Articles | Volume 21, issue 15
https://doi.org/10.5194/acp-21-11843-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-11843-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Diel cycle impacts on the chemical and light absorption properties of organic carbon aerosol from wildfires in the western United States
Department of Energy,
Environmental, and Chemical Engineering, Center for Aerosol Science and Engineering, Washington University in St. Louis,
St. Louis, Missouri, USA
Edward Fortner
Aerodyne Research, Inc., Billerica, Massachusetts, USA
Andrew Lambe
Aerodyne Research, Inc., Billerica, Massachusetts, USA
Nishit J. Shetty
Department of Energy,
Environmental, and Chemical Engineering, Center for Aerosol Science and Engineering, Washington University in St. Louis,
St. Louis, Missouri, USA
Conner Daube
Aerodyne Research, Inc., Billerica, Massachusetts, USA
Pai Liu
Department of Energy,
Environmental, and Chemical Engineering, Center for Aerosol Science and Engineering, Washington University in St. Louis,
St. Louis, Missouri, USA
Francesca Majluf
Aerodyne Research, Inc., Billerica, Massachusetts, USA
Scott Herndon
Aerodyne Research, Inc., Billerica, Massachusetts, USA
Rajan K. Chakrabarty
CORRESPONDING AUTHOR
Department of Energy,
Environmental, and Chemical Engineering, Center for Aerosol Science and Engineering, Washington University in St. Louis,
St. Louis, Missouri, USA
Related authors
No articles found.
Christoph Dyroff, Michael Moore, Bruce C. Daube, and Scott C. Herndon
EGUsphere, https://doi.org/10.5194/egusphere-2025-3972, https://doi.org/10.5194/egusphere-2025-3972, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We describe a new humidity probe designed for flight to characterize the very dry air at 10–12 km where jet aircraft can form persistent contrail clouds. These clouds trap heat and contribute to warming the planet. The laser-based system precisely measures water molecules in air, enabling accurate predictions of contrail formation to help reduce aviation's climate impact.
John W. Halfacre, Lewis Marden, Marvin D. Shaw, Lucy J. Carpenter, Emily Matthews, Thomas J. Bannan, Hugh Coe, Scott C. Herndon, Joseph R. Roscioli, Christoph Dyroff, Tara I. Yacovitch, Patrick R. Veres, Michael A. Robinson, Steven S. Brown, and Pete M. Edwards
Atmos. Meas. Tech., 18, 3799–3818, https://doi.org/10.5194/amt-18-3799-2025, https://doi.org/10.5194/amt-18-3799-2025, 2025
Short summary
Short summary
Nitryl chloride (ClNO2) is a reservoir of chlorine atoms and nitrogen oxides, both of which play important roles in atmospheric chemistry. However, all ambient ClNO2 observations so far have been made by a single technique, mass spectrometry, which needs complex calibrations. Here, we present a laser-based method that detects ClNO2 (TD-TILDAS – thermal dissociation–tunable infrared laser direct absorption spectrometry) without the need for complicated calibrations. The results show excellent agreement between these two methods from both laboratory and ambient samples.
Qianying Liu, Dan Dan Huang, Andrew T. Lambe, Shengrong Lou, Lulu Zeng, Yuhang Wu, Congyan Huang, Shikang Tao, Xi Cheng, Qi Chen, Ka In Hoi, Hongli Wang, Kai Meng Mok, Cheng Huang, and Yong Jie Li
Atmos. Meas. Tech., 18, 2509–2521, https://doi.org/10.5194/amt-18-2509-2025, https://doi.org/10.5194/amt-18-2509-2025, 2025
Short summary
Short summary
We evaluate the applicability of empirical equations to estimate OH exposure (OHexp) in an oxidative flow reactor (OFR). The fitting parameters obtained within a narrow range of conditions can generally be extended to estimate the OHexp for wide ranges of conditions in the OFR, except for external OH reactivity, which requires new fitting. At least 20–30 data points from SO2 or CO decay with varying conditions are required to fit a set of empirical parameters that can accurately estimate OHexp.
Chimurkar Navinya, Taveen Singh Kapoor, Gupta Anurag, Chandra Venkataraman, Harish C. Phuleria, and Rajan K. Chakrabarty
Atmos. Chem. Phys., 24, 13285–13297, https://doi.org/10.5194/acp-24-13285-2024, https://doi.org/10.5194/acp-24-13285-2024, 2024
Short summary
Short summary
Brown carbon (BrC) aerosols show an order-of-magnitude variation in their light absorption strength. Our understanding of BrC from real-world biomass burning remains limited, complicating the determination of its radiative impact. Our study reports absorption properties of BrC emitted from four major biomass burning sources using field measurements in India. It develops an absorption parameterization for BrC and examines the spatial variability in BrC's absorption strength across India.
