Birkel, U., Gerold, G., and Niemeyer, J.: Abiotic reactions of organics on
clay mineral surfaces, in: Developments in Soil Science, edited by:
Violante, A., Huang, P. M., Bollag, J.-M., and Gianfreda, L., Elsevier, Amsterdam, the Netherlands, 437–447, 2002.
Bogler, S. and Borduas-Dedekind, N.: Lignin's ability to nucleate ice via immersion freezing and its stability towards physicochemical treatments and atmospheric processing, ETH Zurich, https://doi.org/10.3929/ethz-b-000422111, 2020.
Borduas-Dedekind, N., Ossola, R., David, R. O., Boynton, L. S., Weichlinger, V., Kanji, Z. A., and McNeill, K.: Photomineralization mechanism changes the ability of dissolved organic matter to activate cloud droplets and to nucleate ice crystals, Atmos. Chem. Phys., 19, 12397–12412, https://doi.org/10.5194/acp-19-12397-2019, 2019.
Brennan, K. P., David, R. O., and Borduas-Dedekind, N.: Spatial and temporal variability in the ice-nucleating ability of alpine snowmelt and extension to frozen cloud fraction, Atmos. Chem. Phys., 20, 163–180, https://doi.org/10.5194/acp-20-163-2020, 2020.
Cascajo-Castresana, M., David, R. O., Iriarte-Alonso, M. A., Bittner, A. M., and Marcolli, C.: Protein aggregates nucleate ice: the example of apoferritin, Atmos. Chem. Phys., 20, 3291–3315, https://doi.org/10.5194/acp-20-3291-2020, 2020.
Chandra, M. R. G. S. and Madakka, M.: Comparative Biochemistry
and Kinetics of Microbial Lignocellulolytic Enzymes, in: Recent Developments
in Applied Microbiology and Biochemistry, edited by: Buddolla, V., Academic Press, London, UK, 147–159, 2019.
Chung, H. and Washburn, N. R.: Extraction and Types of Lignin, in: Lignin in
Polymer Composites, edited by: Faruk, O. and Sain, M., Elsevier, Oxford, UK, 13–25, 2016.
Conen, F., Morris, C. E., Leifeld, J., Yakutin, M. V., and Alewell, C.: Biological residues define the ice nucleation properties of soil dust, Atmos. Chem. Phys., 11, 9643–9648, https://doi.org/10.5194/acp-11-9643-2011, 2011.
Faraji, M., Fonseca, L. L., Escamilla-Treviño, L., Barros-Rios, J.,
Engle, N., Yang, Z. K., Tschaplinski, T. J., Dixon, R. A., and Voit, E. O.:
Mathematical models of lignin biosynthesis, Biotechnol. Biofuels,
11, 34, https://doi.org/10.1186/s13068-018-1028-9, 2018.
Giummarella, N., Lindén, P. A., Areskogh, D., and Lawoko, M.: Fractional
Profiling of Kraft Lignin Structure: Unravelling Insights on Lignin Reaction
Mechanisms, ACS Sustainable Chem. Eng., 8, 1112–1120,
https://doi.org/10.1021/acssuschemeng.9b06027, 2020.
Gute, E. and Abbatt, J. P.: Oxidative processing lowers the ice nucleation
activity of Birch and Alder pollen, Geophys. Res. Lett., 45,
1647–1653, https://doi.org/10.1002/2017GL076357, 2018.
Hill, T. C. J., DeMott, P. J., Tobo, Y., Fröhlich-Nowoisky, J., Moffett, B. F., Franc, G. D., and Kreidenweis, S. M.: Sources of organic ice nucleating particles in soils, Atmos. Chem. Phys., 16, 7195–7211, https://doi.org/10.5194/acp-16-7195-2016, 2016.
Hoose, C. and Möhler, O.: Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments, Atmos. Chem. Phys., 12, 9817–9854, https://doi.org/10.5194/acp-12-9817-2012, 2012.
