initiation Project, Atmos. Chem. Phys., 8, 5449–5463, https://doi.org/10.5194/acp-8-5449-2008, 2008.
Bitan, A. and Sa'Aroni, H.: The horizontal and vertical extension of the
Persian Gulf pressure trough, Int. J. Climatol., 12,
733–747, 1992.
Bollasina, M. and Nigam, S.: The summertime “heat” low over
Pakistan/northwestern India: evolution and origin, Clim. Dynam., 37,
957–970, 2011.
Branch, O., Behrendt, A., Gong, Z., Schwitalla, T., and Wulfmeyer, V.:
Convection Initiation over the Eastern Arabian Peninsula, Meteorol.
Z., 29, 67–77, 2020.
Breed, D., Bruintjes, R., Salazar, V., and Jensen, T.: NCAR feasibility
studies for weather modification programs over the past 10 years, Research
Applications Laboratory (RAL), National Center for Atmospheric Research
(NCAR), Boulder CO, 2007.
Brenguier, J.-L. and Chaumat, L.: Droplet spectra broadening in cumulus
clouds. Part I: Broadening in adiabatic cores, J. Atmos.
Sci., 58, 628–641, 2001.
Bruintjes, R. T., Salazar, V., Semeniuk, T. A., Buseck, P., Breed, D. W.,
and Gunkelman, J.: Evaluation of hygroscopic cloud seeding flares, The
Journal of Weather Modification, 44, 69–94, 2012.
Cai, Y., Snider, J. R., and Wechsler, P.: Calibration of the passive cavity aerosol spectrometer probe for airborne determination of the size distribution, Atmos. Meas. Tech., 6, 2349–2358, https://doi.org/10.5194/amt-6-2349-2013, 2013.
Chen, S., Xue, L., and Yau, M.-K.: Impact of aerosols and turbulence on cloud droplet growth: an in-cloud seeding case study using a parcel–DNS (direct numerical simulation) approach, Atmos. Chem. Phys., 20, 10111–10124, https://doi.org/10.5194/acp-20-10111-2020, 2020.
Cooper, W. A., Bruintjes, R. T., and Mather, G. K.: Calculations pertaining
to hygroscopic seeding with flares, J. Appl. Meteorol., 36,
1449–1469, 1997.
DeMott, P. J., Sassen, K., Poellot, M. R., Baumgardner, D., Rogers, D. C.,
Brooks, S. D., Prenni, A. J., and Kreidenweis, S. M.: African dust aerosols
as atmospheric ice nuclei, Geophys. Res. Lett., 30, 1732, https://doi.org/10.1029/2003GL017410, 2003.
Eck, T., Holben, B., Reid, J., Sinyuk, A., Dubovik, O., Smirnov, A., Giles,
D., O'Neill, N., Tsay, S. C., and Ji, Q.: Spatial and temporal variability
of column-integrated aerosol optical properties in the southern Arabian Gulf
and United Arab Emirates in summer, J. Geophys. Res.-Atmos., 113, https://doi.org/10.1029/2007JD008944, 2008.
Feingold, G., Cotton, W. R., Kreidenweis, S. M., and Davis, J. T.: The
impact of giant cloud condensation nuclei on drizzle formation in
stratocumulus: Implications for cloud radiative properties, J.
Atmos. Sci., 56, 4100–4117, 1999.
Filioglou, M., Giannakaki, E., Backman, J., Kesti, J., Hirsikko, A., Engelmann, R., O'Connor, E., Leskinen, J. T. T., Shang, X., Korhonen, H., Lihavainen, H., Romakkaniemi, S., and Komppula, M.: Optical and geometrical aerosol particle properties over the United Arab Emirates, Atmos. Chem. Phys., 20, 8909–8922, https://doi.org/10.5194/acp-20-8909-2020, 2020.
Flossmann, A. I. and Wobrock, W.: A review of our understanding of the
aerosol–cloud interaction from the perspective of a bin resolved cloud
scale modelling, Atmos. Res., 97, 478–497, 2010.
Flossmann, A. I., Manton, M., Abshaev, A., Bruintjes, R., Murakami, M.,
Prabhakaran, T., and Yao, Z.: Review of advances in precipitation
enhancement research, B. Am. Meteorol. Soc., 100,
1465–1480, 2019.