Tianle Pan, Andrew T. Lambe, Weiwei Hu, Yicong He, Minghao Hu, Huaishan Zhou, Xinming Wang, Qingqing Hu, Hui Chen, Yue Zhao, Yuanlong Huang, Doug R. Worsnop, Zhe Peng, Melissa A. Morris, Douglas A. Day, Pedro Campuzano-Jost, Jose-Luis Jimenez, and Shantanu H. Jathar
Atmos. Meas. Tech., 17, 4915–4939, https://doi.org/10.5194/amt-17-4915-2024, https://doi.org/10.5194/amt-17-4915-2024, 2024
Short summary
Short summary
This study systematically characterizes the temperature enhancement in the lamp-enclosed oxidation flow reactor (OFR). The enhancement varied multiple dimensional factors, emphasizing the complexity of temperature inside of OFR. The effects of temperature on the flow field and gas- or particle-phase reaction inside OFR were also evaluated with experiments and model simulations. Finally, multiple mitigation strategies were demonstrated to minimize this temperature increase.
Abd El Rahman El Mais, Barbara D'Anna, Luka Drinovec, Andrew T. Lambe, Zhe Peng, Jean-Eudes Petit, Olivier Favez, Selim Aït-Aïssa, and Alexandre Albinet
Atmos. Chem. Phys., 23, 15077–15096, https://doi.org/10.5194/acp-23-15077-2023, https://doi.org/10.5194/acp-23-15077-2023, 2023
Short summary
Short summary
Polycyclic aromatic hydrocarbons (PAHS) and furans are key precursors of secondary organic aerosols (SOAs) related to biomass burning emissions. We evaluated and compared the formation yields, and the physical and light absorption properties, of laboratory-generated SOAs from the oxidation of such compounds for both, day- and nighttime reactivities. The results illustrate that PAHs are large SOA precursors and may contribute significantly to the biomass burning brown carbon in the atmosphere.
Andrew T. Lambe, Bin Bai, Masayuki Takeuchi, Nicole Orwat, Paul M. Zimmerman, Mitchell W. Alton, Nga L. Ng, Andrew Freedman, Megan S. Claflin, Drew R. Gentner, Douglas R. Worsnop, and Pengfei Liu
Atmos. Chem. Phys., 23, 13869–13882, https://doi.org/10.5194/acp-23-13869-2023, https://doi.org/10.5194/acp-23-13869-2023, 2023
Short summary
Short summary
We developed a new method to generate nitrate radicals (NO3) for atmospheric chemistry applications that works by irradiating mixtures containing ceric ammonium nitrate with a UV light at room temperature. It has several advantages over traditional NO3 sources. We characterized its performance over a range of mixture and reactor conditions as well as other irradiation products. Proof of concept was demonstrated by generating and characterizing oxidation products of the β-pinene + NO3 reaction.
Yutong Liang, Rebecca A. Wernis, Kasper Kristensen, Nathan M. Kreisberg, Philip L. Croteau, Scott C. Herndon, Arthur W. H. Chan, Nga L. Ng, and Allen H. Goldstein
Atmos. Chem. Phys., 23, 12441–12454, https://doi.org/10.5194/acp-23-12441-2023, https://doi.org/10.5194/acp-23-12441-2023, 2023
Short summary
Short summary
We measured the gas–particle partitioning behaviors of biomass burning markers and examined the effect of wildfire organic aerosol on the partitioning of semivolatile organic compounds. Most compounds measured are less volatile than model predictions. Wildfire aerosol enhanced the condensation of polar compounds and caused some nonpolar (e.g., polycyclic aromatic hydrocarbons) compounds to partition into the gas phase, thus affecting their lifetimes in the atmosphere and the mode of exposure.
Tara I. Yacovitch, Christoph Dyroff, Joseph R. Roscioli, Conner Daube, J. Barry McManus, and Scott C. Herndon
Atmos. Meas. Tech., 16, 1915–1921, https://doi.org/10.5194/amt-16-1915-2023, https://doi.org/10.5194/amt-16-1915-2023, 2023
Short summary
Short summary
Ethylene oxide is a toxic, carcinogenic compound used in the medical and bulk sterilization industry. Here we describe a precise and fast laser-based ethylene oxide monitor. We report months-long concentrations at a Massachusetts site, and we show how they suggest a potential emission source 35 km away. This source, and another, is confirmed by driving the instrument downwind of the sites, where concentrations were tens to tens of thousands of times greater than background levels.
John W. Halfacre, Jordan Stewart, Scott C. Herndon, Joseph R. Roscioli, Christoph Dyroff, Tara I. Yacovitch, Michael Flynn, Stephen J. Andrews, Steven S. Brown, Patrick R. Veres, and Pete M. Edwards
Atmos. Meas. Tech., 16, 1407–1429, https://doi.org/10.5194/amt-16-1407-2023, https://doi.org/10.5194/amt-16-1407-2023, 2023
Short summary
Short summary
This study details a new sampling method for the optical detection of hydrogen chloride (HCl). HCl is an important atmospheric reservoir for chlorine atoms, which can affect nitrogen oxide cycling and the lifetimes of volatile organic compounds and ozone. However, HCl has a high affinity for interacting with surfaces, thereby preventing fast, quantitative measurements. The sampling technique in this study minimizes these surface interactions and provides a high-quality measurement of HCl.