Huang, J., Fu, S., and Gan, L. (Eds.): Structure and Characteristics of Lignin, in: Lignin Chemistry and Applications, Elsevier, Amsterdam, the Netherlands, 25–50, 2019.
Irish, V. E., Elizondo, P., Chen, J., Chou, C., Charette, J., Lizotte, M., Ladino, L. A., Wilson, T. W., Gosselin, M., Murray, B. J., Polishchuk, E., Abbatt, J. P. D., Miller, L. A., and Bertram, A. K.: Ice-nucleating particles in Canadian Arctic sea-surface microlayer and bulk seawater, Atmos. Chem. Phys., 17, 10583–10595, https://doi.org/10.5194/acp-17-10583-2017, 2017.
Kanji, Z. A., Ladino, L. A., Wex, H., Boose, Y., Burkert-Kohn, M., Cziczo,
D. J., and Krämer, M.: Overview of Ice Nucleating Particles,
Meteorological Monographs, 58, 11133,
https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1, 2017.
Kim, J.-Y., Hwang, H., Oh, S., Kim, Y.-S., Kim, U.-J., and Choi, J. W.:
Investigation of structural modification and thermal characteristics of
lignin after heat treatment, Int.J. Biol. Macromol., 66, 57–65, 2014a.
Kim, J.-Y., Hwang, H., Park, J., Oh, S., and Choi, J. W.: Predicting
structural change of lignin macromolecules before and after heat treatment
using the pyrolysis-GC/MS technique, J. Anal. Appl. Pyrol., 110, 305–312, 2014b.
Knackstedt, K. A., Moffett, B. F., Hartmann, S., Wex, H., Hill, T. C. J.,
Glasgo, E. D., Reitz, L. A., Augustin-Bauditz, S., Beall, B. F. N.,
Bullerjahn, G. S., Fröhlich-Nowoisky, J., Grawe, S., Lubitz, J.,
Stratmann, F., and McKay, R. M. L.: Terrestrial Origin for Abundant Riverine
Nanoscale Ice-Nucleating Particles, Environ. Sci. Technol., 52,
12358–12367, https://doi.org/10.1021/acs.est.8b03881, 2018.
Knopf, D. A., Alpert, P. A., and Wang, B.: The Role of Organic Aerosol in
Atmospheric Ice Nucleation: A Review, ACS Earth Space Chem., 2, 168–202,
https://doi.org/10.1021/acsearthspacechem.7b00120, 2018.
Korolev, A. and Field, P. R.: The Effect of Dynamics on Mixed-Phase Clouds:
Theoretical Considerations, J. Atmos. Sci., 65, 66–86,
https://doi.org/10.1175/2007JAS2355.1, 2008.
Kunert, A. T., Pöhlker, M. L., Tang, K., Krevert, C. S., Wieder, C., Speth, K. R., Hanson, L. E., Morris, C. E., Schmale III, D. G., Pöschl, U., and Fröhlich-Nowoisky, J.: Macromolecular fungal ice nuclei in
Fusarium: effects of physical and chemical processing, Biogeosciences, 16, 4647–4659, https://doi.org/10.5194/bg-16-4647-2019, 2019.
Laszakovits, J. R., Berg, S. M., Anderson, B. G., O'Brien, J. E., Wammer, K.
H., and Sharpless, C. M.: p-Nitroanisole/pyridine and
p-nitroacetophenone/pyridine actinometers revisited: Quantum yield in
comparison to ferrioxalate, Environ. Sci. Tech. Lett.,
4, 11–14, https://doi.org/10.1021/acs.estlett.6b00422, 2016.
McCluskey, C. S., DeMott, P. J., Prenni, A. J., Levin, E. J. T., McMeeking,
G. R., Sullivan, A. P., Hill, T. C. J., Nakao, S., Carrico, C. M., and
Kreidenweis, S. M.: Characteristics of atmospheric ice nucleating particles
associated with biomass burning in the US: Prescribed burns and wildfires:
Biomass burning ice nucleating particles, J. Geophys. Res.-Atmos., 119,
10458–10470, https://doi.org/10.1002/2014JD021980, 2014.
