Articles | Volume 20, issue 8
https://doi.org/10.5194/acp-20-4969-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-4969-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Linkage between dust cycle and loess of the Last Glacial Maximum in Europe
Erik Jan Schaffernicht
CORRESPONDING AUTHOR
Institute for Geophysics and Meteorology, University of Cologne, 50969 Cologne, Germany
Patrick Ludwig
Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
Yaping Shao
Institute for Geophysics and Meteorology, University of Cologne, 50969 Cologne, Germany
Related authors
No articles found.
Patricia Coll-Hidalgo, Raquel Nieto, Alexandre Ramos, Patrick Ludwig, and Luis Gimeno
EGUsphere, https://doi.org/10.5194/egusphere-2025-1775, https://doi.org/10.5194/egusphere-2025-1775, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
This study uses Lagrangian moisture tracking and high-resolution weather simulations to trace moisture sources for Storm Ianos (Sept 2020). The analysis identified the Ionian Basin and southwestern Balkans as the primary sources, with secondary contributions from the surrounding seas. Large transport moisture traveled via three main pathways, with the Marmara-Black Sea route most significant. For record-breaking rainfall local evaporation over Greece and the Ionian Sea dominated moisture uptake.
Tatiana Klimiuk, Patrick Ludwig, Antonio Sanchez-Benitez, Helge F. Goessling, Peter Braesicke, and Joaquim G. Pinto
Earth Syst. Dynam., 16, 239–255, https://doi.org/10.5194/esd-16-239-2025, https://doi.org/10.5194/esd-16-239-2025, 2025
Short summary
Short summary
Our study examines potential changes in heatwaves in central Europe due to global warming, using the 2019 summer heatwave as an example. By producing high-resolution storylines, we provide insights into how future heatwaves might spread, how they might persist for longer, and where stronger or weaker temperature increases may occur. This research helps us understand regional thermodynamic responses and highlights the importance of local strategies to protect communities from future heat events.
Selina M. Kiefer, Patrick Ludwig, Sebastian Lerch, Peter Knippertz, and Joaquim G. Pinto
EGUsphere, https://doi.org/10.5194/egusphere-2024-2955, https://doi.org/10.5194/egusphere-2024-2955, 2024
Preprint withdrawn
Short summary
Short summary
Weather forecasts 14 days in advance generally have a low skill but not always. We identify reasons thereof depending on the atmospheric flow, shown by Weather Regimes (WRs). If the WRs during the forecasts follow climatological patterns, forecast skill is increased. The forecast of a cold-wave day is better when the European Blocking WR (high pressure around the British Isles) is present a few days before a cold-wave day. These results can be used to assess the reliability of predictions.
Andrea L. Campoverde, Uwe Ehret, Patrick Ludwig, and Joaquim G. Pinto
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-134, https://doi.org/10.5194/gmd-2024-134, 2024
Revised manuscript not accepted
Short summary
Short summary
We looked at how well the model WRF-Hydro performed during the 2018 drought event in the River Rhine basin, even though it is typically used for floods. We used the meteorological ERA5 reanalysis dataset to simulate River Rhine’s streamflow and adjusted the model using parameters and actual discharge measurements. We focused on Lake Constance, a key part of the basin, but found issues with the model’s lake outflow simulation. By removing the lake module, we obtained more accurate results.
Emmanuele Russo, Jonathan Buzan, Sebastian Lienert, Guillaume Jouvet, Patricio Velasquez Alvarez, Basil Davis, Patrick Ludwig, Fortunat Joos, and Christoph C. Raible
Clim. Past, 20, 449–465, https://doi.org/10.5194/cp-20-449-2024, https://doi.org/10.5194/cp-20-449-2024, 2024
Short summary
Short summary
We present a series of experiments conducted for the Last Glacial Maximum (~21 ka) over Europe using the regional climate Weather Research and Forecasting model (WRF) at convection-permitting resolutions. The model, with new developments better suited to paleo-studies, agrees well with pollen-based climate reconstructions. This agreement is improved when considering different sources of uncertainty. The effect of convection-permitting resolutions is also assessed.
Bangjun Cao, Yaping Shao, Xianyu Yang, Xin Yin, and Shaofeng Liu
Atmos. Chem. Phys., 24, 275–285, https://doi.org/10.5194/acp-24-275-2024, https://doi.org/10.5194/acp-24-275-2024, 2024
Short summary
Short summary
Our novel scheme enhances large-eddy simulations (LESs) for atmosphere–land interactions. It couples LES subgrid closure with Monin–Obukhov similarity theory (MOST), overcoming MOST's limitations. Validated over diverse land surfaces, our approach outperforms existing methods, aligning well with field measurements. Robustness is demonstrated across varying model resolutions. MOST's influence strengthens with decreasing grid spacing, particularly for sensible heat flux.
Patrick Ludwig, Florian Ehmele, Mário J. Franca, Susanna Mohr, Alberto Caldas-Alvarez, James E. Daniell, Uwe Ehret, Hendrik Feldmann, Marie Hundhausen, Peter Knippertz, Katharina Küpfer, Michael Kunz, Bernhard Mühr, Joaquim G. Pinto, Julian Quinting, Andreas M. Schäfer, Frank Seidel, and Christina Wisotzky
Nat. Hazards Earth Syst. Sci., 23, 1287–1311, https://doi.org/10.5194/nhess-23-1287-2023, https://doi.org/10.5194/nhess-23-1287-2023, 2023
Short summary
Short summary
Heavy precipitation in July 2021 led to widespread floods in western Germany and neighboring countries. The event was among the five heaviest precipitation events of the past 70 years in Germany, and the river discharges exceeded by far the statistical 100-year return values. Simulations of the event under future climate conditions revealed a strong and non-linear effect on flood peaks: for +2 K global warming, an 18 % increase in rainfall led to a 39 % increase of the flood peak in the Ahr river.
Mark Reyers, Stephanie Fiedler, Patrick Ludwig, Christoph Böhm, Volker Wennrich, and Yaping Shao
Clim. Past, 19, 517–532, https://doi.org/10.5194/cp-19-517-2023, https://doi.org/10.5194/cp-19-517-2023, 2023
Short summary
Short summary
In this study we performed high-resolution climate model simulations for the hyper-arid Atacama Desert for the mid-Pliocene (3.2 Ma). The aim is to uncover the atmospheric processes that are involved in the enhancement of strong rainfall events during this period. We find that strong upper-level moisture fluxes (so-called moisture conveyor belts) originating in the tropical eastern Pacific are the main driver for increased rainfall in the mid-Pliocene.
Susanna Mohr, Uwe Ehret, Michael Kunz, Patrick Ludwig, Alberto Caldas-Alvarez, James E. Daniell, Florian Ehmele, Hendrik Feldmann, Mário J. Franca, Christian Gattke, Marie Hundhausen, Peter Knippertz, Katharina Küpfer, Bernhard Mühr, Joaquim G. Pinto, Julian Quinting, Andreas M. Schäfer, Marc Scheibel, Frank Seidel, and Christina Wisotzky
Nat. Hazards Earth Syst. Sci., 23, 525–551, https://doi.org/10.5194/nhess-23-525-2023, https://doi.org/10.5194/nhess-23-525-2023, 2023
Short summary
Short summary
The flood event in July 2021 was one of the most severe disasters in Europe in the last half century. The objective of this two-part study is a multi-disciplinary assessment that examines the complex process interactions in different compartments, from meteorology to hydrological conditions to hydro-morphological processes to impacts on assets and environment. In addition, we address the question of what measures are possible to generate added value to early response management.
Jie Zhang, Guang Li, Li Shi, Ning Huang, and Yaping Shao
Atmos. Chem. Phys., 22, 9525–9535, https://doi.org/10.5194/acp-22-9525-2022, https://doi.org/10.5194/acp-22-9525-2022, 2022
Short summary
Short summary
Sand and dust emission are usually investigated by wind-tunnel experiments. However, wind-tunnel flows are usually neutrally stratified without large eddies, which typically develop in the convective atmospheric boundary layer. Here we proposed a novel technique by deploying a piece of randomly fluttering cloth in a wind tunnel to generate the large eddies and found them to enhance the entrainment of sand and dust particles, which explains why large eddies are important to aeolian entrainment.
Emmanuele Russo, Bijan Fallah, Patrick Ludwig, Melanie Karremann, and Christoph C. Raible
Clim. Past, 18, 895–909, https://doi.org/10.5194/cp-18-895-2022, https://doi.org/10.5194/cp-18-895-2022, 2022
Short summary
Short summary
In this study a set of simulations are performed with the regional climate model COSMO-CLM for Europe, for the mid-Holocene and pre-industrial periods. The main aim is to better understand the drivers of differences between models and pollen-based summer temperatures. Results show that a fundamental role is played by spring soil moisture availability. Additionally, results suggest that model bias is not stationary, and an optimal configuration could not be the best under different forcing.
Xin Yin, Cong Jiang, Yaping Shao, Ning Huang, and Jie Zhang
Atmos. Chem. Phys., 22, 4509–4522, https://doi.org/10.5194/acp-22-4509-2022, https://doi.org/10.5194/acp-22-4509-2022, 2022
Short summary
Short summary
Through a series of numerical experiments using the large-eddy-simulation model, we have developed an improved particle deposition scheme that takes into account transient wind shear fluctuations. Statistical analysis of the simulation results shows that the shear stress can be well approximated by a Weibull distribution and that the new scheme provides more accurate predictions than the conventional scheme, particularly under weak wind conditions and strong convective atmospheric conditions.
Florian Ehmele, Lisa-Ann Kautz, Hendrik Feldmann, Yi He, Martin Kadlec, Fanni D. Kelemen, Hilke S. Lentink, Patrick Ludwig, Desmond Manful, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 22, 677–692, https://doi.org/10.5194/nhess-22-677-2022, https://doi.org/10.5194/nhess-22-677-2022, 2022
Short summary
Short summary
For various applications, it is crucial to have profound knowledge of the frequency, severity, and risk of extreme flood events. Such events are characterized by very long return periods which observations can not cover. We use a large ensemble of regional climate model simulations as input for a hydrological model. Precipitation data were post-processed to reduce systematic errors. The representation of precipitation and discharge is improved, and estimates of long return periods become robust.
Kim H. Stadelmaier, Patrick Ludwig, Pascal Bertran, Pierre Antoine, Xiaoxu Shi, Gerrit Lohmann, and Joaquim G. Pinto
Clim. Past, 17, 2559–2576, https://doi.org/10.5194/cp-17-2559-2021, https://doi.org/10.5194/cp-17-2559-2021, 2021
Short summary
Short summary
We use regional climate simulations for the Last Glacial Maximum to reconstruct permafrost and to identify areas of thermal contraction cracking of the ground in western Europe. We find ground cracking, a precondition for the development of permafrost proxies, south of the probable permafrost border, implying that permafrost was not the limiting factor for proxy development. A good agreement with permafrost and climate proxy data is achieved when easterly winds are modelled more frequently.