Payton Beeler and Rajan K. Chakrabarty
Atmos. Chem. Phys., 22, 14825–14836, https://doi.org/10.5194/acp-22-14825-2022, https://doi.org/10.5194/acp-22-14825-2022, 2022
Short summary
Short summary
Understanding and parameterizing the influences of black carbon (BC) particle morphology and compositional heterogeneity on its light absorption represent a fundamental problem. We develop scaling laws using a single unifying parameter that effectively encompasses large-scale diversity observed in BC light absorption on a per-particle basis. The laws help reconcile the disparities between field observations and model predictions. Our framework is packaged in an open-source Python application.
Joshin Kumar, Theo Paik, Nishit J. Shetty, Patrick Sheridan, Allison C. Aiken, Manvendra K. Dubey, and Rajan K. Chakrabarty
Atmos. Meas. Tech., 15, 4569–4583, https://doi.org/10.5194/amt-15-4569-2022, https://doi.org/10.5194/amt-15-4569-2022, 2022
Short summary
Short summary
Accurate long-term measurement of aerosol light absorption is vital for assessing direct aerosol radiative forcing. Light absorption by aerosols at the US Department of Energy long-term climate monitoring SGP site is measured using the Particle Soot Absorption Photometer (PSAP), which suffers from artifacts and biases difficult to quantify. Machine learning offers a promising path forward to correct for biases in the long-term absorption dataset at the SGP site and similar Class-I areas.
Yutong Liang, Christos Stamatis, Edward C. Fortner, Rebecca A. Wernis, Paul Van Rooy, Francesca Majluf, Tara I. Yacovitch, Conner Daube, Scott C. Herndon, Nathan M. Kreisberg, Kelley C. Barsanti, and Allen H. Goldstein
Atmos. Chem. Phys., 22, 9877–9893, https://doi.org/10.5194/acp-22-9877-2022, https://doi.org/10.5194/acp-22-9877-2022, 2022
Short summary
Short summary
This article reports the measurements of organic compounds emitted from western US wildfires. We identified and quantified 240 particle-phase compounds and 72 gas-phase compounds emitted in wildfire and related the emissions to the modified combustion efficiency. Higher emissions of diterpenoids and monoterpenes were observed, likely due to distillation from unburned heated vegetation. Our results can benefit future source apportionment and modeling studies as well as exposure assessments.
Jie Luo, Zhengqiang Li, Chenchong Zhang, Qixing Zhang, Yongming Zhang, Ying Zhang, Gabriele Curci, and Rajan K. Chakrabarty
Atmos. Chem. Phys., 22, 7647–7666, https://doi.org/10.5194/acp-22-7647-2022, https://doi.org/10.5194/acp-22-7647-2022, 2022
Short summary
Short summary
The fractal black carbon was applied to re-evaluate the regional impacts of morphologies on aerosol–radiation interactions (ARIs), and the effects were compared between the US and China. The regional-mean clear-sky ARI is significantly affected by the BC morphology, and relative differences of 17.1 % and 38.7 % between the fractal model with a Df of 1.8 and the spherical model were observed in eastern China and the northwest US, respectively.
Andrew J. Lindsay, Daniel C. Anderson, Rebecca A. Wernis, Yutong Liang, Allen H. Goldstein, Scott C. Herndon, Joseph R. Roscioli, Christoph Dyroff, Ed C. Fortner, Philip L. Croteau, Francesca Majluf, Jordan E. Krechmer, Tara I. Yacovitch, Walter B. Knighton, and Ezra C. Wood
Atmos. Chem. Phys., 22, 4909–4928, https://doi.org/10.5194/acp-22-4909-2022, https://doi.org/10.5194/acp-22-4909-2022, 2022
Short summary
Short summary
Wildfire smoke dramatically impacts air quality and often has elevated concentrations of ozone. We present measurements of ozone and its precursors at a rural site periodically impacted by wildfire smoke. Measurements of total peroxy radicals, key ozone precursors that have been studied little within wildfires, compare well with chemical box model predictions. Our results indicate no serious issues with using current chemistry mechanisms to model chemistry in aged wildfire plumes.
Dongyu S. Wang, Chuan Ping Lee, Jordan E. Krechmer, Francesca Majluf, Yandong Tong, Manjula R. Canagaratna, Julia Schmale, André S. H. Prévôt, Urs Baltensperger, Josef Dommen, Imad El Haddad, Jay G. Slowik, and David M. Bell
Atmos. Meas. Tech., 14, 6955–6972, https://doi.org/10.5194/amt-14-6955-2021, https://doi.org/10.5194/amt-14-6955-2021, 2021
Short summary
Short summary
To understand the sources and fate of particulate matter in the atmosphere, the ability to quantitatively describe its chemical composition is essential. In this work, we developed a calibration method for a state-of-the-art measurement technique without the need for chemical standards. Statistical analyses identified the driving factors behind instrument sensitivity variability towards individual components of particulate matter.