Freud, E., Ström, J., Rosenfeld, D., Tunved, P., and Swietlicki, E.:
Anthropogenic aerosol effects on convective cloud microphysical properties
in southern Sweden, Tellus B, 60,
286–297, 2008.
Geresdi, I., Chen, S., Wehbe, Y., Bruintjes, R., Lee, J., Tessendorf, S.,
Weeks, C., Sarkadi, N., Rasmussen, R. M., Grabowski, W., and Xue, L.:
Sensitivity of the Efficiency of Hygroscopic Seeding on the Size
Distribution and Chemical Composition of the Seeding Material, 101st
American Meteorological Society Annual Meeting, 2021a.
Geresdi, I., Xue, L., Chen, S., Wehbe, Y., Bruintjes, R., Lee, J., Rasmussen, R., Grabowski, W., Sarkadi, N., and Tessendorf, S.: Impact of hygroscopic seeding on the initiation of precipitation formation: results of a hybrid bin microphysics parcel model, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2021-506, in review, 2021b.
Ghate, V. P., Albrecht, B. A., Kollias, P., Jonsson, H. H., and Breed, D.
W.: Cloud seeding as a technique for studying aerosol-cloud interactions in
marine stratocumulus, Geophys. Res. Lett., 34, L14807, https://doi.org/10.1029/2007GL029748, 2007.
Grabowski, W. W. and Abade, G. C.: Broadening of cloud droplet spectra
through eddy hopping: Turbulent adiabatic parcel simulations, J.
Atmos. Sci., 74, 1485–1493, 2017.
Harrison, A. D., Whale, T. F., Carpenter, M. A., Holden, M. A., Neve, L., O'Sullivan, D., Vergara Temprado, J., and Murray, B. J.: Not all feldspars are equal: a survey of ice nucleating properties across the feldspar group of minerals, Atmos. Chem. Phys., 16, 10927–10940, https://doi.org/10.5194/acp-16-10927-2016, 2016.
Hersbach, H. and Dee, D.: ERA5 reanalysis is in production, ECMWF
Newsletter, 147, 5–6, 2016.
Hofer, J., Althausen, D., Abdullaev, S. F., Makhmudov, A. N., Nazarov, B. I., Schettler, G., Engelmann, R., Baars, H., Fomba, K. W., Müller, K., Heinold, B., Kandler, K., and Ansmann, A.: Long-term profiling of mineral dust and pollution aerosol with multiwavelength polarization Raman lidar at the Central Asian site of Dushanbe, Tajikistan: case studies, Atmos. Chem. Phys., 17, 14559–14577, https://doi.org/10.5194/acp-17-14559-2017, 2017.
Hoose, C. and Möhler, O.: Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments, Atmos. Chem. Phys., 12, 9817–9854, https://doi.org/10.5194/acp-12-9817-2012, 2012.
Ivanova, E., Kogan, Y., Mazin, I., and Permyakov, M.: The ways of
parameterization of condensation drop growth in numerical models, Izv.
Atmos. Ocean. Phy.+, 13, 1193–1201, 1977.
Jensen, J. B. and Lee, S.: Giant sea-salt aerosols and warm rain formation
in marine stratocumulus, J. Atmos. Sci., 65, 3678–3694,
2008.
Jensen, J. B. and Nugent, A. D.: Condensational growth of drops formed on
giant sea-salt aerosol particles, J. Atmos. Sci., 74,
679–697, 2017.
Johnson, D. B.: The role of giant and ultragiant aerosol particles in warm
rain initiation, J. Atmos. Sci., 39, 448–460, 1982.
Johnson, D. B.: The onset of effective coalescence growth in convective
clouds, Q. J. Roy. Meteor. Soc., 119, 925–933,
1993.
Jung, E., Albrecht, B. A., Jonsson, H. H., Chen, Y.-C., Seinfeld, J. H., Sorooshian, A., Metcalf, A. R., Song, S., Fang, M., and Russell, L. M.: Precipitation effects of giant cloud condensation nuclei artificially introduced into stratocumulus clouds, Atmos. Chem. Phys., 15, 5645–5658, https://doi.org/10.5194/acp-15-5645-2015, 2015.