Patricio Velasquez, Jed O. Kaplan, Martina Messmer, Patrick Ludwig, and Christoph C. Raible
Clim. Past, 17, 1161–1180, https://doi.org/10.5194/cp-17-1161-2021, https://doi.org/10.5194/cp-17-1161-2021, 2021
Short summary
Short summary
This study assesses the importance of resolution and land–atmosphere feedbacks for European climate. We performed an asynchronously coupled experiment that combined a global climate model (~ 100 km), a regional climate model (18 km), and a dynamic vegetation model (18 km). Modelled climate and land cover agree reasonably well with independent reconstructions based on pollen and other paleoenvironmental proxies. The regional climate is significantly influenced by land cover.
Yaping Shao, Jie Zhang, Masahide Ishizuka, Masao Mikami, John Leys, and Ning Huang
Atmos. Chem. Phys., 20, 12939–12953, https://doi.org/10.5194/acp-20-12939-2020, https://doi.org/10.5194/acp-20-12939-2020, 2020
Short summary
Short summary
It has been recognized in earlier research that particle size distribution of dust at emission (dust PSD) is dependent on friction velocity. This recognition has been challenged in some recent papers. Based on the analysis of experimental data, we confirm that dust PSD is dependent on friction velocity and atmospheric boundary-layer stability. By theoretical and numerical analysis, we reveal the reasons for this dependency.
Joaquim G. Pinto and Patrick Ludwig
Clim. Past, 16, 611–626, https://doi.org/10.5194/cp-16-611-2020, https://doi.org/10.5194/cp-16-611-2020, 2020
Short summary
Short summary
The statistics and characteristics of cyclones over the North Atlantic and Europe are analysed for Last Glacial Maximum (LGM) climate conditions. LGM extreme cyclones were more frequent and characterised by less precipitation and stronger wind speeds than pre-industrial analogues. These results agree with the view of a colder and drier Europe during LGM, with little vegetation and affected by frequent dust storms, leading to the buildup of thick loess deposits in Europe.
Luca Mathias, Patrick Ludwig, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 19, 1023–1040, https://doi.org/10.5194/nhess-19-1023-2019, https://doi.org/10.5194/nhess-19-1023-2019, 2019
Short summary
Short summary
Convective systems producing severe winds occasionally affect Europe during wintertime and the majority of these storms develop along well-defined cold fronts of extratropical cyclones. However, on 3 January 2014, a storm formed in a postfrontal air mass over western Europe. This study analyses the prevailing environmental conditions and the predictability of this storm. Our results reveal the difficulty of forecasting cold-season convective storms when they are not associated with a cold front.
Lisa-Ann Kautz, Florian Ehmele, Patrick Ludwig, Hilke S. Lentink, Fanni D. Kelemen, Martin Kadlec, and Joaquim G. Pinto
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-77, https://doi.org/10.5194/hess-2019-77, 2019
Manuscript not accepted for further review
Short summary
Short summary
To quantify the flooding risk for Europe it is necessary to run hydrological models. As input for these models, a consistent stochastic precipitation dataset is needed. In the present study, a combined approach is presented on how to generate such a dataset based on dynamical downscaling and subsequent bias correction. Empirical quantile mapping was identified as suitable bias correction method as it led to improvements for specific severe river floods as well as in a climatological perspective.
Dongwei Liu, Masahide Ishizuka, Masao Mikami, and Yaping Shao
Atmos. Chem. Phys., 18, 7595–7606, https://doi.org/10.5194/acp-18-7595-2018, https://doi.org/10.5194/acp-18-7595-2018, 2018
Short summary
Short summary
This work is on saltation (sand motion). Most earlier studies considered only the mean features rather than the turbulent characteristics of saltation. Related to this are uncertainties in saltation model parameters. We study these issues using field measurements. We analyse saltation intermittency and spectrum and estimate the probabilistic distribution of model parameters. This work is part of our effort to develop a more general saltation model.
Lei Wang, Huizhi Liu, Jihua Sun, and Yaping Shao
Atmos. Chem. Phys., 17, 5119–5129, https://doi.org/10.5194/acp-17-5119-2017, https://doi.org/10.5194/acp-17-5119-2017, 2017
Short summary
Short summary
This study found that the seasonal variation in CO2 exchange over an alpine meadow on the Tibetan Plateau was primarily affected by the seasonal pattern of air temperature, especially in spring and autumn. The annual net ecosystem exchange decreased with mean annual temperature, and then increased when the gross primary production became saturated. This study contributes to the response of the alpine meadow ecosystem to global warming.
Jie Zhang, Zhenjiao Teng, Ning Huang, Lei Guo, and Yaping Shao
Atmos. Chem. Phys., 16, 15517–15528, https://doi.org/10.5194/acp-16-15517-2016, https://doi.org/10.5194/acp-16-15517-2016, 2016
Short summary
Short summary
In spite of the tremendous efforts, many questions remain unanswered regarding dust emission mechanisms. A series of wind tunnel experiments are carried out on dust emissions from different soil surfaces to better understand relevant mechanisms. Here are some interesting results that demonstrate the importance of surface renewal mechanism, which was normally neglected in previous research and is strongly recommended to be considered in future dust models.
J. Zhang and Y. Shao
Atmos. Chem. Phys., 14, 12429–12440, https://doi.org/10.5194/acp-14-12429-2014, https://doi.org/10.5194/acp-14-12429-2014, 2014
J. Zhang, Y. Shao, and N. Huang
Atmos. Chem. Phys., 14, 8869–8882, https://doi.org/10.5194/acp-14-8869-2014, https://doi.org/10.5194/acp-14-8869-2014, 2014
M. L. R. Liberato, J. G. Pinto, R. M. Trigo, P. Ludwig, P. Ordóñez, D. Yuen, and I. F. Trigo
Nat. Hazards Earth Syst. Sci., 13, 2239–2251, https://doi.org/10.5194/nhess-13-2239-2013, https://doi.org/10.5194/nhess-13-2239-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Dust-producing weather patterns of the North American Great Plains
High-resolution air quality maps for Bucharest using a mixed-effects modeling framework
Construction and application of a pollen emissions model based on phenology and random forests
The impact of uncertainty in black carbon's refractive index on simulated optical depth and radiative forcing
Characterization of brown carbon absorption in different European environments through source contribution analysis
Accounting for the black carbon aging process in a two-way coupled meteorology–air quality model
The effectiveness of solar radiation management using fine sea spray across multiple climatic regions
A global dust emission dataset for estimating dust radiative forcings in climate models
Tropospheric aerosols over the western North Atlantic Ocean during the winter and summer deployments of ACTIVATE 2020: life cycle, transport, and distribution
Spatial and temporal evolution of future atmospheric reactive nitrogen deposition in China under different climate change mitigation strategies
Steady-state mixing state of black carbon aerosols from a particle-resolved model
Distinctive dust weather intensities in North China resulted from two types of atmospheric circulation anomalies
Biomass burning emission analysis based on MODIS aerosol optical depth and AeroCom multi-model simulations: implications for model constraints and emission inventories
Quasi-weekly oscillation of regional PM2.5 transport over China driven by the synoptic-scale disturbance of the East Asian winter monsoon circulation
Solar radiation estimation in West Africa: impact of dust conditions during the 2021 dry season
Machine Learning Assisted Inference of the Particle Charge Fraction and the Ion-induced Nucleation Rates during New Particle Formation Events
Gaps in our understanding of ice-nucleating particle sources exposed by global simulation of the UK Earth System Model
The role of interfacial tension in the size-dependent phase separation of atmospheric aerosol particles
Warming effects of reduced sulfur emissions from shipping
The key role of atmospheric absorption in the Asian summer monsoon response to dust emissions in CMIP6 models
Multi-model effective radiative forcing of the 2020 sulfur cap for shipping
Exploring the Aerosol Activation Properties in a Coastal Area Using Cloud and Particle-resolving Models
Representation of iron aerosol size distributions of anthropogenic emissions is critical in evaluating atmospheric soluble iron input to the ocean
Revealing dominant patterns of aerosol regimes in the lower troposphere and their evolution from preindustrial times to the future in global climate model simulations
A Novel Method to Quantify the Uncertainty Contribution of Aerosol-Radiative Interaction Factors
Improving estimation of a record-breaking east Asian dust storm emission with lagged aerosol Ångström exponent observations
Impact of biomass burning aerosols (BBA) on the tropical African climate in an ocean–atmosphere–aerosol coupled climate model
Retrieval of refractive index and water content for the coating materials of aged black carbon aerosol based on optical properties: a theoretical analysis
Impact of post monsoon crop residue burning on PM2.5 over North India: Optimizing emissions using a high-density in situ surface observation network
Predicting hygroscopic growth of organosulfur aerosol particles using COSMOtherm
Dust aerosol from the Aralkum Desert influences the radiation budget and atmospheric dynamics of Central Asia
Global modeling of aerosol nucleation with a semi-explicit chemical mechanism for highly oxygenated organic molecules (HOMs)
How to trace the origins of short-lived atmospheric species in the Arctic
Synergistic effects of the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) on dust activities in North China during the following spring
Aerosol composition, air quality, and boundary layer dynamics in the urban background of Stuttgart in winter
Measurement report: Source attribution and estimation of black carbon levels in an urban hotspot of the central Po Valley – an integrated approach combining high-resolution dispersion modelling and micro-aethalometers
Modeling CMAQ dry deposition treatment over Western Pacific: A distinct characteristic of mineral dust and anthropogenic aerosol
Microphysical modelling of aerosol scavenging by different types of clouds: description and validation of the approach
Insights into the sources of ultrafine particle numbers at six European urban sites obtained by investigating COVID-19 lockdowns
In-plume and out-of-plume analysis of aerosol–cloud interactions derived from the 2014–2015 Holuhraun volcanic eruption
Impacts of atmospheric circulation patterns and cloud inhibition on aerosol radiative effect and boundary layer structure during winter air pollution in Sichuan Basin, China
Modeling simulation of aerosol light absorption over the Beijing-Tianjin-Hebei region: the impact of mixing state and aging processes
Investigating the sign of stratocumulus adjustments to aerosols in the ICON global storm-resolving model
A model study investigating the sensitivity of aerosol forcing to the volatilities of semi-volatile organic compounds
An Investigation of the Impact of Canadian wildfires on US Air Quality using Satellite, Model and Ground Measurements
Decomposing the effective radiative forcing of anthropogenic aerosols based on CMIP6 Earth system models
Modeling impacts of dust mineralogy on fast climate response
Uncertainties in laboratory-measured shortwave refractive indices of mineral dust aerosols and derived optical properties: a theoretical assessment
Diagnosing uncertainties in global biomass burning emission inventories and their impact on modeled air pollutants
Isolating aerosol-climate interactions in global kilometre-scale simulations
Stuart Evans
Atmos. Chem. Phys., 25, 4833–4845, https://doi.org/10.5194/acp-25-4833-2025, https://doi.org/10.5194/acp-25-4833-2025, 2025
Short summary
Short summary
This study of the North American Great Plains identifies the various weather patterns responsible for blowing dust in all parts of the region using a weather pattern classification. In the southwestern plains passing cold fronts are the primary cause of dust; in the understudied northern plains, summertime patterns and southerly pre-frontal winds are most important in the west and east, respectively. These results are valuable to understanding and forecasting dust in this complex source region.