Chenyang Bi, Jordan E. Krechmer, Graham O. Frazier, Wen Xu, Andrew T. Lambe, Megan S. Claflin, Brian M. Lerner, John T. Jayne, Douglas R. Worsnop, Manjula R. Canagaratna, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 14, 6835–6850, https://doi.org/10.5194/amt-14-6835-2021, https://doi.org/10.5194/amt-14-6835-2021, 2021
Short summary
Short summary
Iodide-adduct chemical ionization mass spectrometry (I-CIMS) has been widely used to analyze airborne organics. In this study, I-CIMS sensitivities of isomers within a formula are found to generally vary by 1 and up to 2 orders of magnitude. Comparisons between measured and predicted moles, obtained using a voltage-scanning calibration approach, show that predictions for individual compounds or formulas might carry high uncertainty, yet the summed moles of analytes agree reasonably well.
Chenyang Bi, Jordan E. Krechmer, Graham O. Frazier, Wen Xu, Andrew T. Lambe, Megan S. Claflin, Brian M. Lerner, John T. Jayne, Douglas R. Worsnop, Manjula R. Canagaratna, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 14, 3895–3907, https://doi.org/10.5194/amt-14-3895-2021, https://doi.org/10.5194/amt-14-3895-2021, 2021
Short summary
Short summary
Measurement techniques that can achieve molecular characterizations are necessary to understand the differences of fate and transport within isomers produced in the atmospheric oxidation process. In this work, we develop an instrument to conduct isomer-resolved measurements of particle-phase organics. We assess the number of isomers per chemical formula in atmospherically relevant samples and examine the feasibility of extending the use of an existing instrument to a broader range of analytes.
Dianne Sanchez, Roger Seco, Dasa Gu, Alex Guenther, John Mak, Youngjae Lee, Danbi Kim, Joonyoung Ahn, Don Blake, Scott Herndon, Daun Jeong, John T. Sullivan, Thomas Mcgee, Rokjin Park, and Saewung Kim
Atmos. Chem. Phys., 21, 6331–6345, https://doi.org/10.5194/acp-21-6331-2021, https://doi.org/10.5194/acp-21-6331-2021, 2021
Short summary
Short summary
We present observations of total reactive gases in a suburban forest observatory in the Seoul metropolitan area. The quantitative comparison with speciated trace gas observations illustrated significant underestimation in atmospheric reactivity from the speciated trace gas observational dataset. We present scientific discussion about potential causes.
Jake P. Rowe, Andrew T. Lambe, and William H. Brune
Atmos. Chem. Phys., 20, 13417–13424, https://doi.org/10.5194/acp-20-13417-2020, https://doi.org/10.5194/acp-20-13417-2020, 2020
Short summary
Short summary
We conducted a series of experiments in which the 185 to 254 nm photon flux ratio (I185 : I254) emitted by low-pressure mercury lamps installed in an oxidation flow reactor (OFR) was systematically varied using multiple novel lamp configurations. Integrated OH exposure values achieved for each lamp type were obtained as a function of OFR operating conditions. A photochemical box model was used to develop a generalized OH exposure estimation equation as a function of [H2O], [O3], and OH reactivity.
Archit Mehra, Jordan E. Krechmer, Andrew Lambe, Chinmoy Sarkar, Leah Williams, Farzaneh Khalaj, Alex Guenther, John Jayne, Hugh Coe, Douglas Worsnop, Celia Faiola, and Manjula Canagaratna
Atmos. Chem. Phys., 20, 10953–10965, https://doi.org/10.5194/acp-20-10953-2020, https://doi.org/10.5194/acp-20-10953-2020, 2020
Short summary
Short summary
Emissions of volatile organic compounds (VOCs) from plants are important for tropospheric ozone and secondary organic aerosol (SOA) formation. Real plant emissions are much more diverse than the few proxies widely used for studies of plant SOA. Here we present the first study of SOA from Californian sage plants and the oxygenated monoterpenes representing their major emissions. We identify SOA products and show the importance of the formation of highly oxygenated organic molecules and oligomers.
Cited articles
Arnott, W. P., Moosmüller, H., Rogers, F. C., Jin, T., and Bruch, R.:
Photoacoustic spectrometer for measuring light absorption by aerosol:
instrument description, Atmos. Environ., 33, 2845–2852,
https://doi.org/10.1016/s1352-2310(98)00361-6, 1999.
Arnott, W. P., Moosmüller, H., and Walker, J. W.:
Nitrogen dioxide and kerosene-flame soot calibration of photoacoustic
instruments for measurement of light absorption by aerosols, Rev.