Kanji, Z. A., Sullivan, R. C., Niemand, M., DeMott, P. J., Prenni, A. J., Chou, C., Saathoff, H., and Möhler, O.: Heterogeneous ice nucleation properties of natural desert dust particles coated with a surrogate of secondary organic aerosol, Atmos. Chem. Phys., 19, 5091–5110, https://doi.org/10.5194/acp-19-5091-2019, 2019.
Kant, S., Panda, J., and Gautam, R.: A seasonal analysis of
aerosol-cloud-radiation interaction over Indian region during 2000–2017,
Atmos. Environ., 201, 212–222, 2019.
Karagulian, F., Temimi, M., Ghebreyesus, D., Weston, M., Kondapalli, N. K.,
Valappil, V. K., Aldababesh, A., Lyapustin, A., Chaouch, N., and Al Hammadi,
F.: Analysis of a severe dust storm and its impact on air quality conditions
using WRF-Chem modeling, satellite imagery, and ground observations, Air
Qual. Atmos. Hlth., 12, 453–470, 2019.
Kaufmann, L., Marcolli, C., Hofer, J., Pinti, V., Hoyle, C. R., and Peter, T.: Ice nucleation efficiency of natural dust samples in the immersion mode, Atmos. Chem. Phys., 16, 11177–11206, https://doi.org/10.5194/acp-16-11177-2016, 2016.
Knollenberg, R.: Techniques for probing cloud microstructure, Symposium on
Clouds-Their formation, optical properties, and effects, Williamsburg, VA, 15–89,
1981.
Koren, I., Kaufman, Y. J., Rosenfeld, D., Remer, L. A., and Rudich, Y.:
Aerosol invigoration and restructuring of Atlantic convective clouds,
Geophys. Res. Lett., 32, L14828, https://doi.org/10.1029/2005GL023187, 2005.
Korolev, A. and Isaac, G. A.: Relative humidity in liquid, mixed-phase, and
ice clouds, J. Atmos. Sci., 63, 2865–2880, 2006.
Korolev, A., Strapp, J., Isaac, G., and Nevzorov, A.: The Nevzorov airborne
hot-wire LWC–TWC probe: Principle of operation and performance
characteristics, J. Atmos. Ocean. Tech., 15,
1495–1510, 1998.
Kumar, K. N. and Suzuki, K.: Assessment of seasonal cloud properties in the
United Arab Emirates and adjoining regions from geostationary satellite
data, Remote Sens. Environ., 228, 90–104, 2019.
Kvasov, B. I.: Methods of shape-preserving spline approximation, World
Scientific, https://doi.org/10.1142/4172, 2000.
Lasher-Trapp, S. G.: Ultragiant aerosol growth by collection within
a warm continental cumulus congestus, The University of Oklahoma, ProQuest Dissertations Publishing, 9839789, 1998.
Lasher-Trapp, S. G., Cooper, W. A., and Blyth, A. M.: Broadening of droplet
size distributions from entrainment and mixing in a cumulus cloud, Quarterly
Journal of the Royal Meteorological Society: A Journal of the Atmospheric
Sciences, Applied Meteorology and Physical Oceanography, 131, 195–220, 2005.
Lavaysse, C., Flamant, C., Janicot, S., Parker, D., Lafore, J.-P., Sultan,
B., and Pelon, J.: Seasonal evolution of the West African heat low: a
climatological perspective, Clim. Dynam., 33, 313–330, 2009.
Lawson, P., Gurganus, C., Woods, S., and Bruintjes, R.: Aircraft
observations of cumulus microphysics ranging from the tropics to
midlatitudes: Implications for a “new” secondary ice process, J. Atmos. Sci., 74, 2899–2920, 2017.
Lawson, R., Stewart, R., Strapp, J., and Isaac, G.: Airborne measurements of
the origin and growth of very large snowflakes, Geophys. Res.
Lett., 20, 53–56, 1993.
Lawson, R., Baker, B., Schmitt, C., and Jensen, T.: Overview of
microphysical properties of summertime boundary layer clouds observed during
FIRE ACE, J. Geophys. Res.-Atmos., 106, 14989–15014,
2001.
Lawson, R. P.: Effects of ice particles shattering on the 2D-S probe, Atmos. Meas. Tech., 4, 1361–1381, https://doi.org/10.5194/amt-4-1361-2011, 2011.