Camelia Talianu, Jeni Vasilescu, Doina Nicolae, Alexandru Ilie, Andrei Dandocsi, Anca Nemuc, and Livio Belegante
Atmos. Chem. Phys., 25, 4639–4654, https://doi.org/10.5194/acp-25-4639-2025, https://doi.org/10.5194/acp-25-4639-2025, 2025
Short summary
Short summary
For Bucharest, Romania's capital, mobile measurements during two intensive campaigns and mixed-effect LUR (land-use regression) models to derive seasonal maps of near-surface PM10, NO2 and UFPs (ultrafine particles) have successfully been used. The model's performance was evaluated, demonstrating its potential for high-resolution mapping in other cities with well-characterized urban structures and diverse in situ monitoring stations.
Jiangtao Li, Xingqin An, Zhaobin Sun, Caihua Ye, Qing Hou, Yuxin Zhao, and Zhe Liu
Atmos. Chem. Phys., 25, 3583–3602, https://doi.org/10.5194/acp-25-3583-2025, https://doi.org/10.5194/acp-25-3583-2025, 2025
Short summary
Short summary
Climate change and pollution have intensified pollen allergies. We developed a pollen emissions model using phenology and random forests. Key factors affecting annual pollen emissions include temperature, relative humidity and sunshine hours. Pollen dispersal starts around 10 August, peaks around 30 August and ends by 25 September, lasting about 45 d. Over time, annual pollen emissions exhibit significant fluctuations and a downward trend.
Ruth A. R. Digby, Knut von Salzen, Adam H. Monahan, Nathan P. Gillett, and Jiangnan Li
Atmos. Chem. Phys., 25, 3109–3130, https://doi.org/10.5194/acp-25-3109-2025, https://doi.org/10.5194/acp-25-3109-2025, 2025
Short summary
Short summary
The refractive index of black carbon (BCRI), which determines how much energy black carbon absorbs and scatters, is difficult to measure, and different climate models use different values. We show that varying the BCRI across commonly used values can increase absorbing aerosol optical depth by 42 % and the warming effect from interactions between black carbon and radiation by 47 %, an appreciable fraction of the overall spread between models reported in recent literature assessments.
Hector Navarro-Barboza, Jordi Rovira, Vincenzo Obiso, Andrea Pozzer, Marta Via, Andres Alastuey, Xavier Querol, Noemi Perez, Marjan Savadkoohi, Gang Chen, Jesus Yus-Díez, Matic Ivancic, Martin Rigler, Konstantinos Eleftheriadis, Stergios Vratolis, Olga Zografou, Maria Gini, Benjamin Chazeau, Nicolas Marchand, Andre S. H. Prevot, Kaspar Dallenbach, Mikael Ehn, Krista Luoma, Tuukka Petäjä, Anna Tobler, Jaroslaw Necki, Minna Aurela, Hilkka Timonen, Jarkko Niemi, Olivier Favez, Jean-Eudes Petit, Jean-Philippe Putaud, Christoph Hueglin, Nicolas Pascal, Aurélien Chauvigné, Sébastien Conil, Marco Pandolfi, and Oriol Jorba
Atmos. Chem. Phys., 25, 2667–2694, https://doi.org/10.5194/acp-25-2667-2025, https://doi.org/10.5194/acp-25-2667-2025, 2025
Short summary
Short summary
Brown carbon (BrC) absorbs ultraviolet (UV) and visible light, influencing climate. This study explores BrC's imaginary refractive index (k) using data from 12 European sites. Residential emissions are a major organic aerosol (OA) source in winter, while secondary organic aerosol (SOA) dominates in summer. Source-specific k values were derived, improving model accuracy. The findings highlight BrC's climate impact and emphasize source-specific constraints in atmospheric models.
Yuzhi Jin, Jiandong Wang, Chao Liu, David C. Wong, Golam Sarwar, Kathleen M. Fahey, Shang Wu, Jiaping Wang, Jing Cai, Zeyuan Tian, Zhouyang Zhang, Jia Xing, Aijun Ding, and Shuxiao Wang
Atmos. Chem. Phys., 25, 2613–2630, https://doi.org/10.5194/acp-25-2613-2025, https://doi.org/10.5194/acp-25-2613-2025, 2025
Short summary
Short summary
Black carbon (BC) affects climate and the environment, and its aging process alters its properties. Current models, like WRF-CMAQ, lack full accounting for it. We developed the WRF-CMAQ-BCG model to better represent BC aging by introducing bare and coated BC species and their conversion. The WRF-CMAQ-BCG model introduces the capability to simulate BC mixing states and bare and coated BC wet deposition, and it improves the accuracy of BC mass concentration and aerosol optics.
Zhe Song, Shaocai Yu, Pengfei Li, Ningning Yao, Lang Chen, Yuhai Sun, Boqiong Jiang, and Daniel Rosenfeld
Atmos. Chem. Phys., 25, 2473–2494, https://doi.org/10.5194/acp-25-2473-2025, https://doi.org/10.5194/acp-25-2473-2025, 2025
Short summary
Short summary
Our results with injected sea salt aerosols for five open oceans show that sea salt aerosols with low injection amounts dominate shortwave radiation, mainly through indirect effects. As indirect aerosol effects saturate with increasing injection rates, direct effects exceed indirect effects. This implies that marine cloud brightening is best implemented in areas with extensive cloud cover, while aerosol direct scattering effects remain dominant when clouds are scarce.
Danny M. Leung, Jasper F. Kok, Longlei Li, David M. Lawrence, Natalie M. Mahowald, Simone Tilmes, and Erik Kluzek
Atmos. Chem. Phys., 25, 2311–2331, https://doi.org/10.5194/acp-25-2311-2025, https://doi.org/10.5194/acp-25-2311-2025, 2025
Short summary
Short summary
This study derives a gridded dust emission dataset for 1841–2000 by employing a combination of observed dust from core records and reanalyzed global dust cycle constraints. We evaluate the ability of global models to replicate the observed historical dust variability by using the emission dataset to force a historical simulation in an Earth system model. We show that prescribing our emissions forces the model to better match observations than other mechanistic models.
Hongyu Liu, Bo Zhang, Richard H. Moore, Luke D. Ziemba, Richard A. Ferrare, Hyundeok Choi, Armin Sorooshian, David Painemal, Hailong Wang, Michael A. Shook, Amy Jo Scarino, Johnathan W. Hair, Ewan C. Crosbie, Marta A. Fenn, Taylor J. Shingler, Chris A. Hostetler, Gao Chen, Mary M. Kleb, Gan Luo, Fangqun Yu, Mark A. Vaughan, Yongxiang Hu, Glenn S. Diskin, John B. Nowak, Joshua P. DiGangi, Yonghoon Choi, Christoph A. Keller, and Matthew S. Johnson
Atmos. Chem. Phys., 25, 2087–2121, https://doi.org/10.5194/acp-25-2087-2025, https://doi.org/10.5194/acp-25-2087-2025, 2025
Short summary
Short summary
We use the GEOS-Chem model to simulate aerosol distributions and properties over the western North Atlantic Ocean (WNAO) during the winter and summer deployments in 2020 of the NASA ACTIVATE mission. Model results are evaluated against aircraft, ground-based, and satellite observations. The improved understanding of life cycle, composition, transport pathways, and distribution of aerosols has important implications for characterizing aerosol–cloud–meteorology interactions over WNAO.
Mingrui Ma, Jiachen Cao, Dan Tong, Bo Zheng, and Yu Zhao
Atmos. Chem. Phys., 25, 2147–2166, https://doi.org/10.5194/acp-25-2147-2025, https://doi.org/10.5194/acp-25-2147-2025, 2025
Short summary
Short summary
We combined two global climate change pathways and three national emission control scenarios to analyze the future evolution of reactive nitrogen (Nr) deposition till the 2060s in China with air quality modeling. We show China’s clean air and carbon neutrality policies would overcome the adverse effects of climate change and efficiently reduce Nr deposition. The outflow of Nr fluxes from mainland China to the west Pacific would also be clearly reduced from continuous stringent emission controls.
Zhouyang Zhang, Jiandong Wang, Jiaping Wang, Nicole Riemer, Chao Liu, Yuzhi Jin, Zeyuan Tian, Jing Cai, Yueyue Cheng, Ganzhen Chen, Bin Wang, Shuxiao Wang, and Aijun Ding
Atmos. Chem. Phys., 25, 1869–1881, https://doi.org/10.5194/acp-25-1869-2025, https://doi.org/10.5194/acp-25-1869-2025, 2025
Short summary
Short summary
Black carbon (BC) exerts notable warming effects. We use a particle-resolved model to investigate the long-term behavior of the BC mixing state, revealing its compositions, coating thickness distribution, and optical properties all stabilize with a characteristic time of less than 1 d. This study can effectively simplify the description of the BC mixing state, which facilitates the precise assessment of the optical properties of BC aerosols in global and chemical transport models.
Qianyi Huo, Zhicong Yin, Xiaoqing Ma, and Huijun Wang
Atmos. Chem. Phys., 25, 1711–1724, https://doi.org/10.5194/acp-25-1711-2025, https://doi.org/10.5194/acp-25-1711-2025, 2025
Short summary
Short summary
Dust days during the spring seasons of 2015–2023 in North China were classified into Mongolian cyclone and cold high types depending on the presence of the Mongolian cyclone. The Mongolian cyclone type led to more frequent and severe dust weather, indicated by PM10 concentrations. To comprehensively forecast the two types of dust weather, a common predictor was established based on 500 hPa anomalous circulation systems, offering insights for dust weather forecasting and climate prediction.