Mikutta, R., Kleber, M., Kaiser, K., and Jahn, R.: Review: Organic Matter
Removal from Soils using Hydrogen Peroxide, Sodium Hypochlorite, and
Disodium Peroxodisulfate, Soil Sci. Soc. Am. J., 69,
120–135, https://doi.org/10.2136/sssaj2005.0120, 2005.
Miljevic, B., Hedayat, F., Stevanovic, S., Fairfull-Smith, K. E., Bottle, S.
E., and Ristovski, Z. D.: To Sonicate or Not to Sonicate PM Filters: Reactive
Oxygen Species Generation Upon Ultrasonic Irradiation, Aerosol Sci. Tech., 48, 1276–1284,
https://doi.org/10.1080/02786826.2014.981330, 2014.
Miller, A. J., Brennan, K. P., Mignani, C., Wieder, J., David, R. O., and Borduas-Dedekind, N.: Development of the drop Freezing Ice Nuclei Counter (FINC), intercomparison of droplet freezing techniques, and use of soluble lignin as an atmospheric ice nucleation standard, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-414, in review, 2020.
Moffett, B. F., Hill, T. C., and DeMott, P. J.: Abundance of biological ice
nucleating particles in the Mississippi and its major tributaries,
Atmosphere, 9, 307, https://doi.org/10.3390/atmos9080307, 2018.
Mülmenstädt, J., Sourdeval, O., Delanoë, J., and Quaas, J.:
Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds
derived from A-Train satellite retrievals, Geophys. Res. Lett.,
42, 6502–6509, https://doi.org/10.1002/2015GL064604, 2015.
Myers-Pigg, A. N., Griffin, R. J., Louchouarn, P., Norwood, M. J., Sterne,
A., and Cevik, B. K.: Signatures of Biomass Burning Aerosols in the Plume of
a Saltmarsh Wildfire in South Texas, Environ. Sci. Technol., 50,
9308–9314, https://doi.org/10.1021/acs.est.6b02132, 2016.
Norgren, M. and Edlund, H.: Stabilisation of kraft lignin solutions by
surfactant additions, Colloid. Surfaces A, 194, 239–248,
https://doi.org/10.1016/S0927-7757(01)00806-8, 2001.
Norgren, M., Edlund, H., Wågberg, L., Lindström, B.,
and Annergren, G.: Aggregation of kraft lignin derivatives under conditions
relevant to the process, part I: phase behaviour, Colloid. Surfaces A., 194, 85–96, 2001.
Olson, N. E., May, N. W., Kirpes, R. M., Watson, A. E., Hajny, K. D., Slade,
J. H., Shepson, P. B., Stirm, B. H., Pratt, K. A., and Ault, A. P.: Lake
Spray Aerosol Incorporated into Great Lakes Clouds, ACS Earth Space Chem.,
3, 2765–2774, https://doi.org/10.1021/acsearthspacechem.9b00258,
2019.
Paramonov, M., David, R. O., Kretzschmar, R., and Kanji, Z. A.: A laboratory investigation of the ice nucleation efficiency of three types of mineral and soil dust, Atmos. Chem. Phys., 18, 16515–16536, https://doi.org/10.5194/acp-18-16515-2018, 2018.
Perkins, R. J., Gillette, S. M., Hill, T. C. J., and DeMott, P. J.: The
Labile Nature of Ice Nucleation by Arizona Test Dust, ACS Earth Space Chem.,
4, 133–141, https://doi.org/10.1021/acsearthspacechem.9b00304, 2020.
Pfrang, C., Rastogi, K., Cabrera-Martinez, E. R., Seddon, A. M., Dicko, C.,
Labrador, A., Plivelic, T. S., Cowieson, N., and Squires, A. M.: Complex
three-dimensional self-assembly in proxies for atmospheric aerosols, Nat.