Lawson, R., Woods, S., Jensen, E., Erfani, E., Gurganus, C., Gallagher, M.,
Connolly, P., Whiteway, J., Baran, A., and May, P.: A review of ice particle
shapes in cirrus formed in situ and in anvils, J. Geophys.
Res.-Atmos., 124, 10049–10090, 2019.
Lawson, R. P., O'connor, D., Zmarzly, P., Weaver, K., Baker, B., Mo, Q., and
Jonsson, H.: The 2D-S (stereo) probe: Design and preliminary tests of a new
airborne, high-speed, high-resolution particle imaging probe, J.
Atmos. Ocean. Tech., 23, 1462–1477, 2006.
Liu, W., Kaufman, S. L., Osmondson, B. L., Sem, G. J., Quant, F. R., and
Oberreit, D. R.: Water-based condensation particle counters for
environmental monitoring of ultrafine particles, J. Air
Waste Manage., 56, 444–455, 2006.
Liu, Y., Zhu, Q., Hua, S., Alam, K., Dai, T., and Cheng, Y.: Tibetan Plateau
driven impact of Taklimakan dust on northern rainfall, Atmos.
Environ., 234, 117583, https://doi.org/10.1016/j.atmosenv.2020.117583, 2020.
Lohmann, U., Rotstayn, L., Storelvmo, T., Jones, A., Menon, S., Quaas, J., Ekman, A. M. L., Koch, D., and Ruedy, R.: Total aerosol effect: radiative forcing or radiative flux perturbation?, Atmos. Chem. Phys., 10, 3235–3246, https://doi.org/10.5194/acp-10-3235-2010, 2010.
Miller, S. D., Kuciauskas, A. P., Liu, M., Ji, Q., Reid, J. S., Breed, D.
W., Walker, A. L., and Mandoos, A. A.: Haboob dust storms of the southern
Arabian Peninsula, J. Geophys. Res.-Atmos., 113, D01202, https://doi.org/10.1029/2007JD008550, 2008.
Min, Q.-L., Li, R., Lin, B., Joseph, E., Wang, S., Hu, Y., Morris, V., and Chang, F.: Evidence of mineral dust altering cloud microphysics and precipitation, Atmos. Chem. Phys., 9, 3223–3231, https://doi.org/10.5194/acp-9-3223-2009, 2009.
Ming, Y., Ramaswamy, V., Ginoux, P. A., and Horowitz, L. H.: Direct
radiative forcing of anthropogenic organic aerosol, J. Geophys.
Res.-Atmos., 110, D20208, https://doi.org/10.1029/2004JD005573, 2005.
Möhler, O., Field, P. R., Connolly, P., Benz, S., Saathoff, H., Schnaiter, M., Wagner, R., Cotton, R., Krämer, M., Mangold, A., and Heymsfield, A. J.: Efficiency of the deposition mode ice nucleation on mineral dust particles, Atmos. Chem. Phys., 6, 3007–3021, https://doi.org/10.5194/acp-6-3007-2006, 2006.
Moore, K., Clarke, A., Kapustin, V., McNaughton, C., Anderson, B., Winstead,
E., Weber, R., Ma, Y., Lee, Y., and Talbot, R.: A comparison of similar
aerosol measurements made on the NASA P3-B, DC-8, and NSF C-130 aircraft
during TRACE-P and ACE-Asia, J. Geophys. Res.-Atmos.,
109, D15S15, https://doi.org/10.1029/2003JD003543, 2004.
Morrison, H., Shupe, M. D., Pinto, J. O., and Curry, J. A.: Possible roles
of ice nucleation mode and ice nuclei depletion in the extended lifetime of
Arctic mixed-phase clouds, Geophys. Res. Lett., 32, L18801, https://doi.org/10.1029/2005GL023614, 2005.
Morrison, H., van Lier-Walqui, M., Fridlind, A. M., Grabowski, W. W.,
Harrington, J. Y., Hoose, C., Korolev, A., Kumjian, M. R., Milbrandt, J. A.,
and Pawlowska, H.: Confronting the challenge of modeling cloud and
precipitation microphysics, J. Adv. Model. Earth Sy.,
12, e2019MS001689, https://doi.org/10.1029/2019MS001689, 2020.