Mariya Petrenko, Ralph Kahn, Mian Chin, Susanne E. Bauer, Tommi Bergman, Huisheng Bian, Gabriele Curci, Ben Johnson, Johannes W. Kaiser, Zak Kipling, Harri Kokkola, Xiaohong Liu, Keren Mezuman, Tero Mielonen, Gunnar Myhre, Xiaohua Pan, Anna Protonotariou, Samuel Remy, Ragnhild Bieltvedt Skeie, Philip Stier, Toshihiko Takemura, Kostas Tsigaridis, Hailong Wang, Duncan Watson-Parris, and Kai Zhang
Atmos. Chem. Phys., 25, 1545–1567, https://doi.org/10.5194/acp-25-1545-2025, https://doi.org/10.5194/acp-25-1545-2025, 2025
Short summary
Short summary
We compared smoke plume simulations from 11 global models to each other and to satellite smoke amount observations aimed at constraining smoke source strength. In regions where plumes are thick and background aerosol is low, models and satellites compare well. However, the input emission inventory tends to underestimate in many places, and particle property and loss rate assumptions vary enormously among models, causing uncertainties that require systematic in situ measurements to resolve.
Yongqing Bai, Tianliang Zhao, Kai Meng, Yue Zhou, Jie Xiong, Xiaoyun Sun, Lijuan Shen, Yanyu Yue, Yan Zhu, Weiyang Hu, and Jingyan Yao
Atmos. Chem. Phys., 25, 1273–1287, https://doi.org/10.5194/acp-25-1273-2025, https://doi.org/10.5194/acp-25-1273-2025, 2025
Short summary
Short summary
We proposed a composite statistical method to identify the quasi-weekly oscillation (QWO) of regional PM2.5 transport over China in winter from 2015 to 2019. The QWO of regional PM2.5 transport is constrained by synoptic-scale disturbances of the East Asian winter monsoon circulation with the periodic activities of the Siberian high, providing a new insight into the understanding of regional pollutant transport with meteorological drivers in atmospheric environment changes.
Léo Clauzel, Sandrine Anquetin, Christophe Lavaysse, Gilles Bergametti, Christel Bouet, Guillaume Siour, Rémy Lapere, Béatrice Marticorena, and Jennie Thomas
Atmos. Chem. Phys., 25, 997–1021, https://doi.org/10.5194/acp-25-997-2025, https://doi.org/10.5194/acp-25-997-2025, 2025
Short summary
Short summary
Solar energy production in West Africa is set to rise and needs accurate solar radiation estimates which are affected by desert dust. This work analyses a March 2021 dust event using a modelling strategy incorporating desert dust. Results show that considering desert dust cuts errors in solar radiation estimates by 75 % and reduces surface solar radiation by 18 %. This highlights the importance of incorporating dust aerosols into solar forecasting for better accuracy.
Pan Wang, Yue Zhao, Jiandong Wang, Veli-Matti Kerminen, Jingkun Jiang, and Chenxi Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-3666, https://doi.org/10.5194/egusphere-2024-3666, 2025
Short summary
Short summary
We developed a numerical model to explore how the charge state of newly formed atmospheric particles evolves during growth and how this relates to ion-induced nucleation rates. We identify the governing factors of particle charging and further apply neural networks to predict particle charge states and estimate ion induced nucleation rates. This study offers insights into particle charging dynamics and introduces new methods for assessing ion induced nucleation in atmospheric research.
Ross J. Herbert, Alberto Sanchez-Marroquin, Daniel P. Grosvenor, Kirsty J. Pringle, Stephen R. Arnold, Benjamin J. Murray, and Kenneth S. Carslaw
Atmos. Chem. Phys., 25, 291–325, https://doi.org/10.5194/acp-25-291-2025, https://doi.org/10.5194/acp-25-291-2025, 2025
Short summary
Short summary
Aerosol particles that help form ice in clouds vary in number and type around the world and with time. However, in many weather and climate models cloud ice is not linked to aerosols that are known to nucleate ice. Here we report the first steps towards representing ice-nucleating particles within the UK Earth System Model. We conclude that in addition to ice nucleation by sea spray and mineral components of soil dust, we also need to represent ice nucleation by the organic components of soils.
Ryan Schmedding and Andreas Zuend
Atmos. Chem. Phys., 25, 327–346, https://doi.org/10.5194/acp-25-327-2025, https://doi.org/10.5194/acp-25-327-2025, 2025
Short summary
Short summary
Four different approaches for computing the interfacial tension between liquid phases in aerosol particles were tested for particles with diameters from 10 nm to more than 5 μm. Antonov's rule led to the strongest reductions in the onset relative humidity of liquid–liquid phase separation and reproduced measured interfacial tensions for highly immiscible systems. A modified form of the Butler equation was able to best reproduce measured interfacial tensions in more miscible systems.
Masaru Yoshioka, Daniel P. Grosvenor, Ben B. B. Booth, Colin P. Morice, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 13681–13692, https://doi.org/10.5194/acp-24-13681-2024, https://doi.org/10.5194/acp-24-13681-2024, 2024
Short summary
Short summary
A 2020 regulation has reduced sulfur emissions from shipping by about 80 %, leading to a decrease in atmospheric aerosols that have a cooling effect primarily by affecting cloud properties and amounts. Our climate model simulations predict a global temperature increase of 0.04 K over the next 3 decades as a result, which could contribute to surpassing the Paris Agreement's 1.5 °C target. Reduced aerosols may have also contributed to the recent temperature spikes.
Alcide Zhao, Laura J. Wilcox, and Claire L. Ryder
Atmos. Chem. Phys., 24, 13385–13402, https://doi.org/10.5194/acp-24-13385-2024, https://doi.org/10.5194/acp-24-13385-2024, 2024
Short summary
Short summary
Climate models include desert dust aerosols, which cause atmospheric heating and can change circulation patterns. We assess the effect of dust on the Indian and east Asian summer monsoons through multi-model experiments isolating the effect of dust in current climate models for the first time. Dust atmospheric heating results in a southward shift of western Pacific equatorial rainfall and an enhanced Indian summer monsoon. This shows the importance of accurate dust representation in models.
Ragnhild Bieltvedt Skeie, Rachael Byrom, Øivind Hodnebrog, Caroline Jouan, and Gunnar Myhre
Atmos. Chem. Phys., 24, 13361–13370, https://doi.org/10.5194/acp-24-13361-2024, https://doi.org/10.5194/acp-24-13361-2024, 2024
Short summary
Short summary
In 2020, new regulations by the International Maritime Organization regarding sulfur emissions came into force, reducing emissions of SO2 from the shipping sector by approximately 80 %. In this study, we use multiple models to calculate how much the Earth energy balance changed due to the emission reduction or the so-called effective radiative forcing. The calculated effective radiative forcing is weak, comparable to the effect of the increase in CO2 over the last 2 to 3 years.
Ge Yu, Yueya Wang, Zhe Wang, and Xiaoming Shi
EGUsphere, https://doi.org/10.5194/egusphere-2024-3581, https://doi.org/10.5194/egusphere-2024-3581, 2024
Short summary
Short summary
Studying the cloud-forming capacity of aerosols is crucial in climate research. The PartMC model can provide detailed particle information and help these studies. This model is integrated with the ideal meteorological Cloud Model 1 (CM1) to simulate the aerosols at cloud-forming locations. Significant changes are revealed in the hygroscopicity distribution of aerosols within ascending air parcels. Additionally, different ascent times also affect aerosol aging processes.
Mingxu Liu, Hitoshi Matsui, Douglas S. Hamilton, Sagar D. Rathod, Kara D. Lamb, and Natalie M. Mahowald
Atmos. Chem. Phys., 24, 13115–13127, https://doi.org/10.5194/acp-24-13115-2024, https://doi.org/10.5194/acp-24-13115-2024, 2024
Short summary
Short summary
Atmospheric aerosol deposition provides bioavailable iron to promote marine primary production, yet the estimates of its fluxes remain highly uncertain. This study, by performing global aerosol simulations, demonstrates that iron-containing particle size upon emission is a critical factor in regulating soluble iron input to open oceans. Further observational constraints on this are needed to reduce modeling uncertainties.
Jingmin Li, Mattia Righi, Johannes Hendricks, Christof G. Beer, Ulrike Burkhardt, and Anja Schmidt
Atmos. Chem. Phys., 24, 12727–12747, https://doi.org/10.5194/acp-24-12727-2024, https://doi.org/10.5194/acp-24-12727-2024, 2024
Short summary
Short summary
Aiming to understand underlying patterns and trends in aerosols, we characterize the spatial patterns and long-term evolution of lower tropospheric aerosols by clustering multiple aerosol properties from preindustrial times to the year 2050 under three Shared
Socioeconomic Pathway scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Socioeconomic Pathway scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Bishuo He and Chunsheng Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-3441, https://doi.org/10.5194/egusphere-2024-3441, 2024
Short summary
Short summary
Factor-uncertainty analysis helps us understand their impacts on complex systems. Traditional methods have many limitations. This study introduces a new method to measure how each factor contributes to uncertainty. It gains insights into the role of each variable and works for all multi-factor systems. As an application, we analyzed how aerosols affect solar radiation and identified the key factors. These analyses can improve our understanding of the role of aerosols in climate change.
Yueming Cheng, Tie Dai, Junji Cao, Daisuke Goto, Jianbing Jin, Teruyuki Nakajima, and Guangyu Shi
Atmos. Chem. Phys., 24, 12643–12659, https://doi.org/10.5194/acp-24-12643-2024, https://doi.org/10.5194/acp-24-12643-2024, 2024
Short summary
Short summary
In March 2021, east Asia experienced an outbreak of severe dust storms after an absence of 1.5 decades. Here, we innovatively used the time-lagged ground-based aerosol size information with the fixed-lag ensemble Kalman smoother to optimize dust emission and reproduce the dust storm. This work is valuable for not only the quantification of health damage, aviation risks, and profound impacts on the Earth's system but also revealing the climatic driving force and the process of desertification.
Marc Mallet, Aurore Voldoire, Fabien Solmon, Pierre Nabat, Thomas Drugé, and Romain Roehrig
Atmos. Chem. Phys., 24, 12509–12535, https://doi.org/10.5194/acp-24-12509-2024, https://doi.org/10.5194/acp-24-12509-2024, 2024
Short summary
Short summary
This study investigates the interactions between smoke aerosols and climate in tropical Africa using a coupled ocean–atmosphere–aerosol climate model. The work shows that smoke plumes have a significant impact by increasing the low-cloud fraction, decreasing the ocean and continental surface temperature and reducing the precipitation of coastal western Africa. It also highlights the role of the ocean temperature response and its feedbacks for the September–November season.