Commun., 8, 1724, https://doi.org/10.1038/s41467-017-01918-1, 2017.
Pratt, K. A., DeMott, P. J., French, J. R., Wang, Z., Westphal, D. L.,
Heymsfield, A. J., Twohy, C. H., Prenni, A. J., and Prather, K. A.: In situ
detection of biological particles in cloud ice-crystals, Nature Geosci.,
2, 398–401, https://doi.org/10.1038/ngeo521, 2009.
Prenni, A. J., DeMott, P. J., Sullivan, A. P., Sullivan, R. C., Kreidenweis,
S. M., and Rogers, D. C.: Biomass burning as a potential source for
atmospheric ice nuclei: Western wildfires and prescribed burns: BIOMASS
BURNING AS A POTENTIAL IN SOURCE, Geophys. Res. Lett., 39, L11805, https://doi.org/10.1029/2012GL051915, 2012.
Pummer, B. G., Budke, C., Augustin-Bauditz, S., Niedermeier, D., Felgitsch, L., Kampf, C. J., Huber, R. G., Liedl, K. R., Loerting, T., Moschen, T., Schauperl, M., Tollinger, M., Morris, C. E., Wex, H., Grothe, H., Pöschl, U., Koop, T., and Fröhlich-Nowoisky, J.: Ice nucleation by water-soluble macromolecules, Atmos. Chem. Phys., 15, 4077–4091, https://doi.org/10.5194/acp-15-4077-2015, 2015.
Puxbaum, H. and Tenze-Kunit, M.: Size distribution and seasonal variation of
atmospheric cellulose, Atmos. Environ., 37, 3693–3699,
https://doi.org/10.1016/S1352-2310(03)00451-5, 2003.
Qiu, Y., Hudait, A., and Molinero, V.: How Size and Aggregation of
Ice-Binding Proteins Control Their Ice Nucleation Efficiency, J. Am. Chem.
Soc., 141, 7439–7452, https://doi.org/10.1021/jacs.9b01854, 2019.
Ralph, J., Lapierre, C., and Boerjan, W.: Lignin structure and its
engineering, Curr. Opin. Biotech., 56, 240–249,
https://doi.org/10.1016/j.copbio.2019.02.019, 2019.
Sánchez-Ochoa, A., Kasper-Giebl, A., Puxbaum, H., Gelencser, A.,
Legrand, M., and Pio, C.: Concentration of atmospheric cellulose: A proxy for
plant debris across a west-east transect over Europe, J. Geophys. Res.,
112, D23S08, https://doi.org/10.1029/2006JD008180, 2007.
Shakya, K. M., Louchouarn, P., and Griffin, R. J.: Lignin-Derived Phenols in
Houston Aerosols: Implications for Natural Background Sources, Environ. Sci.
Technol., 45, 8268–8275, https://doi.org/10.1021/es201668y, 2011.
Simoneit, B. R. T.: Biomass burning – a review of organic tracers for
smoke from incomplete combustion, Appl. Geochem., 17, 129–162,
https://doi.org/10.1016/S0883-2927(01)00061-0, 2002.
Slade, J. H., VanReken, T. M., Mwaniki, G. R., Bertman, S., Stirm, B., and
Shepson, P. B.: Aerosol production from the surface of the Great Lakes:
GREAT LAKES AEROSOL PRODUCTION, Geophys. Res. Lett., 37, L18807, https://doi.org/10.1029/2010GL043852, 2010.
Stark, N. M., Yelle, D. J., and Agarwal, U. P.: Techniques for Characterizing
Lignin, in: Lignin in Polymer Composites, edited by: Faruk, O. and Sain, M., Elsevier, Oxford, UK, 49–66, 2016.