O'Connor, D., Baker, B., and Lawson, R. P.: Upgrades to the FSSP-100
Electronics, 15th. Int. Conf. on Clouds and Precipitation, Cancun, Mexico,
Universidad Nacional Autónoma de México, 13.16, 2008.
Peckhaus, A., Kiselev, A., Hiron, T., Ebert, M., and Leisner, T.: A comparative study of K-rich and Na/Ca-rich feldspar ice-nucleating particles in a nanoliter droplet freezing assay, Atmos. Chem. Phys., 16, 11477–11496, https://doi.org/10.5194/acp-16-11477-2016, 2016.
Pinsky, M., Khain, A., and Shapiro, M.: Collision efficiency of drops in a
wide range of Reynolds numbers: Effects of pressure on spectrum evolution,
J. Atmos. Sci., 58, 742–764, 2001.
Prenni, A. J., Petters, M. D., Kreidenweis, S. M., Heald, C. L., Martin, S.
T., Artaxo, P., Garland, R. M., Wollny, A. G., and Pöschl, U.: Relative
roles of biogenic emissions and Saharan dust as ice nuclei in the Amazon
basin, Nat. Geosci., 2, 402–405, 2009.
Pruppacher, H. R. and Klett, J. D.: Microphysics of clouds and
precipitation, Nature, 284, 88–88, 1980.
Reid, J., Westphal, D., Reid, E., Walker, A., Liu, M., Miller, S., and
Kuciauskas, A.: The United Arab Emirates Unified Aerosol Experiment (UAE2),
Naval Research Lab Monterey CA Marine, Meteorology Div, 2006.
Reid, J. S., Jonsson, H. H., Maring, H. B., Smirnov, A., Savoie, D. L.,
Cliff, S. S., Reid, E. A., Livingston, J. M., Meier, M. M., and Dubovik, O.:
Comparison of size and morphological measurements of coarse mode dust
particles from Africa, J. Geophys. Res.-Atmos., 108, 8593, https://doi.org/10.1029/2002JD002485,
2003.
Remiszewska, J., Flatau, P., Markowicz, K., Reid, E., Reid, J., and Witek,
M.: Modulation of the aerosol absorption and single-scattering albedo due to
synoptic scale and sea breeze circulations: United Arab Emirates experiment
perspective, J. Geophys. Res.-Atmos., 112, D05204, https://doi.org/10.1029/2006JD007139, 2007.
Rosenberg, P. D., Dean, A. R., Williams, P. I., Dorsey, J. R., Minikin, A., Pickering, M. A., and Petzold, A.: Particle sizing calibration with refractive index correction for light scattering optical particle counters and impacts upon PCASP and CDP data collected during the Fennec campaign, Atmos. Meas. Tech., 5, 1147–1163, https://doi.org/10.5194/amt-5-1147-2012, 2012.
Rosenfeld, D.: TRMM observed first direct evidence of smoke from forest
fires inhibiting rainfall, Geophys. Res. Lett., 26, 3105–3108,
1999.
Rosenfeld, D.: Suppression of rain and snow by urban and industrial air
pollution, Science, 287, 1793–1796, 2000.
Rosenfeld, D. and Gutman, G.: Retrieving microphysical properties near the
tops of potential rain clouds by multispectral analysis of AVHRR data,
Atmos. Res., 34, 259–283, 1994.
Rosenfeld, D., Rudich, Y., and Lahav, R.: Desert dust suppressing
precipitation: A possible desertification feedback loop, P.
Natl. Acad. Sci. USA, 98, 5975–5980, 2001.
Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., Fuzzi,
S., Reissell, A., and Andreae, M. O.: Flood or drought: How do aerosols
affect precipitation?, Science, 321, 1309–1313, 2008.
Rosenfeld, D., Axisa, D., Woodley, W. L., and Lahav, R.: A quest for
effective hygroscopic cloud seeding, J. Appl. Meteorol.
Clim., 49, 1548–1562, 2010.
Sassen, K., DeMott, P. J., Prospero, J. M., and Poellot, M. R.: Saharan dust
storms and indirect aerosol effects on clouds: CRYSTAL-FACE results,
Geophys. Res. Lett., 30, 1633, https://doi.org/10.1029/2003GL017371, 2003.