Jia Liu, Cancan Zhu, Donghui Zhou, and Jinbao Han
Atmos. Chem. Phys., 24, 12341–12354, https://doi.org/10.5194/acp-24-12341-2024, https://doi.org/10.5194/acp-24-12341-2024, 2024
Short summary
Short summary
The hydrophilic coatings of aged black carbon (BC) particles absorb moisture during the hygroscopic growth process, but it is difficult to characterize how much water is absorbed under different relative humidities (RHs). In this study, we propose a method to obtain the water content in the coatings based on the equivalent complex refractive index retrieved from optical properties. This method is verified from a theoretical perspective, and it performs well for thickly coated BC at high RHs.
Mizuo Kajino, Kentaro Ishijima, Joseph Ching, Kazuyo Yamaji, Rio Ishikawa, Tomoki Kajikawa, Tanbir Singh, Tomoki Nakayama, Yutaka Matsumi, Koyo Kojima, Prabir K. Patra, and Sachiko Hayashida
EGUsphere, https://doi.org/10.5194/egusphere-2024-1811, https://doi.org/10.5194/egusphere-2024-1811, 2024
Short summary
Short summary
Air pollution in Delhi during post monsoon period is severe and association with intensive crop residue burning (CRB) over Punjab state has attracted attention. However, the relationship has been unclear as the CRB emissions conventionally derived from satellites were underestimated due to clouds and haze over the region. We evaluated the impact of CRB on PM2.5 as about 50 %, based on a combination of numerical modeling and high-density observation network using low-cost sensors we installed.
Zijun Li, Angela Buchholz, and Noora Hyttinen
Atmos. Chem. Phys., 24, 11717–11725, https://doi.org/10.5194/acp-24-11717-2024, https://doi.org/10.5194/acp-24-11717-2024, 2024
Short summary
Short summary
Evaluating organosulfur (OS) hygroscopicity is important for assessing aerosol–cloud climate interactions in the post-fossil-fuel future, when SO2 emissions decrease and OS compounds become increasingly important. Here a state-of-the-art quantum-chemistry-based method was used to predict the hygroscopic growth factors (HGFs) of a group of atmospherically relevant OS compounds and their mixtures with (NH4)2SO4. A good agreement was observed between their model-estimated and experimental HGFs.
Jamie R. Banks, Bernd Heinold, and Kerstin Schepanski
Atmos. Chem. Phys., 24, 11451–11475, https://doi.org/10.5194/acp-24-11451-2024, https://doi.org/10.5194/acp-24-11451-2024, 2024
Short summary
Short summary
The Aralkum is a new desert in Central Asia formed by the desiccation of the Aral Sea. This has created a source of atmospheric dust, with implications for the balance of solar and thermal radiation. Simulating these effects using a dust transport model, we find that Aralkum dust adds radiative cooling effects to the surface and atmosphere on average but also adds heating events. Increases in surface pressure due to Aralkum dust strengthen the Siberian High and weaken the summer Asian heat low.
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Wenxiang Shen, Stephen R. Arnold, Leighton A. Regayre, Meinrat O. Andreae, Mira L. Pöhlker, Duseong S. Jo, Man Yue, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 11365–11389, https://doi.org/10.5194/acp-24-11365-2024, https://doi.org/10.5194/acp-24-11365-2024, 2024
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) play an important role in atmospheric new particle formation (NPF). By semi-explicitly coupling the chemical mechanism of HOMs and a comprehensive nucleation scheme in a global climate model, the updated model shows better agreement with measurements of nucleation rate, growth rate, and NPF event frequency. Our results reveal that HOM-driven NPF leads to a considerable increase in particle and cloud condensation nuclei burden globally.
Anderson Da Silva, Louis Marelle, Jean-Christophe Raut, Yvette Gramlich, Karolina Siegel, Sophie L. Haslett, Claudia Mohr, and Jennie L. Thomas
EGUsphere, https://doi.org/10.5194/egusphere-2024-2839, https://doi.org/10.5194/egusphere-2024-2839, 2024
Short summary
Short summary
Particles sources in polar climates are unclear, affecting climate representation in models. This study introduces an evaluated method for tracking particles with backtrajectory modeling. Tests on simulated particles allowed to show that traditional detection methods often misidentify sources. An improved method that accurately traces origins of aerosol particles in the Arctic is presented. The study recommends using this enhanced method for better source identification of atmospheric species.
Falei Xu, Shuang Wang, Yan Li, and Juan Feng
Atmos. Chem. Phys., 24, 10689–10705, https://doi.org/10.5194/acp-24-10689-2024, https://doi.org/10.5194/acp-24-10689-2024, 2024
Short summary
Short summary
This study examines how the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) affect dust activities in North China during the following spring. The results show that the NAO and ENSO, particularly in their negative phases, greatly influence dust activities. When both are negative, their combined effect on dust activities is even greater. This research highlights the importance of these climate patterns in predicting spring dust activities in North China.
Hengheng Zhang, Wei Huang, Xiaoli Shen, Ramakrishna Ramisetty, Junwei Song, Olga Kiseleva, Christopher Claus Holst, Basit Khan, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 10617–10637, https://doi.org/10.5194/acp-24-10617-2024, https://doi.org/10.5194/acp-24-10617-2024, 2024
Short summary
Short summary
Our study unravels how stagnant winter conditions elevate aerosol levels in Stuttgart. Cloud cover at night plays a pivotal role, impacting morning air quality. Validating a key model, our findings aid accurate air quality predictions, crucial for effective pollution mitigation in urban areas.
Giorgio Veratti, Alessandro Bigi, Michele Stortini, Sergio Teggi, and Grazia Ghermandi
Atmos. Chem. Phys., 24, 10475–10512, https://doi.org/10.5194/acp-24-10475-2024, https://doi.org/10.5194/acp-24-10475-2024, 2024
Short summary
Short summary
In a study of two consecutive winter seasons, we used measurements and modelling tools to identify the levels and sources of black carbon pollution in a medium-sized urban area of the Po Valley, Italy. Our findings show that biomass burning and traffic-related emissions (especially from Euro 4 diesel cars) significantly contribute to BC concentrations. This research offers crucial insights for policymakers and urban planners aiming to improve air quality in cities.
Steven Soon-Kai Kong, Joshua S. Fu, Neng-Huei Lin, Guey-Rong Sheu, and Wei-Syun Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2549, https://doi.org/10.5194/egusphere-2024-2549, 2024
Short summary
Short summary
The accuracy of the chemical transport model, a key focus of our research, is strongly dependent on the dry deposition parameterization. Our finding shows that the refined CMAQ dust model correlated well with the ground and high altitude in-situ measurements by implementing the suggested dry deposition schemes. Furthermore, we reveal the mixing state of two types of aerosols at the upper level, a finding supported by both the optimized model and measurement.
Pascal Lemaitre, Arnaud Quérel, Alexis Dépée, Alice Guerra Devigne, Marie Monier, Thibault Hiron, Chloé Soto Minguez, Daniel Hardy, and Andrea Flossmann
Atmos. Chem. Phys., 24, 9713–9732, https://doi.org/10.5194/acp-24-9713-2024, https://doi.org/10.5194/acp-24-9713-2024, 2024
Short summary
Short summary
A new in-cloud scavenging scheme is proposed. It is based on a microphysical model of cloud formation and may be applied to long-distance atmospheric transport models (> 100 km) and climatic models. This model is applied to the two most extreme precipitating cloud types in terms of both relative humidity and vertical extension: cumulonimbus and stratus.
Alex Rowell, James Brean, David C. S. Beddows, Tuukka Petäjä, Máté Vörösmarty, Imre Salma, Jarkko V. Niemi, Hanna E. Manninen, Dominik van Pinxteren, Thomas Tuch, Kay Weinhold, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys., 24, 9515–9531, https://doi.org/10.5194/acp-24-9515-2024, https://doi.org/10.5194/acp-24-9515-2024, 2024
Short summary
Short summary
Different sources of airborne particles in the atmospheres of four European cities were distinguished by recognising their particle size distributions using a statistical procedure, positive matrix factorisation. The various sources responded differently to the changes in emissions associated with COVID-19 lockdowns, and the reasons are investigated. While traffic emissions generally decreased, particles formed from reactions of atmospheric gases decreased in some cities but increased in others.
Amy H. Peace, Ying Chen, George Jordan, Daniel G. Partridge, Florent Malavelle, Eliza Duncan, and Jim M. Haywood
Atmos. Chem. Phys., 24, 9533–9553, https://doi.org/10.5194/acp-24-9533-2024, https://doi.org/10.5194/acp-24-9533-2024, 2024
Short summary
Short summary
Natural aerosols from volcanic eruptions can help us understand how anthropogenic aerosols modify climate. We use observations and model simulations of the 2014–2015 Holuhraun eruption plume to examine aerosol–cloud interactions in September 2014. We find a shift to clouds with smaller, more numerous cloud droplets in the first 2 weeks of the eruption. In the third week, the background meteorology and previous conditions experienced by air masses modulate the aerosol perturbation to clouds.
Hua Lu, Min Xie, Bingliang Zhuang, Danyang Ma, Bojun Liu, Yangzhihao Zhan, Tijian Wang, Shu Li, Mengmeng Li, and Kuanguang Zhu
Atmos. Chem. Phys., 24, 8963–8982, https://doi.org/10.5194/acp-24-8963-2024, https://doi.org/10.5194/acp-24-8963-2024, 2024
Short summary
Short summary
To identify cloud, aerosol, and planetary boundary layer (PBL) interactions from an air quality perspective, we summarized two pollution patterns characterized by denser liquid cloud and by obvious cloud radiation interaction (CRI). Numerical simulation experiments showed CRI could cause a 50 % reduction in aerosol radiation interaction (ARI) under a low-trough system. The results emphasized the nonnegligible role of CRI and its inhibition of ARI under wet and cloudy pollution synoptic patterns.
Huiyun Du, Jie Li, Xueshun Chen, Gabriele Curci, Fangqun Yu, Yele Sun, Xu Dao, Song Guo, Zhe Wang, Wenyi Yang, Lianfang Wei, and Zifa Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1432, https://doi.org/10.5194/egusphere-2024-1432, 2024
Short summary
Short summary
Inadequate consideration of mixing state and coatings on BC hinders aerosol radiation forcing quantification. While core-shell mixing results match observations closely, partial internal mixing and coating are more realistic. The fraction of embedded BC and coating aerosols resolved by a microphysics module were used to constrain the mixing state. This led to a 30~43 % absorption enhancement decrease over Northern China, offering valuable insights for the assessment of BC's radiative effects.