Sci. Instrum., 71, 4545, https://doi.org/10.1063/1.1322585, 2000.
Atkinson, R.: Kinetics and Mechanisms of the Gas-Phase Reactions of the
NO3 Radical with Organic Compounds, J. Phys. Chem. Ref. Data, 20,
459–506, https://doi.org/10.1063/1.555887, 1991.
Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra,
M. R., Zhang, Q., Onasch, T. B., Drewnick, F., Coe, H., Middlebrook, A.,
Delia, A., Williams, L. R., Trimborn, A. M., Northway, M. J., DeCarlo, P.
F., Kolb, C. E., Davidovits, P., and Worsnop, D. R.: Chemical and
microphysical characterization of ambient aerosols with the aerodyne aerosol
mass spectrometer, Mass Spectrom. Rev., 26, 185–222,
https://doi.org/10.1002/mas.20115, 2007.
Carter, W., Luo, D., Malkina, I., and Pierce, J.: Environmental Chamber
Studies of Atmospheric Reactivities of Volatile Organic Compounds: Effects
of Varying Chamber and Light Source, U.S. Department of Energy, https://doi.org/10.2172/57153, 1995.
Chakrabarty, R. K., Moosmüller, H., Chen, L.-W. A., Lewis, K., Arnott, W. P., Mazzoleni, C., Dubey, M. K., Wold, C. E., Hao, W. M., and Kreidenweis, S. M.: Brown carbon in tar balls from smoldering biomass combustion, Atmos. Chem. Phys., 10, 6363–6370, https://doi.org/10.5194/acp-10-6363-2010, 2010.
Cheng, Z., Atwi, K. M., Yu, Z., Avery, A., Fortner, E. C., Williams, L.,
Majluf, F., Krechmer, J. E., Lambe, A. T., and Saleh, R.: Evolution of the
light-absorption properties of combustion brown carbon aerosols following
reaction with nitrate radicals, Aerosol Sci. Tech., 54, 849–863,
https://doi.org/10.1080/02786826.2020.1726867, 2020.
Cocker, D. R., Flagan, R. C., and Seinfeld, J. H.: State-of-the-Art
Chamber Facility for Studying Atmospheric Aerosol Chemistry, Environ.
Sci. Technol., 35, 2594–2601, https://doi.org/10.1021/es0019169, 2001.
Cubison, M. J., Ortega, A. M., Hayes, P. L., Farmer, D. K., Day, D., Lechner, M. J., Brune, W. H., Apel, E., Diskin, G. S., Fisher, J. A., Fuelberg, H. E., Hecobian, A., Knapp, D. J., Mikoviny, T., Riemer, D., Sachse, G. W., Sessions, W., Weber, R. J., Weinheimer, A. J., Wisthaler, A., and Jimenez, J. L.: Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies, Atmos. Chem. Phys., 11, 12049–12064, https://doi.org/10.5194/acp-11-12049-2011, 2011.
Finewax, Z., de Gouw, J. A., and Ziemann, P. J.: Identification and
Quantification of 4-Nitrocatechol Formed from OH and NO3
Radical-Initiated Reactions of Catechol in Air in the Presence of NOX:
Implications for Secondary Organic Aerosol Formation from biomass Burning,
Environ. Sci. Technol., 52, 1981–1989,
https://doi.org/10.1021/acs.est.7b05864, 2018.
Grieshop, A. P., Logue, J. M., Donahue, N. M., and Robinson, A. L.: Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 1: measurement and simulation of organic aerosol evolution, Atmos. Chem. Phys., 9, 1263–1277, https://doi.org/10.5194/acp-9-1263-2009, 2009.
He, Q., Tomaz, S., Li, C., Zhu, M., Meidan, D., Riva, M., Laskin, A.,
Brown, S. S., George, C., Wang, X., and Rudich, Y.: Optical Properties of
Secondary Organic Aerosol Produced by Nitrate Radical Oxidation of Biogenic
Volatile Organic Compounds, Environ. Sci. Technol., 55,
2878–2889, https://doi.org/10.1021/acs.est.0c06838, 2021.
Hems, R. F., Schnitzler, E. G., Bastawrous, M., Soong, R., Simpson, A.
J., and Abbatt, J. P. D.: Aqueous Photoreactions of Wood Smoke Brown Carbon,
ACS Earth and Space Chemistry, 4, 1149–1160,
https://doi.org/10.1021/acsearthspacechem.0c00117, 2020.
Jacobson, M. Z.: Isolating nitrated and aromatic aerosols and nitrated
aromatic gases as sources of ultraviolet light absorption, J.
Geophys. Res.-Atmos., 104, 3527–3542, https://doi.org/10.1029/1998jd100054,
1999.
Jayne, J. T., Leard, D. C., Zhang, X., Davidovits, P., Smith, K. A.,
Kolb, C. E., and Worsnop, D. R.: Development of an Aerosol Mass Spectrometer
for Size and Composition Analysis of Submicron Particles, Aerosol Sci.