Schwitalla, T., Branch, O., and Wulfmeyer, V.: Sensitivity study of the
planetary boundary layer and microphysical schemes to the initialization of
convection over the Arabian Peninsula, Q. J. Roy.
Meteor. Soc., 146, 846–869, 2020.
Segal, Y., Khain, A., Pinsky, M., and Rosenfeld, D.: Effects of hygroscopic
seeding on raindrop formation as seen from simulations using a 2000-bin
spectral cloud parcel model, Atmos. Res., 71, 3–34, 2004.
Segal, Y., Pinsky, M., and Khain, A.: The role of competition effect in the
raindrop formation, Atmos. Res., 83, 106–118, 2007.
Semeniuk, T., Bruintjes, R., Salazar, V., Breed, D., Jensen, T., and Buseck,
P.: Individual aerosol particles in ambient and updraft conditions below
convective cloud bases in the Oman mountain region, J. Geophys.
Res.-Atmos., 119, 2511–2528, 2014.
Semeniuk, T., Bruintjes, R., Salazar, V., Breed, D., Jensen, T., and Buseck,
P.: Processing of aerosol particles within the Habshan pollution plume,
J. Geophys. Res.-Atmos., 120, 1996–2012, 2015.
Solomon, S., Manning, M., Marquis, M., and Qin, D.: Climate change 2007 – the
physical science basis: Working group I contribution to the fourth
assessment report of the IPCC, Cambridge university press, New York, NY 10013-2473, USA, 2007.
Squires, P.: The microstructure and colloidal stability of warm clouds: Part
I – The relation between structure and stability, Tellus, 10, 256–261, 1958.
Stein, A., Draxler, R. R., Rolph, G. D., Stunder, B. J., Cohen, M., and
Ngan, F.: NOAA's HYSPLIT atmospheric transport and dispersion modeling
system, B. Am. Meteorol. Soc., 96, 2059–2077,
2015.
Steinhoff, D. F., Bruintjes, R., Hacker, J., Keller, T., Williams, C.,
Jensen, T., Al Mandous, A., and Al Yazeedi, O. A.: Influences of the Monsoon
Trough and Arabian Heat Low on Summer Rainfall over the United Arab
Emirates, Mon. Weather Rev., 146, 1383–1403, 2018.
Takeda, T. and Kuba, N.: Numerical study of the effect of CCN on the size
distribution of cloud droplets, J. Meteorol. Soc.
Jpn. Ser. II, 60, 978–993, 1982.
Tao, W. K., Li, X., Khain, A., Matsui, T., Lang, S., and Simpson, J.: Role
of atmospheric aerosol concentration on deep convective precipitation:
Cloud-resolving model simulations, J. Geophys. Res.-Atmos., 112, D24S18, https://doi.org/10.1029/2007JD008728, 2007.
Tessendorf, S. A., Weeks, C. E., Axisa, D., and Bruintjes, R. T.: Aerosol
characteristics observed in southeast Queensland and implications for cloud
microphysics, J. Geophys. Res.-Atmos., 118, 2858–2871,
2013.
Tessendorf, S. A., Chen, S., Weeks, C., Bruintjes, R., Rasmussen, R. M., and
Xue, L.: The influence of hygroscopic flare seeding on drop size
distribution over southeast Queensland, J. Geophys. Res.-Atmos., 126, e2020JD033771, https://doi.org/10.1029/2020JD033771, 2021.
Wang, F., Li, Z., Jiang, Q., Wang, G., Jia, S., Duan, J., and Zhou, Y.: Evaluation of hygroscopic cloud seeding in liquid-water clouds: a feasibility study, Atmos. Chem. Phys., 19, 14967–14977, https://doi.org/10.5194/acp-19-14967-2019, 2019.
Wang, Z., Su, H., Wang, X., Ma, N., Wiedensohler, A., Pöschl, U., and Cheng, Y.: Scanning supersaturation condensation particle counter applied as a nano-CCN counter for size-resolved analysis of the hygroscopicity and chemical composition of nanoparticles, Atmos. Meas. Tech., 8, 2161–2172, https://doi.org/10.5194/amt-8-2161-2015, 2015.
Warner, J.: On steady-state one-dimensional models of cumulus convection,
J. Atmos. Sci., 27, 1035–1040, 1970.
Wehbe, Y., Ghebreyesus, D., Temimi, M., Milewski, A., and Al Mandous, A.:
Assessment of the consistency among global precipitation products over the
United Arab Emirates, Journal of Hydrology: Regional Studies, 12, 122-135,
2017.
