Articles | Volume 21, issue 13
https://doi.org/10.5194/acp-21-10457-2021
https://doi.org/10.5194/acp-21-10457-2021
Research article
 | 
12 Jul 2021
Research article |  | 12 Jul 2021

Empirical evidence for deep convection being a major source of stratospheric ice clouds over North America

Ling Zou, Lars Hoffmann, Sabine Griessbach, Reinhold Spang, and Lunche Wang

Related authors

A statistical analysis of the occurrence of polar stratospheric ice clouds based on MIPAS satellite observations and the ERA5 reanalysis
Ling Zou, Reinhold Spang, Sabine Griessbach, Lars Hoffmann, Farahnaz Khosrawi, Rolf Müller, and Ines Tritscher
EGUsphere, https://doi.org/10.5194/egusphere-2024-547,https://doi.org/10.5194/egusphere-2024-547, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
A global view on stratospheric ice clouds: assessment of processes related to their occurrence based on satellite observations
Ling Zou, Sabine Griessbach, Lars Hoffmann, and Reinhold Spang
Atmos. Chem. Phys., 22, 6677–6702, https://doi.org/10.5194/acp-22-6677-2022,https://doi.org/10.5194/acp-22-6677-2022, 2022
Short summary
Massive-Parallel Trajectory Calculations version 2.2 (MPTRAC-2.2): Lagrangian transport simulations on graphics processing units (GPUs)
Lars Hoffmann, Paul F. Baumeister, Zhongyin Cai, Jan Clemens, Sabine Griessbach, Gebhard Günther, Yi Heng, Mingzhao Liu, Kaveh Haghighi Mood, Olaf Stein, Nicole Thomas, Bärbel Vogel, Xue Wu, and Ling Zou
Geosci. Model Dev., 15, 2731–2762, https://doi.org/10.5194/gmd-15-2731-2022,https://doi.org/10.5194/gmd-15-2731-2022, 2022
Short summary
Revisiting global satellite observations of stratospheric cirrus clouds
Ling Zou, Sabine Griessbach, Lars Hoffmann, Bing Gong, and Lunche Wang
Atmos. Chem. Phys., 20, 9939–9959, https://doi.org/10.5194/acp-20-9939-2020,https://doi.org/10.5194/acp-20-9939-2020, 2020
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Radiative effect of thin cirrus clouds in the extratropical lowermost stratosphere and tropopause region
Reinhold Spang, Rolf Müller, and Alexandru Rap
Atmos. Chem. Phys., 24, 1213–1230, https://doi.org/10.5194/acp-24-1213-2024,https://doi.org/10.5194/acp-24-1213-2024, 2024
Short summary
Statistical analysis of observations of polar stratospheric clouds with a lidar in Kiruna, northern Sweden
Peter Voelger and Peter Dalin
Atmos. Chem. Phys., 23, 5551–5565, https://doi.org/10.5194/acp-23-5551-2023,https://doi.org/10.5194/acp-23-5551-2023, 2023
Short summary
Distribution of cross-tropopause convection within the Asian monsoon region from May through October 2017
Corey E. Clapp, Jessica B. Smith, Kristopher M. Bedka, and James G. Anderson
Atmos. Chem. Phys., 23, 3279–3298, https://doi.org/10.5194/acp-23-3279-2023,https://doi.org/10.5194/acp-23-3279-2023, 2023
Short summary
Measurement report: Plume heights of the April 2021 La Soufrière eruptions from GOES-17 side views and GOES-16–MODIS stereo views
Ákos Horváth, James L. Carr, Dong L. Wu, Julia Bruckert, Gholam Ali Hoshyaripour, and Stefan A. Buehler
Atmos. Chem. Phys., 22, 12311–12330, https://doi.org/10.5194/acp-22-12311-2022,https://doi.org/10.5194/acp-22-12311-2022, 2022
Short summary
A global view on stratospheric ice clouds: assessment of processes related to their occurrence based on satellite observations
Ling Zou, Sabine Griessbach, Lars Hoffmann, and Reinhold Spang
Atmos. Chem. Phys., 22, 6677–6702, https://doi.org/10.5194/acp-22-6677-2022,https://doi.org/10.5194/acp-22-6677-2022, 2022
Short summary

Cited articles

Aumann, H. H., Gregorich, D., Gaiser, S., Hagan, D., Pagano, T., Strow, L., and Ting, D.: AIRS Algorithm Theoretical Basis Document Level 1B Part 1: Infrared Spectrometer, Tech. rep., NASA Jet Propulsion Laboratory, Pasadena, California, 2000. a
Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L., Staelin, D. H., Strow, L. L., and Susskind, J.: AIRS/AMSU/HSB on the aqua mission: Design, science objectives, data products, and processing systems, IEEE T. Geosci. Remote, 41, 253–263, https://doi.org/10.1109/TGRS.2002.808356, 2003. a, b
Aumann, H. H., Gregorich, D., and De Souza-Machado, S. M.: AIRS observations of deep convective clouds, in: Atmospheric and Environmental Remote Sensing Data Processing and Utilization II: Perspective on Calibration/Validation Initiatives and Strategies, SPIE, 6301, 63010J, https://doi.org/10.1117/12.681201, 2006. a
Barrett, E. W., Herndon Jr., L. R., and Carter, H. J.: Some Measurements of the Distribution of Water Vapor in the Stratosphere, Tellus, 2, 302–311, https://doi.org/10.3402/tellusa.v2i4.8602, 1950. a
Bartolome Garcia, I., Spang, R., Ungermann, J., Griessbach, S., Krämer, M., Höpfner, M., and Riese, M.: Observation of cirrus clouds with GLORIA during the WISE campaign: detection methods and cirrus characterization, Atmos. Meas. Tech., 14, 3153–3168, https://doi.org/10.5194/amt-14-3153-2021, 2021. a
Download
Short summary
Ice clouds in the lowermost stratosphere (SICs) have important impacts on the radiation budget and climate change. We quantified the occurrence of SICs over North America and analysed its relations with convective systems and gravity waves to investigate potential formation mechanisms of SICs. Deep convection is proved to be the primary factor linked to the occurrence of SICs over North America.
Altmetrics
Final-revised paper
Preprint