Tech., 33, 49–70, https://doi.org/10.1080/027868200410840, 2000.
Jimenez, J. L., Canagaratna, M., Donahue, N., Prevot, A., Zhang, Q.,
Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., and Ng, N.: Evolution
of organic aerosols in the atmosphere, Science, 326, 1525–1529, 2009.
Krechmer, J., Lopez-Hilfiker, F., Koss, A., Hutterli, M., Stoermer, C.,
Deming, B., Kimmel, J., Warneke, C., Holzinger, R., Jayne, J., Worsnop, D.,
Fuhrer, K., Gonin, M., and de Gouw, J.: Evaluation of a New Reagent-Ion
Source and Focusing Ion–Molecule Reactor for Use in
Proton-Transfer-Reaction Mass Spectrometry, Anal. Chem., 90,
12011–12018, https://doi.org/10.1021/acs.analchem.8b02641, 2018.
Kroll, J. H., Donahue, N. M., Jimenez, J. L., Kessler, S. H.,
Canagaratna, M. R., Wilson, K. R., Altieri, K. E., Mazzoleni, L. R.,
Wozniak, A. S., and Bluhm, H.: Carbon oxidation state as a metric for
describing the chemistry of atmospheric organic aerosol, Nat. Chem.,
3, 133–139, https://doi.org/10.1038/nchem.948, 2011.
Lambe, A. T., Ahern, A. T., Williams, L. R., Slowik, J. G., Wong, J. P. S., Abbatt, J. P. D., Brune, W. H., Ng, N. L., Wright, J. P., Croasdale, D. R., Worsnop, D. R., Davidovits, P., and Onasch, T. B.: Characterization of aerosol photooxidation flow reactors: heterogeneous oxidation, secondary organic aerosol formation and cloud condensation nuclei activity measurements, Atmos. Meas. Tech., 4, 445–461, https://doi.org/10.5194/amt-4-445-2011, 2011.
Lambe, A. T., Cappa, C. D., Massoli, P., Onasch, T. B., Forestieri, S.
D., Martin, A. T., Cummings, M. J., Croasdale, D. R., Brune, W. H., and
Worsnop, D. R.: Relationship between oxidation level and optical properties
of secondary organic aerosol, Environ. Sci. Technol., 47,
6349–6357, 2013.
Lambe, A. T., Wood, E. C., Krechmer, J. E., Majluf, F., Williams, L. R., Croteau, P. L., Cirtog, M., Féron, A., Petit, J.-E., Albinet, A., Jimenez, J. L., and Peng, Z.: Nitrate radical generation via continuous generation of dinitrogen pentoxide in a laminar flow reactor coupled to an oxidation flow reactor, Atmos. Meas. Tech., 13, 2397–2411, https://doi.org/10.5194/amt-13-2397-2020, 2020.
Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of atmospheric
brown carbon, Chem. Rev., 115, 4335–4382, 2015.
Lewis, K., Arnott, W. P., Moosmüller, H., and Wold, C. E.: Strong
spectral variation of biomass smoke light absorption and single scattering
albedo observed with a novel dual-wavelength photoacoustic instrument,
J. Geophys. Res.-Atmos., 113, D16203, https://doi.org/10.1029/2007JD009699, 2008.
Li, C., He, Q., Hettiyadura, A. P. S., Käfer, U., Shmul, G., Meidan,
D., Zimmermann, R., Brown, S. S., George, C., Laskin, A., and Rudich, Y.:
Formation of Secondary Brown Carbon in Biomass Burning Aerosol Proxies
through NO3 Radical Reactions, Environ. Sci. Technol.,
54, 1395–1405, https://doi.org/10.1021/acs.est.9b05641, 2019.
Li, C., He, Q., Fang, Z., Brown, S. S., Laskin, A., Cohen, S. R., and
Rudich, Y.: Laboratory Insights into the Diel Cycle of Optical and Chemical
Transformations of Biomass Burning Brown Carbon Aerosols, Environ.
Sci. Technol., 54, 11827–11837, https://doi.org/10.1021/acs.est.0c04310, 2020.
Li, Q., Jacob, D. J., Bey, I., Yantosca, R. M., Zhao, Y., Kondo, Y., and
Notholt, J.: Atmospheric hydrogen cyanide (HCN): Biomass burning source,
ocean sink?, Geophys. Res. Lett., 27, 357–360,
https://doi.org/10.1029/1999gl010935, 2000.
Mao, J., Ren, X., Brune, W. H., Olson, J. R., Crawford, J. H., Fried, A., Huey, L. G., Cohen, R. C., Heikes, B., Singh, H. B., Blake, D. R., Sachse, G. W., Diskin, G. S., Hall, S. R., and Shetter, R. E.: Airborne measurement of OH reactivity during INTEX-B, Atmos. Chem. Phys., 9, 163–173, https://doi.org/10.5194/acp-9-163-2009, 2009.