Emilie Fons, Ann Kristin Naumann, David Neubauer, Theresa Lang, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 8653–8675, https://doi.org/10.5194/acp-24-8653-2024, https://doi.org/10.5194/acp-24-8653-2024, 2024
Short summary
Short summary
Aerosols can modify the liquid water path (LWP) of stratocumulus and, thus, their radiative effect. We compare storm-resolving model and satellite data that disagree on the sign of LWP adjustments and diagnose this discrepancy with causal inference. We find that strong precipitation, the absence of wet scavenging, and cloud deepening under a weak inversion contribute to positive LWP adjustments to aerosols in the model, despite weak negative effects from cloud-top entrainment enhancement.
Muhammed Irfan, Thomas Kühn, Taina Yli-Juuti, Anton Laakso, Eemeli Holopainen, Douglas R. Worsnop, Annele Virtanen, and Harri Kokkola
Atmos. Chem. Phys., 24, 8489–8506, https://doi.org/10.5194/acp-24-8489-2024, https://doi.org/10.5194/acp-24-8489-2024, 2024
Short summary
Short summary
The study examines how the volatility of semi-volatile organic compounds affects secondary organic aerosol (SOA) formation and climate. Our simulations show that uncertainties in these volatilities influence aerosol mass and climate impacts. Accurate representation of these compounds in climate models is crucial for predicting global climate patterns.
Zhixin Xue, Nair Udaysankar, and Sundar Christopher
EGUsphere, https://doi.org/10.5194/egusphere-2024-1781, https://doi.org/10.5194/egusphere-2024-1781, 2024
Short summary
Short summary
Canadian wildfires degrade US air quality through long-range smoke transport. This study uses surface, satellite, and numerical models to assess the PM2.5 increase due to Canadian fires during 2018 fire season. Satellite data, often limited by cloud cover, was supplemented with high-resolution simulated data to fill gaps. Weather systems significantly influenced smoke movement. Canadian fires led to a notable rise in PM2.5 levels across various US regions during the 2018 summer wildfire events.
Alkiviadis Kalisoras, Aristeidis K. Georgoulias, Dimitris Akritidis, Robert J. Allen, Vaishali Naik, Chaincy Kuo, Sophie Szopa, Pierre Nabat, Dirk Olivié, Twan van Noije, Philippe Le Sager, David Neubauer, Naga Oshima, Jane Mulcahy, Larry W. Horowitz, and Prodromos Zanis
Atmos. Chem. Phys., 24, 7837–7872, https://doi.org/10.5194/acp-24-7837-2024, https://doi.org/10.5194/acp-24-7837-2024, 2024
Short summary
Short summary
Effective radiative forcing (ERF) is a metric for estimating how human activities and natural agents change the energy flow into and out of the Earth’s climate system. We investigate the anthropogenic aerosol ERF, and we estimate the contribution of individual processes to the total ERF using simulations from Earth system models within the Coupled Model Intercomparison Project Phase 6 (CMIP6). Our findings highlight that aerosol–cloud interactions drive ERF variability during the last 150 years.
Qianqian Song, Paul Ginoux, María Gonçalves Ageitos, Ron L. Miller, Vincenzo Obiso, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 7421–7446, https://doi.org/10.5194/acp-24-7421-2024, https://doi.org/10.5194/acp-24-7421-2024, 2024
Short summary
Short summary
We implement and simulate the distribution of eight dust minerals in the GFDL AM4.0 model. We found that resolving the eight minerals reduces dust absorption compared to the homogeneous dust used in the standard GFDL AM4.0 model that assumes a globally uniform hematite content of 2.7 % by volume. Resolving dust mineralogy results in significant impacts on radiation, land surface temperature, surface winds, and precipitation over North Africa in summer.
Senyi Kong, Zheng Wang, and Lei Bi
Atmos. Chem. Phys., 24, 6911–6935, https://doi.org/10.5194/acp-24-6911-2024, https://doi.org/10.5194/acp-24-6911-2024, 2024
Short summary
Short summary
The retrieval of refractive indices of dust aerosols from laboratory optical measurements is commonly done assuming spherical particles. This paper aims to investigate the uncertainties in the shortwave refractive indices and corresponding optical properties by considering non-spherical and inhomogeneous models for dust samples. The study emphasizes the significance of using non-spherical models for simulating dust aerosols.
Wenxuan Hua, Sijia Lou, Xin Huang, Lian Xue, Ke Ding, Zilin Wang, and Aijun Ding
Atmos. Chem. Phys., 24, 6787–6807, https://doi.org/10.5194/acp-24-6787-2024, https://doi.org/10.5194/acp-24-6787-2024, 2024
Short summary
Short summary
In this study, we diagnose uncertainties in carbon monoxide and organic carbon emissions from four inventories for seven major wildfire-prone regions. Uncertainties in vegetation classification methods, fire detection products, and cloud obscuration effects lead to bias in these biomass burning (BB) emission inventories. By comparing simulations with measurements, we provide certain inventory recommendations. Our study has implications for reducing uncertainties in emissions in further studies.
Ross J. Herbert, Andrew I. L. Williams, Philipp Weiss, Duncan Watson-Parris, Elisabeth Dingley, Daniel Klocke, and Philip Stier
EGUsphere, https://doi.org/10.5194/egusphere-2024-1689, https://doi.org/10.5194/egusphere-2024-1689, 2024
Short summary
Short summary
Clouds exist at scales that climate models struggle to represent, limiting our knowledge of how climate change may impact clouds. Here we use a new km-scale global model representing an important step towards the necessary scale. We focus on how aerosol particles modify clouds, radiation, and precipitation. We find the magnitude and manner of responses tend to vary from region to region, highlighting the potential of global km-scale simulations and a need to represent aerosols in climate models.
Cited articles
Albani, S., Mahowald, N. M., Murphy, L. N., Raiswell, R., Moore, J. K.,
Anderson, R. F., McGee, D., Bradtmiller, L. I., Delmonte, B., Hesse, P. P.,
and Mayewski, P. A.: Paleodust variability since the Last Glacial
Maximum and implications for iron inputs to the ocean,
Geophys. Res. Lett., 43, 3944–3954, https://doi.org/10.1002/2016GL067911, 2016. a, b
Antoine, P., Rousseau, D.-D., Fuchs, M., Hatté, C., Gauthier, C., Marković,
S. B., Jovanović, M., Gaudenyi, T., Moine, O., and Rossignol, J.:
High-resolution record of the last climatic cycle in the southern
Carpathian Basin (Surduk, Vojvodina, Serbia),
Quatern. Int., 198, 19–36,
https://doi.org/10.1016/j.quaint.2008.12.008,
2009a. a
Antoine, P., Rousseau, D.-D., Moine, O., Kunesch, S., Hatté, C., Lang, A.,
Tissoux, H., and Zöller, L.: Rapid and cyclic aeolian deposition during
the Last Glacial in European loess: a high-resolution record from
Nussloch, Germany, Quaternary Sci. Rev., 28, 2955-2973,
https://doi.org/10.1016/j.quascirev.2009.08.001,
2009b. a, b
Austermann, J., Mitrovica, J. X., Latychev, K., and Milne, G. A.:
Barbados-based estimate of ice volume at Last Glacial Maximum
affected by subducted plate, Nat. Geosci., 6, 553–557,
https://doi.org/10.1038/ngeo1859, 2013. a
Bartlein, P. J., Harrison, S. P., Brewer, S., Connor, S., Davis, B. A. S.,
Gajewski, K., Guiot, J., Harrison-Prentice, T. I., Henderson, A., Peyron, O., Prentice, I. C., Scholze, M., Seppä, H., Shuman, B., Sugita, S., Thompson, R. S., Viau, A. E., Williams, J., and Wu, H.: Pollen-based continental climate reconstructions at 6 and
21 ka: a global synthesis, Clim. Dynam., 37, 775–802,
https://doi.org/10.1007/s00382-010-0904-1, 2011. a
Baumann-Stanzer, K., Greilinger, M., Kasper-Giebl, A., Flandorfer, C., Hieden,
A., Lotteraner, C., Ortner, M., Vergeiner, J., Schauer, G., and Piringer, M.:
Evaluation of WRF-Chem Model Forecasts of a Prolonged Saharan
Dust Episode over the Eastern Alps,
Aerosol Air Qual. Res.,
19, 1226–1240, 2019. a
Bettis, E. A., Muhs, D. R., Roberts, H. M., and Wintle, A. G.: Last Glacial
loess in the conterminous USA, Quaternary Sci. Rev., 22, 1907–1946,
https://doi.org/10.1016/S0277-3791(03)00169-0, 2003. a
Bian, H., Tie, X., Cao, J., Ying, Z., Han, S., and Xue, Y.: Analysis of a
severe dust storm event over China: application of the WRF-dust model,
Aerosol and Air Quality Resarch, 11, 419–428, 2011. a
Bokhorst, M., Vandenberghe, J., Sümegi, P., Łanczont, M., Gerasimenko, N.,
Matviishina, Z., Marković, S., and Frechen, M.: Atmospheric circulation
patterns in central and eastern Europe during the Weichselian
Pleniglacial inferred from loess grain-size records, Quatern. Int., 234, 62–74,
https://doi.org/10.1016/j.quaint.2010.07.018, 2011. a, b, c
Booth, J. F., Naud, C. M., and Willison, J.: Evaluation of Extratropical
Cyclone Precipitation in the North Atlantic Basin: An Analysis
of ERA-Interim, WRF, and Two CMIP5 Models, J. Climate, 31,
2345–2360, https://doi.org/10.1175/JCLI-D-17-0308.1,
2018. a
Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J., Masson-Delmotte,
V., Abe-Ouchi, A., Otto-Bliesner, B., and Zhao, Y.: Evaluation of climate
models using palaeoclimatic data, Nat. Clim. Change, 2, 417–424,
https://doi.org/10.1038/nclimate1456, 2012. a, b, c, d