Stefenelli, G., Jiang, J., Bertrand, A., Bruns, E. A., Pieber, S. M., Baltensperger, U., Marchand, N., Aksoyoglu, S., Prévôt, A. S. H., Slowik, J. G., and El Haddad, I.: Secondary organic aerosol formation from smoldering and flaming combustion of biomass: a box model parametrization based on volatility basis set, Atmos. Chem. Phys., 19, 11461–11484, https://doi.org/10.5194/acp-19-11461-2019, 2019.
Steinke, I., Hiranuma, N., Funk, R., Höhler, K., Tüllmann, N., Umo, N. S., Weidler, P. G., Möhler, O., and Leisner, T.: Complex plant-derived organic aerosol as ice-nucleating particles – more than the sums of their parts?, Atmos. Chem. Phys., 20, 11387–11397, https://doi.org/10.5194/acp-20-11387-2020, 2020.
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.: Climate
change 2013: The physical science basis, Cambridge University Press
Cambridge, UK, 2013.
Storelvmo, T., Hoose, C., and Eriksson, P.: Global modeling of mixed-phase
clouds: The albedo and lifetime effects of aerosols, J. Geophys. Res.,
116, D05207, https://doi.org/10.1029/2010JD014724, 2011.
Suski, K. J., Hill, T. C. J., Levin, E. J. T., Miller, A., DeMott, P. J., and Kreidenweis, S. M.: Agricultural harvesting emissions of ice-nucleating particles, Atmos. Chem. Phys., 18, 13755–13771, https://doi.org/10.5194/acp-18-13755-2018, 2018.
Tiwari, S. and Agrawal, M.: Ozone Concentrations in Troposphere: Historical
and Current Perspectives, in: Tropospheric
Ozone and its Impacts on Crop Plants: A Threat to Future Global Food
Security, edited by: Tiwari, S. and Agrawal, M., Springer, Cham, Switzerland, 1–29, https://doi.org/10.1007/978-3-319-71873-6_1, 2018.
Tobo, Y., DeMott, P. J., Hill, T. C. J., Prenni, A. J., Swoboda-Colberg, N. G., Franc, G. D., and Kreidenweis, S. M.: Organic matter matters for ice nuclei of agricultural soil origin, Atmos. Chem. Phys., 14, 8521–8531, https://doi.org/10.5194/acp-14-8521-2014, 2014.
Vaghjiani, G. L. and Ravishankara, A. R.: Absorption cross sections of
CH
3OOH, H
2O
2, and D
2O
2 vapors between 210 and 365 nm at 297 K, J. Geophys. Res.-Atmos., 94, 3487–3492,
https://doi.org/10.1029/JD094iD03p03487, 1989.
Vainio, U., Maximova, N., Hortling, B., Laine, J., Stenius, P., Simola, L.
K., Gravitis, J., and Serimaa, R.: Morphology of Dry Lignins and Size and
Shape of Dissolved Kraft Lignin Particles by X-ray Scattering, Langmuir,
20, 9736–9744, https://doi.org/10.1021/la048407v, 2004.
Vali, G.: Quantitative evaluation of experimental results an the
heterogeneous freezing nucleation of supercooled liquids, J. Atmos. Sci., 28, 402–409, 1971.
Vali, G.: Repeatability and randomness in heterogeneous freezing nucleation, Atmos. Chem. Phys., 8, 5017–5031, https://doi.org/10.5194/acp-8-5017-2008, 2008.
Vali, G.: Revisiting the differential freezing nucleus spectra derived from drop-freezing experiments: methods of calculation, applications, and confidence limits, Atmos. Meas. Tech., 12, 1219–1231, https://doi.org/10.5194/amt-12-1219-2019, 2019.
Vanholme, R., De Meester, B., Ralph, J., and Boerjan, W.: Lignin biosynthesis
and its integration into metabolism, Curr. Opin. Biotech., 56,
230–239, https://doi.org/10.1016/j.copbio.2019.02.018, 2019.
Zark, M. and Dittmar, T.: Universal molecular structures in natural
dissolved organic matter, Nat. Commun., 9, 3178,
https://doi.org/10.1038/s41467-018-05665-9, 2018.