McClure, C. D. and Jaffe, D. A.: US particulate matter air quality
improves except in wildfire-prone areas, Proc. Natl. Acad. Sci. U. S. A., 115,
7901–7906, https://doi.org/10.1073/pnas.1804353115, 2018.
McManus, J. B., Zahniser, M. S., and Nelson, D. D.: Dual quantum cascade
laser trace gas instrument with astigmatic Herriott cell at high pass
number, Appl. Opt., 50, A74–A85, https://doi.org/10.1364/AO.50.000A74, 2011a.
McManus, J. B., Zahniser, M. S., Nelson, D. D., McGovern, R. M., Agnese, M., and Brown, W. F., Compact Quantum Cascade Laser Instrument for High Precision Trace Gas Measurements, in: Renewable Energy and the Environment, OSA Technical Digest (CD), Optical Society of America, paper EThC2, 2011b.
McMurry, P. H. and Grosjean, D.: Gas and aerosol wall losses in Teflon
film smog chambers, Environ. Sci. Technol., 19, 1176–1182,
https://doi.org/10.1021/es00142a006, 1985.
Mitroo, D., Sun, Y., Combest, D. P., Kumar, P., and Williams, B. J.: Assessing the degree of plug flow in oxidation flow reactors (OFRs): a study on a potential aerosol mass (PAM) reactor, Atmos. Meas. Tech., 11, 1741–1756, https://doi.org/10.5194/amt-11-1741-2018, 2018.
Moosmüller, H. and Arnott, W. P.: Angular truncation errors in
integrating nephelometry, Rev. Sci. Instrum., 74, 3492–3501,
https://doi.org/10.1063/1.1581355, 2003.
Murphy, D. M., Cziczo, D. J., Froyd, K. D., Hudson, P. K., Matthew, B.
M., Middlebrook, A. M., Peltier, R. E., Sullivan, A., Thomson, D. S., and
Weber, R. J.: Single-particle mass spectrometry of tropospheric aerosol
particles, J. Geophys. Res.-Atmos., 111, D23S32,
https://doi.org/10.1029/2006jd007340, 2006.
Onasch, T. B., Trimborn, A., Fortner, E. C., Jayne, J. T., Kok, G. L.,
Williams, L. R., Davidovits, P., and Worsnop, D. R.: Soot Particle Aerosol
Mass Spectrometer: Development, Validation, and Initial Application, Aerosol
Sci. Tech., 46, 804–817, https://doi.org/10.1080/02786826.2012.663948, 2012.
Ortega, A. M., Day, D. A., Cubison, M. J., Brune, W. H., Bon, D., de Gouw, J. A., and Jimenez, J. L.: Secondary organic aerosol formation and primary organic aerosol oxidation from biomass-burning smoke in a flow reactor during FLAME-3, Atmos. Chem. Phys., 13, 11551–11571, https://doi.org/10.5194/acp-13-11551-2013, 2013.
Palm, B. B., Campuzano-Jost, P., Day, D. A., Ortega, A. M., Fry, J. L., Brown, S. S., Zarzana, K. J., Dube, W., Wagner, N. L., Draper, D. C., Kaser, L., Jud, W., Karl, T., Hansel, A., Gutiérrez-Montes, C., and Jimenez, J. L.: Secondary organic aerosol formation from in situ OH, O3, and NO3 oxidation of ambient forest air in an oxidation flow reactor, Atmos. Chem. Phys., 17, 5331–5354, https://doi.org/10.5194/acp-17-5331-2017, 2017.
Pierce, J. R., Engelhart, G. J., Hildebrandt, L., Weitkamp, E. A.,
Pathak, R. K., Donahue, N. M., Robinson, A. L., Adams, P. J., and Pandis, S.
N.: Constraining Particle Evolution from Wall Losses, Coagulation, and
Condensation-Evaporation in Smog-Chamber Experiments: Optimal Estimation
Based on Size Distribution Measurements, Aerosol Sci. Tech., 42,
1001–1015, https://doi.org/10.1080/02786820802389251, 2008.
Pósfai, M., Gelencsér, A., Simonics, R., Arató, K., Li, J.,
Hobbs, P. V., and Buseck, P. R.: Atmospheric tar balls: Particles from
biomass and biofuel burning, J. Geophys. Res.-Atmos.,
109, D06213, https://doi.org/10.1029/2003JD004169, 2004.
Riccardi, C. L., Ottmar, R. D., Sandberg, D. V., Andreu, A., Elman, E.,
Kopper, K, and Long, J.: The fuelbed: a key element of the Fuel
Characteristic Classification System, Can. J. Forest Res.,
37, 2394–2412, https://doi.org/10.1139/X07-143, 2007.
Rowe, J. P., Lambe, A. T., and Brune, W. H.: Technical Note: Effect of varying the λ = 185 and 254 nm photon flux ratio on radical generation in oxidation flow reactors, Atmos. Chem. Phys., 20, 13417–13424, https://doi.org/10.5194/acp-20-13417-2020, 2020.