Buggle, B., Glaser, B., Zöller, L., Hambach, U., Marković, S., Glaser, I.,
and Gerasimenko, N.: Geochemical characterization and origin of
Southeastern and Eastern European loesses (Serbia, Romania,
Ukraine), Quaternary Sci. Rev., 27, 1058–1075,
https://doi.org/10.1016/j.quascirev.2008.01.018, 2008. a, b
Chin, M., Rood, R. B., Lin, S.-J., Müller, J.-F., and Thompson, A. M.:
Atmospheric sulfur cycle simulated in the global model GOCART: Model
description and global properties, J. Geophys. Res.-Atmos.,
105, 24671–24687,
https://doi.org/10.1029/2000JD900384, 2000. a
Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N.,
Martin, R. V., Logan, J. A., Higurashi, A., and Nakajima, T.: Tropospheric
Aerosol Optical Thickness from the GOCART Model and Comparisons
with Satellite and Sun Photometer Measurements,
J. Atmos. Sci., 59, 461–483,
https://doi.org/10.1175/1520-0469(2002)059<0461:taotft>2.0.co;2,
2002. a, b
Clark, P. U. and Mix, A. C.: Ice sheets and sea level of the Last Glacial
Maximum, Quaternary Sci. Rev., 21, 1–7,
https://doi.org/10.1016/S0277-3791(01)00118-4, 2002. a
Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth,
B., Mitrovica, J. X., Hostetler, S. W., and McCabe, A. M.: The Last
Glacial Maximum, Science, 325, 710–714, https://doi.org/10.1126/science.1172873,
2009. a, b
COHMAP Members: Climatic Changes of the Last 18,000 Years:
Observations and Model Simulations, Science, 241, 1043–1052,
https://doi.org/10.1126/science.241.4869.1043, 1988. a, b, c, d
Darmenova, K., Sokolik, I. N., Shao, Y., Marticorena, B., and Bergametti, G.:
Development of a physically based dust emission module within the Weather
Research and Forecasting (WRF) model: Assessment of dust emission
parameterizations and input parameters for source regions in Central and
East Asia, J. Geophys. Res.-Atmos., 114, D14201,
https://doi.org/10.1029/2008JD011236, 2009. a
Dietrich, S. and Seelos, K.: The reconstruction of easterly wind directions for the Eifel region (Central Europe) during the period 40.3–12.9 ka BP, Clim. Past, 6, 145–154, https://doi.org/10.5194/cp-6-145-2010, 2010. a, b, c, d
Fast, J. D., Gustafson, W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C.,
Chapman, E. G., Grell, G. A., and Peckham, S. E.: Evolution of ozone,
particulates, and aerosol direct radiative forcing in the vicinity of
Houston using a fully coupled meteorology-chemistry-aerosol model, J. Geophys. Res.-Atmos., 111, d21305,
https://doi.org/10.1029/2005JD006721, 2006. a
Fitzsimmons, K. E. and Hambach, U.: Loess accumulation during the last
glacial maximum: Evidence from Urluia, southeastern Romania, Quatern. Int., 334–335, 74–85, https://doi.org/10.1016/j.quaint.2013.08.005,
2014. a
Fitzsimmons, K. E., Marković, S. B., and Hambach, U.: Pleistocene
environmental dynamics recorded in the loess of the middle and lower Danube
basin, Quaternary Sci. Rev., 41, 104–118,
https://doi.org/10.1016/j.quascirev.2012.03.002, 2012. a, b, c
Florineth, D. and Schlüchter, C.: Alpine Evidence for Atmospheric
Circulation Patterns in Europe during the Last Glacial Maximum,
Quaternary Res., 54, 295–308,
https://doi.org/10.1006/qres.2000.2169, 2000. a, b, c
Gasse, F., Vidal, L., Develle, A.-L., and Van Campo, E.: Hydrological variability in the Northern Levant: a 250 ka multi-proxy record from the Yammoûneh (Lebanon) sedimentary sequence, Clim. Past, 7, 1261–1284, https://doi.org/10.5194/cp-7-1261-2011, 2011. a
Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O., and
Lin, S.-J.: Sources and distributions of dust aerosols simulated with the
GOCART model, J. Geophys. Res.-Atmos., 106,
20255–20273, https://doi.org/10.1029/2000JD000053,
2001. a, b, c, d
Ginoux, P., Prospero, J. M., Torres, O., and Chin, M.: Long-term simulation
of global dust distribution with the GOCART model: correlation with North
Atlantic Oscillation, Environ. Modell. Softw., 19, 113–128,
https://doi.org/10.1016/s1364-8152(03)00114-2,
2004. a
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J.,
Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D., Pithan, F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R., Segschneider, J., Six, K. D., Stockhause, M., Timmreck, C., Wegner, J., Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and Stevens, B.:
Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM
simulations for the Coupled Model Intercomparison Project phase 5, J.
Adv. Model. Earth Sy., 5, 572–597,
https://doi.org/10.1002/jame.20038, 2013. a
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock,
W. C., and Eder, B.: Fully coupled “online” chemistry within the WRF
model, Atmos. Environ., 39, 6957–6975,
https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005. a, b
Haase, D., Fink, J., Haase, G., Ruske, R., Pécsi, M., Richter, H., Altermann,
M., and Jäger, K.-D.: Loess in Europe–its spatial distribution based
on a European Loess Map, scale 1:2 500 000, Quaternary Sci. Rev.,
26, 1301–1312,
https://doi.org/10.1016/j.quascirev.2007.02.003, 2007. a, b, c
Heyman, B. M., Heyman, J., Fickert, T., and Harbor, J. M.: Paleo-climate of
the central European uplands during the last glacial maximum based on
glacier mass-balance modeling, Quaternary Res., 79, 49–54,
https://doi.org/10.1016/j.yqres.2012.09.005, 2013. a
Hofer, D., Raible, C. C., Dehnert, A., and Kuhlemann, J.: The impact of different glacial boundary conditions on atmospheric dynamics and precipitation in the North Atlantic region, Clim. Past, 8, 935–949, https://doi.org/10.5194/cp-8-935-2012, 2012. a
Hopcroft, P. O., Valdes, P. J., Woodward, S., and Joshi, M. M.: Last glacial
maximum radiative forcing from mineral dust aerosols in an Earth system
model, J. Geophys. Res.-Atmos., 120, 8186–8205,
https://doi.org/10.1002/2015JD023742, 2015. a, b, c, d
Hughes, A. L. C., Gyllencreutz, R., Lohne, O. S., Mangerud, J., and Svendsen,
J. I.: The last Eurasian ice sheets – a chronological database and
time-slice reconstruction, DATED-1, Boreas, 45, 1-45,
https://doi.org/10.1111/bor.12142, 2015. a
Jipa, D. C.: The conceptual sedimentary model of the Lower Danube loess
basin: Sedimentogenetic implications, Quatern. Int., 351,
14–24, https://doi.org/10.1016/j.quaint.2013.06.008,
2014. a, b
Jones, P. D., Hulme, M., and Briffa, K. R.: A comparison of Lamb
circulation types with an objective classification scheme, Int. J.
Climatol., 13, 655–663, https://doi.org/10.1002/joc.3370130606,
1993. a
Jones, P. D., Harpham, C., and Briffa, K. R.: Lamb weather types derived from
reanalysis products, Int. J. oClimatol., 33, 1129–1139,
https://doi.org/10.1002/joc.3498,
2013. a
Jung, E., Shao, Y., and Sakai, T.: A study on the effects of convective
transport on regional-scale Asian dust storms in 2002, J. Geophys. Res.-Atmos., 110, d20201,
https://doi.org/10.1029/2005JD005808, 2005. a
Jungclaus, J., Giorgetta, M., Reick, C., Legutke, S., Brovkin, V., Crueger, T.,
Esch, M., Fieg, K., Fischer, N., Glushak, K., Gayler, V., Haak, H., Hollweg,
H.-D., Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U.,
Müller, W., Notz, D., Pohlmann, T., Raddatz, T., Rast, S., Roeckner, E.,
Salzmann, M., Schmidt, H., Schnur, R., Segschneider, J., Six, K., Stockhause,
M., Wegner, J., Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and
Stevens, B.: CMIP5 simulations of the Max Planck Institute for
Meteorology (MPI-M) based on the MPI-ESM-P model: The lgm
experiment, served by ESGF, WDCC at DKRZ, https://doi.org/10.1594/WDCC/CMIP5.MXEPlg,
2012. a
Jungclaus, J. H., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D.,
Mikolajewicz, U., Notz, D., and von Storch, J. S.: Characteristics of the
ocean simulations in the Max Planck Institute Ocean Model (MPIOM)
the ocean component of the MPI-Earth system model, J. Adv.
Model. Earth Sy., 5, 422–446,
https://doi.org/10.1002/jame.20023, 2013. a
Kang, J.-Y., Yoon, S.-C., Shao, Y., and Kim, S.-W.: Comparison of vertical
dust flux by implementing three dust emission schemes in WRF/Chem, J.
Geophys. Res.-Atmos., 116, D09202, https://doi.org/10.1029/2010JD014649, 2011. a, b, c
Kaplan, J. O., Bigelow, N. H., Prentice, I. C., Harrison, S. P., Bartlein,
P. J., Christensen, T. R., Cramer, W., Matveyeva, N. V., McGuire, A. D.,
Murray, D. F., Razzhivin, V. Y., Smith, B., Walker, D. A., Anderson, P. M.,
Andreev, A. A., Brubaker, L. B., Edwards, M. E., and Lozhkin, A. V.:
Climate change and Arctic ecosystems: 2. Modeling, paleodata-model
comparisons, and future projections, J. Geophys. Res.-Atmos.,
108, 8171, https://doi.org/10.1029/2002JD002559, 2003. a
Krauß, L., Zens, J., Zeeden, C., Schulte, P., Eckmeier, E., and Lehmkuhl, F.:
A Multi-Proxy Analysis of two Loess-Paleosol Sequences in the
Northern Harz Foreland, Germany, Palaeogeogr.
Palaeocl., 461, 401–417,
https://doi.org/10.1016/j.palaeo.2016.09.001, 2016. a, b, c
Krinner, G., Mangerud, J., Jakobsson, M., Crucifix, M., Ritz, C., and Svendsen,
J. I.: Enhanced ice sheet growth in Eurasia owing to adjacent ice-dammed
lakes, Nature, 427, 429–432,
https://doi.org/10.1038/nature02233, 2004. a
Kukla, G.: Pleistocene land-sea correlations I. Europe, Earth-Sci.