Wehbe, Y., Temimi, M., Ghebreyesus, D. T., Milewski, A., Norouzi, H., and
Ibrahim, E.: Consistency of precipitation products over the Arabian
Peninsula and interactions with soil moisture and water storage,
Hydrolog. Sci. J., 63, 408-425, 2018.
Wehbe, Y., Temimi, M., and Adler, R. F.: Enhancing Precipitation Estimates
Through the Fusion of Weather Radar, Satellite Retrievals, and Surface
Parameters, Remote Sens., 12, 1342, https://doi.org/10.3390/rs12081342, 2020.
Weinzierl, B., Petzold, A., Esselborn, M., Wirth, M., Rasp, K., Kandler, K.,
Schuetz, L., Koepke, P., and Fiebig, M.: Airborne measurements of dust layer
properties, particle size distribution and mixing state of Saharan dust
during SAMUM 2006, Tellus B, 61, 96–117,
2009.
Weston, M. J., Temimi, M., Nelli, N. R., Fonseca, R. M., Thota, M. S., and
Valappil, V. K.: On the Analysis of the Low-Level Double Temperature
Inversion Over the United Arab Emirates: A Case Study During April 2019,
IEEE T. Geosci. Remote Sens. Lett., 18, 346–350, https://doi.org/10.1109/LGRS.2020.2972597, 2020.
Wiedensohler, A., Birmili, W., Nowak, A., Sonntag, A., Weinhold, K., Merkel, M., Wehner, B., Tuch, T., Pfeifer, S., Fiebig, M., Fjäraa, A. M., Asmi, E., Sellegri, K., Depuy, R., Venzac, H., Villani, P., Laj, P., Aalto, P., Ogren, J. A., Swietlicki, E., Williams, P., Roldin, P., Quincey, P., Hüglin, C., Fierz-Schmidhauser, R., Gysel, M., Weingartner, E., Riccobono, F., Santos, S., Grüning, C., Faloon, K., Beddows, D., Harrison, R., Monahan, C., Jennings, S. G., O'Dowd, C. D., Marinoni, A., Horn, H.-G., Keck, L., Jiang, J., Scheckman, J., McMurry, P. H., Deng, Z., Zhao, C. S., Moerman, M., Henzing, B., de Leeuw, G., Löschau, G., and Bastian, S.: Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions, Atmos. Meas. Tech., 5, 657–685, https://doi.org/10.5194/amt-5-657-2012, 2012.
Wise, M. E., Semeniuk, T. A., Bruintjes, R., Martin, S. T., Russell, L. M.,
and Buseck, P. R.: Hygroscopic behavior of NaCl-bearing natural aerosol
particles using environmental transmission electron microscopy, J.
Geophys. Res.-Atmos., 112, D10224, https://doi.org/10.1029/2006JD007678, 2007.
Woods, S., Lawson, R. P., Jensen, E., Bui, T., Thornberry, T., Rollins, A.,
Pfister, L., and Avery, M.: Microphysical properties of tropical tropopause
layer cirrus, J. Geophys. Res.-Atmos., 123, 6053–6069,
2018.
Wurzler, S., Reisin, T. G., and Levin, Z.: Modification of mineral dust
particles by cloud processing and subsequent effects on drop size
distributions, J. Geophys. Res.-Atmos., 105, 4501–4512,
2000.
Yin, Y., Levin, Z., Reisin, T. G., and Tzivion, S.: The effects of giant
cloud condensation nuclei on the development of precipitation in convective
clouds – A numerical study, Atmos. Res., 53, 91–116, 2000.
Short summary
The role of dust aerosols as ice-nucleating particles is well established in the literature, whereas their role as cloud condensation nuclei is less understood, particularly in polluted desert environments. We analyze coincident aerosol size distributions and cloud particle imagery collected over the UAE with a research aircraft. Despite the presence of ultra-giant aerosol sizes associated with dust, an active collision–coalescence process is not observed within the limited depths of warm cloud.
The role of dust aerosols as ice-nucleating particles is well established in the literature,...
Altmetrics
Final-revised paper
Preprint