Sedlacek, A. J., Onasch, T. B., Nichman, L., Lewis, E. R., Davidovits,
P, Freedman, A., and Williams, L.: Formation of refractory black carbon by
SP2-induced charring of organic aerosol, Aerosol Sci. Tech, 52,
1345–1350, https://doi.org/10.1080/02786826.2018.1531107, 2018.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M.
D., and Ngan, F.: NOAA's HYSPLIT Atmospheric Transport and Dispersion
Modeling System, B. Am. Meteorol. Soc., 96,
2059–2077, https://doi.org/10.1175/bams-d-14-00110.1, 2016.
Stephens, M., Turner, N., and Sandberg, J.: Particle identification by
laser-induced incandescence in a solid-state laser cavity, Appl. Opt., 42,
3726–3736, https://doi.org/10.1364/AO.42.003726, 2003.
Sumlin, B.: OH and NO3 Oxidation Data from FIREX-AQ
Ground Experiments, V1, Mendeley Data [data set], https://doi.org/10.17632/5mr43vbks3.1, 2021.
Sumlin, B. J., Pandey, A., Walker, M. J., Pattison, R. S., Williams, B.
J., and Chakrabarty, R. K.: Atmospheric photooxidation diminishes light
absorption by primary brown carbon aerosol from biomass burning,
Environ. Sci. Tech. Let., 4, 540–545, 2017a.
Sumlin, B. J., Pandey, A., Walker, M. J., Pattison, R. S., Williams, B.
J., and Chakrabarty, R. K.: Atmospheric Photooxidation Diminishes Light
Absorption by Primary Brown Carbon Aerosol from Biomass Burning, Environ.
Sci. Technol. Lett., 4, 540–545, https://doi.org/10.1021/acs.estlett.7b00393, 2017b.
Sumlin, B. J., Heinson, Y. W., Shetty, N., Pandey, A., Pattison, R. S.,
Baker, S., Hao, W. M., and Chakrabarty, R. K.: UV–Vis–IR spectral complex
refractive indices and optical properties of brown carbon aerosol from
biomass burning, Journal of Quantitative Spectroscopy and Radiative
Transfer, 206, 392–398, 2018a.
Sumlin, B. J., Oxford, C. R., Seo, B., Pattison, R. R., Williams, B. J.,
and Chakrabarty, R. K.: Density and Homogeneous Internal Composition of
Primary Brown Carbon Aerosol, Environ. Sci. Technol., 52,
3982–3989, https://doi.org/10.1021/acs.est.8b00093, 2018b.
Varma, R., Moosmüller, H., and Arnott, W. P.: Toward an ideal
integrating nephelometer, Opt. Lett., 28, 1007, https://doi.org/10.1364/ol.28.001007,
2003.
Wang, N., Jorga, S. D., Pierce, J. R., Donahue, N. M., and Pandis, S. N.: Particle wall-loss correction methods in smog chamber experiments, Atmos. Meas. Tech., 11, 6577–6588, https://doi.org/10.5194/amt-11-6577-2018, 2018.
Warneke, C. S. J., Ryerson, T., Crawford, J., Dibb, J.,
Lefer, B., Roberts, J., Trainer, M., Murphy, D., Brown, S.,
Brewer, A., Gao, R.-S., and Fahey, D.: Fire Influence on Regional
to Global Environments and Air Quality (FIREX-AQ), in preparation, 2021.
Xie, M., Chen, X., Hays, M. D., and Holder, A. L.: Composition and light absorption of N-containing aromatic compounds in organic aerosols from laboratory biomass burning, Atmos. Chem. Phys., 19, 2899–2915, https://doi.org/10.5194/acp-19-2899-2019, 2019.
Zhang, Q., Jimenez, J. L., Canagaratna, M., Allan, J., Coe, H., Ulbrich,
I., Alfarra, M., Takami, A., Middlebrook, A., and Sun, Y.: Ubiquity and
dominance of oxygenated species in organic aerosols in
anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys.
Res. Lett., 34, L13801, https://doi.org/10.1029/2007GL029979, 2007.
Zhang, X., Cappa, C. D., Jathar, S. H., McVay, R. C., Ensberg, J. J.,
Kleeman, M. J., and Seinfeld, J. H.: Influence of vapor wall loss in
laboratory chambers on yields of secondary organic aerosol, Proc. Natl. Acad. Sci. U. S. A., 111, 5802–5807, https://doi.org/10.1073/pnas.1404727111,
2014.
Short summary
We present a comparison of the changes to light absorption behavior and chemical composition of wildfire smoke particles from day- and nighttime oxidation processes and discuss the results within the context of previous laboratory findings.
We present a comparison of the changes to light absorption behavior and chemical composition of...
Altmetrics
Final-revised paper
Preprint