Articles | Volume 19, issue 3
Atmos. Chem. Phys., 19, 1439–1453, 2019
https://doi.org/10.5194/acp-19-1439-2019
Atmos. Chem. Phys., 19, 1439–1453, 2019
https://doi.org/10.5194/acp-19-1439-2019
Research article
04 Feb 2019
Research article | 04 Feb 2019

Response of early winter haze in the North China Plain to autumn Beaufort sea ice

Zhicong Yin et al.

Related authors

Evident PM2.5 drops in the east of China due to the COVID-19 quarantine measures in February
Zhicong Yin, Yijia Zhang, Huijun Wang, and Yuyan Li
Atmos. Chem. Phys., 21, 1581–1592, https://doi.org/10.5194/acp-21-1581-2021,https://doi.org/10.5194/acp-21-1581-2021, 2021
Short summary
Roles of climate variability on the rapid increases of early winter haze pollution in North China after 2010
Yijia Zhang, Zhicong Yin, and Huijun Wang
Atmos. Chem. Phys., 20, 12211–12221, https://doi.org/10.5194/acp-20-12211-2020,https://doi.org/10.5194/acp-20-12211-2020, 2020
Short summary
Dominant patterns of summer ozone pollution in eastern China and associated atmospheric circulations
Zhicong Yin, Bufan Cao, and Huijun Wang
Atmos. Chem. Phys., 19, 13933–13943, https://doi.org/10.5194/acp-19-13933-2019,https://doi.org/10.5194/acp-19-13933-2019, 2019
Short summary
The relationship between anticyclonic anomalies in northeastern Asia and severe haze in the Beijing–Tianjin–Hebei region
Wogu Zhong, Zhicong Yin, and Huijun Wang
Atmos. Chem. Phys., 19, 5941–5957, https://doi.org/10.5194/acp-19-5941-2019,https://doi.org/10.5194/acp-19-5941-2019, 2019
Short summary
Links of climate variability in Arctic sea ice, Eurasian teleconnection pattern and summer surface ozone pollution in North China
Zhicong Yin, Huijun Wang, Yuyan Li, Xiaohui Ma, and Xinyu Zhang
Atmos. Chem. Phys., 19, 3857–3871, https://doi.org/10.5194/acp-19-3857-2019,https://doi.org/10.5194/acp-19-3857-2019, 2019
Short summary

Related subject area

Subject: Dynamics | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Impact of turbulence on aeolian particle entrainment: results from wind-tunnel experiments
Jie Zhang, Guang Li, Li Shi, Ning Huang, and Yaping Shao
Atmos. Chem. Phys., 22, 9525–9535, https://doi.org/10.5194/acp-22-9525-2022,https://doi.org/10.5194/acp-22-9525-2022, 2022
Short summary
Linkages between the atmospheric transmission originating from the North Atlantic Oscillation and persistent winter haze over Beijing
Muyuan Li, Yao Yao, Ian Simmonds, Dehai Luo, Linhao Zhong, and Lin Pei
Atmos. Chem. Phys., 21, 18573–18588, https://doi.org/10.5194/acp-21-18573-2021,https://doi.org/10.5194/acp-21-18573-2021, 2021
Short summary
Comparison of the influence of two types of cold surge on haze dispersion in eastern China
Shiyue Zhang, Gang Zeng, Xiaoye Yang, Ruixi Wu, and Zhicong Yin
Atmos. Chem. Phys., 21, 15185–15197, https://doi.org/10.5194/acp-21-15185-2021,https://doi.org/10.5194/acp-21-15185-2021, 2021
Short summary
Water vapor anomaly over the tropical western Pacific in El Niño winters from radiosonde and satellite observations and ERA5 reanalysis data
Minkang Du, Kaiming Huang, Shaodong Zhang, Chunming Huang, Yun Gong, and Fan Yi
Atmos. Chem. Phys., 21, 13553–13569, https://doi.org/10.5194/acp-21-13553-2021,https://doi.org/10.5194/acp-21-13553-2021, 2021
Short summary
Characteristics of the summer atmospheric boundary layer height over the Tibetan Plateau and influential factors
Junhui Che and Ping Zhao
Atmos. Chem. Phys., 21, 5253–5268, https://doi.org/10.5194/acp-21-5253-2021,https://doi.org/10.5194/acp-21-5253-2021, 2021
Short summary

Cited articles

Cai, W. J., Li, K., Liao, H., Wang, H. J., and Wu, L. X.: Weather Conditions Conducive to Beijing Severe Haze More Frequent under Climate Change, Nat. Clim. Change, 7, 257–262, https://doi.org/10.1038/nclimate3249, 2017. 
Chen, H. P. and Wang, H. J.: Haze Days in North China and the associated atmospheric circulations based on daily visibility data from 1960 to 2012, J. Geophys. Res., 120, 5895–5909, https://doi.org/10.1002/2015JD023225, 2015. 
Chen, H., Wang, H., Sun, J., Xu, Y., and Yin, Z.: Anthropogenic fine particulate matter pollution will be exacerbated in eastern China due to 21st century GHG warming, Atmos. Chem. Phys., 19, 233–243, https://doi.org/10.5194/acp-19-233-2019, 2019. 
CMA: Ground observations, available at: http://data.cma.cn/, last access: 3 April 2018. 
Cohen, J. L., Furtado, J. C., Barlow, M. A., Alexeev, V. A., and Cherry, J. E.: Arctic warming, increasing snow cover and widespread boreal winter cooling, Environ. Res. Lett., 7, 014007, https://doi.org/10.1088/1748-9326/7/1/014007, 2012. 
Download
Short summary
Recently, haze pollution in the North China has been serious and disastrous. The preceding heavy autumn sea ice intensified the early winter haze pollution over North China. The results provide possibilities for the seasonal to interannual prediction of haze pollution that helps to determine whether extra stringent emission control measures are needed to counteract the effect of climate variability.
Altmetrics
Final-revised paper
Preprint