Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Download
Short summary
To study the role of organic matter in ice crystal formation, we investigated the ice nucleation ability of a subcomponent of organic aerosols, the biopolymer lignin, using a droplet-freezing technique. We found that lignin is an ice-active macromolecule with changing abilities based on dilutions. The effects of atmospheric processing and of physicochemical treatments on the ability of lignin solutions to freeze were negligible. Thus, lignin is a recalcitrant ice-nucleating macromolecule.
Altmetrics
Final-revised paper
Preprint
ACP | Articles | Volume 20, issue 23
Atmos. Chem. Phys., 20, 14509–14522, 2020
https://doi.org/10.5194/acp-20-14509-2020
Atmos. Chem. Phys., 20, 14509–14522, 2020
https://doi.org/10.5194/acp-20-14509-2020

Research article 30 Nov 2020

Research article | 30 Nov 2020

Lignin's ability to nucleate ice via immersion freezing and its stability towards physicochemical treatments and atmospheric processing

Sophie Bogler and Nadine Borduas-Dedekind

Viewed

Total article views: 689 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
495 180 14 689 56 14 17
  • HTML: 495
  • PDF: 180
  • XML: 14
  • Total: 689
  • Supplement: 56
  • BibTeX: 14
  • EndNote: 17
Views and downloads (calculated since 25 Jun 2020)
Cumulative views and downloads (calculated since 25 Jun 2020)

Viewed (geographical distribution)

Total article views: 623 (including HTML, PDF, and XML) Thereof 608 with geography defined and 15 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 18 Jan 2021
Publications Copernicus
Download
Short summary
To study the role of organic matter in ice crystal formation, we investigated the ice nucleation ability of a subcomponent of organic aerosols, the biopolymer lignin, using a droplet-freezing technique. We found that lignin is an ice-active macromolecule with changing abilities based on dilutions. The effects of atmospheric processing and of physicochemical treatments on the ability of lignin solutions to freeze were negligible. Thus, lignin is a recalcitrant ice-nucleating macromolecule.
Citation
Altmetrics
Final-revised paper
Preprint