Rev., 13, 307–374,
https://doi.org/10.1016/0012-8252(77)90125-8, 1977. a
Kumar, R., Barth, M. C., Pfister, G. G., Naja, M., and Brasseur, G. P.: WRF-Chem simulations of a typical pre-monsoon dust storm in northern India: influences on aerosol optical properties and radiation budget, Atmos. Chem. Phys., 14, 2431–2446, https://doi.org/10.5194/acp-14-2431-2014, 2014. a
Laîné, A., Kageyama, M., Salas-Mélia, D., Voldoire, A., Rivière, G.,
Ramstein, G., Planton, S., Tyteca, S., and Peterschmitt, J. Y.: Northern
hemisphere storm tracks during the last glacial maximum in the PMIP2
ocean-atmosphere coupled models: energetic study, seasonal cycle,
precipitation, Clim. Dynam., 32, 593–614,
https://doi.org/10.1007/s00382-008-0391-9, 2009. a
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M.: Sea level
and global ice volumes from the Last Glacial Maximum to the Holocene,
P. Natl. Acad. Sci. USA, 111, 15296–15303,
https://doi.org/10.1073/pnas.1411762111, 2014. a
Little, E. C., Lian, O. B., Velichko, A., Morozova, T., Nechaev, V., Dlussky,
K., and Rutter, N.: Quaternary stratigraphy and optical dating of loess
from the east European Plain (Russia), Quaternary Sci. Rev., 21,
1745–1762, https://doi.org/10.1016/s0277-3791(01)00151-2, 2002. a
Ludwig, P., Pinto, J. G., Raible, C. C., and Shao, Y.: Impacts of Surface
Boundary Conditions on Regional Climate Model Simulations of
European Climate during the Last Glacial Maximum, Geophys. Res. Lett., 44, 5086–5095, https://doi.org/10.1002/2017GL073622,
2017. a, b
Ludwig, P., Gómez-Navarro, J. J., Pinto, J. G., Raible, C. C., Wagner, S., and
Zorita, E.: Perspectives of regional paleoclimate modeling, Ann. NY Acad.
Sci., 1436, 54–69, https://doi.org/10.1111/nyas.13865,
2019. a
Luetscher, M., Boch, R., Sodemann, H., Spötl, C., Cheng, H., Edwards,
R. L., Frisia, S., Hof, F., and Müller, W.: North Atlantic storm
track changes during the Last Glacial Maximum recorded by Alpine
speleothems, Nat. Commun., 6, 6344, https://doi.org/10.1038/ncomms7344, 2015. a, b, c, d
Mahowald, N. M., Muhs, D. R., Levis, S., Rasch, P. J., Yoshioka, M., Zender,
C. S., and Luo, C.: Change in atmospheric mineral aerosols in response to
climate: Last glacial period, preindustrial, modern, and doubled carbon
dioxide climates, J. Geophys. Res.-Atmos., 111, D10202, https://doi.org/10.1029/2005JD006653, 2006. a, b, c
Monnin, E., Indermühle, A., Dällenbach, A., Flückiger, J.,
Stauffer, B., Stocker, T. F., Raynaud, D., and Barnola, J.-M.: Atmospheric
CO2 Concentrations over the Last Glacial Termination, Science, 291,
112–114,
2001. a
Peyron, O., Guiot, J., Cheddadi, R., Tarasov, P., Reille, M., de Beaulieu,
J.-L., Bottema, S., and Andrieu, V.: Climatic Reconstruction in Europe
for 18,000 YR B.P. from Pollen Data, Quaternary Res., 49,
183–196, https://doi.org/10.1006/qres.1997.1961, 1998. a
Prentice, I. C. and Harrison, S. P.: Ecosystem effects of CO2 concentration: evidence from past climates, Clim. Past, 5, 297–307, https://doi.org/10.5194/cp-5-297-2009, 2009. a
Reyers, M., Pinto, J. G., and Moemken, J.: Statistical-dynamical downscaling
for wind energy potentials: evaluation and applications to decadal hindcasts
and climate change projections, Int. J. Climatol., 35,
229–244, https://doi.org/10.1002/joc.3975,
2014. a, b
Rizza, U., Anabor, V., Mangia, C., Miglietta, M. M., Degrazia, G. A., and
Passerini, G.: WRF-Chem simulation of a saharan dust outbreak over the
mediterranean regions., Ciência e Natura, 38, 330–336, 2016. a
Römer, W., Lehmkuhl, F., and Sirocko, F.: Late Pleistocene aeolian dust
provenances and wind direction changes reconstructed by heavy mineral
analysis of the sediments of the Dehner dry maar (Eifel, Germany),
Global Planet. Change, 147, 25–39,
https://doi.org/10.1016/j.gloplacha.2016.10.012, 2016. a, b, c
Shao, Y.: Simplification of a dust emission scheme and comparison with data,
J. Geophys. Res., 109, D10202, https://doi.org/10.1029/2003JD004372, 2004. a, b
Shao, Y., Ishizuka, M., Mikami, M., and Leys, J. F.: Parameterization of
size-resolved dust emission and validation with measurements, J. Geophys. Res.-Atmos., 116, D08203, https://doi.org/10.1029/2010JD014527,
2011a. a
Shao, Y., Wyrwoll, K.-H., Chappell, A., Huang, J., Lin, Z., McTainsh, G. H.,
Mikami, M., Tanaka, T. Y., Wang, X., and Yoon, S.: Dust cycle: An
emerging core theme in Earth system science, Aeolian Res., 2,
181–204, https://doi.org/10.1016/j.aeolia.2011.02.001,
2011b. a
Shao, Y., Anhäuser, A., Ludwig, P., Schlüter, P., and Williams, E.:
Statistical reconstruction of global vegetation for the last glacial
maximum, Global Planet. Change, 168, 67–77,
2018. a
Sima, A., Rousseau, D.-D., Kageyama, M., Ramstein, G., Schulz, M., Balkanski,
Y., Antoine, P., Dulac, F., and Hatté, C.: Imprint of North-Atlantic
abrupt climate changes on western European loess deposits as viewed in a
dust emission model, Quaternary Sci. Rev., 28, 2851–2866,
https://doi.org/10.1016/j.quascirev.2009.07.016, 2009. a, b
Sima, A., Kageyama, M., Rousseau, D.-D., Ramstein, G., Balkanski, Y., Antoine, P., and Hatté, C.: Modeling dust emission response to North Atlantic millennial-scale climate variations from the perspective of East European MIS 3 loess deposits, Clim. Past, 9, 1385–1402, https://doi.org/10.5194/cp-9-1385-2013, 2013. a, b, c, d, e
Singhvi, A., Bluszcz, A., Bateman, M., and Rao, M.: Luminescence dating of
loess-palaeosol sequences and coversands: methodological aspects and
palaeoclimatic implications, Earth-Sci. Rev., 54, 193–211,
https://doi.org/10.1016/S0012-8252(01)00048-4, 2001. a, b
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S.,
Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I.,
Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and
Roeckner, E.: Atmospheric component of the MPI-M Earth System
Model: ECHAM6, J. Adv. Model. Earth Sy., 5, 146–172,
https://doi.org/10.1002/jame.20015, 2013. a
Su, L. and Fung, J. C. H.: Sensitivities of WRF-Chem to dust emission
schemes and land surface properties in simulating dust cycles during
springtime over East Asia, J. Geophys. Res.-Atmos., 120,
11, 11215–11230, https://doi.org/10.1002/2015JD023446, 2015. a
Sudarchikova, N., Mikolajewicz, U., Timmreck, C., O'Donnell, D., Schurgers, G., Sein, D., and Zhang, K.: Modelling of mineral dust for interglacial and glacial climate conditions with a focus on Antarctica, Clim. Past, 11, 765–779, https://doi.org/10.5194/cp-11-765-2015, 2015. a, b
Ugan, A. and Byers, D.: Geographic and temporal trends in proboscidean and
human radiocarbon histories during the late Pleistocene, Quaternary Sci.
Rev., 26, 3058–3080,
https://doi.org/10.1016/j.quascirev.2007.06.024, 2007. a, b, c
Újvári, G., Kovács, J., Varga, G., Raucsik, B., and Marković, S. B.:
Dust flux estimates for the Last Glacial Period in East Central
Europe based on terrestrial records of loess deposits: a review, Quaternary Sci. Rev., 29, 3157–3166,
https://doi.org/10.1016/j.quascirev.2010.07.005, 2010. a, b, c, d, e
Újvári, G., Varga, A., Ramos, F. C., Kovács, J., Németh, T., and
Stevens, T.: Evaluating the use of clay mineralogy, Sr–Nd isotopes
and zircon U–Pb ages in tracking dust provenance: An example from
loess of the Carpathian Basin, Chem. Geol., 304–305, 83–96,
https://doi.org/10.1016/j.chemgeo.2012.02.007, 2012. a
Újvári, G., Stevens, T., Molnár, M., Demény, A., Lambert, F.,
Varga, G., Jull, A. T., Páll-Gergely, B., Buylaert, J.-P., and
Kovács, J.: Coupled European and Greenland last glacial dust
activity driven by North Atlantic climate, P. Natl.
Acad. Sci. USA, 114, E10632–E10638, https://doi.org/10.1073/pnas.1712651114,
2017. a, b, c, d
Varga, G., Kovács, J., and Újvári, G.: Late Pleistocene variations of
the background aeolian dust concentration in the Carpathian Basin: an
estimate using decomposition of grain-size distribution curves of loess
deposits, Netherlands J. Geosci., 91, 159–171,
https://doi.org/10.1017/S0016774600001566, 2012.
a, b
Werner, M.: Seasonal and interannual variability of the mineral dust cycle
under present and glacial climate conditions, J. Geophys. Res.,
107, 4744, https://doi.org/10.1029/2002JD002365, 2002. a, b, c
Wesely, M.: Parameterization of surface resistances to gaseous dry deposition
in regional-scale numerical models, Atmos. Environ., 23,
1293–1304, https://doi.org/10.1016/0004-6981(89)90153-4,
1989. a
Willis, K. and van Andel, T.: Trees or no trees? The environments of
central and eastern Europe during the Last Glaciation, Quaternary Sci. Rev., 23, 2369-2387, https://doi.org/10.1016/j.quascirev.2004.06.002,
2004. a
Yokoyama, Y., Lambeck, K., De Deckker, P., Johnson, P., and Fifield, K.:
Timing for the maximum of the Last Glacial constrained by lowest
sea-level observations, Nature, 406, 713–716, 2000. a
Zhao, C., Liu, X., Ruby Leung, L., and Hagos, S.: Radiative impact of mineral dust on monsoon precipitation variability over West Africa, Atmos. Chem. Phys., 11, 1879–1893, https://doi.org/10.5194/acp-11-1879-2011, 2011. a
Zhao, C., Liu, X., and Leung, L. R.: Impact of the Desert dust on the summer monsoon system over Southwestern North America, Atmos. Chem. Phys., 12, 3717–3731, https://doi.org/10.5194/acp-12-3717-2012, 2012. a
Short summary
This study presents a model-based reconstruction of the mineral dust cycle on the regional scale for Europe during the LGM. It establishes a link between the loess distribution in Europe and the prevailing winds during the LGM. In addition to the cyclonic wind regimes, it is the first to reveal the importance of the northeasters and easterlies for dust emission and transport. It shows that a regional weather research and forecasting model can more realistically simulate the LGM dust cycle.
This study presents a model-based reconstruction of the mineral dust cycle on the regional scale...
Altmetrics
Final-revised paper
Preprint