Articles | Volume 19, issue 20
https://doi.org/10.5194/acp-19-13267-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-13267-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Prior biosphere model impact on global terrestrial CO2 fluxes estimated from OCO-2 retrievals
Sajeev Philip
CORRESPONDING AUTHOR
NASA Ames Research Center, Moffett Field, CA 94035, USA
NASA Postdoctoral Program administered by Universities Space Research
Association, Columbia, MD 21046, USA
now at: NASA Academic Mission Services by Universities Space
Research Association, Mountain View, CA 94043, USA
Matthew S. Johnson
CORRESPONDING AUTHOR
NASA Ames Research Center, Moffett Field, CA 94035, USA
Christopher Potter
NASA Ames Research Center, Moffett Field, CA 94035, USA
Vanessa Genovesse
School of Natural Sciences, California State University, Monterey Bay, CA 93955, USA
NASA Ames Research Center, Moffett Field, CA 94035, USA
David F. Baker
NOAA Earth System Research Laboratory, Global Monitoring Division,
Boulder, CO 80305-3337, USA
Cooperative Institute for Research in the Atmosphere, Colorado State
University, Fort Collins, CO 80521, USA
Katherine D. Haynes
Department of Atmospheric Science, Colorado State University, Fort
Collins, CO 80523, USA
Daven K. Henze
Department of Mechanical Engineering, University of Colorado at
Boulder, Boulder, CO 80309, USA
Junjie Liu
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA 91109, USA
Benjamin Poulter
NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Related authors
Matthew S. Johnson, Sajeev Philip, Scott Meech, Rajesh Kumar, Meytar Sorek-Hamer, Yoichi P. Shiga, and Jia Jung
Atmos. Chem. Phys., 24, 10363–10384, https://doi.org/10.5194/acp-24-10363-2024, https://doi.org/10.5194/acp-24-10363-2024, 2024
Short summary
Short summary
Satellites, like the Ozone Monitoring Instrument (OMI), retrieve proxy species of ozone (O3) formation (formaldehyde and nitrogen dioxide) and the ratios (FNRs) which can define O3 production sensitivity regimes. Here we investigate trends of OMI FNRs from 2005 to 2021, and they have increased in major cities, suggesting a transition from radical- to NOx-limited regimes. OMI also observed the impact of reduced emissions during the 2020 COVID-19 lockdown that resulted in increased FNRs.
Matthew S. Johnson, Amir H. Souri, Sajeev Philip, Rajesh Kumar, Aaron Naeger, Jeffrey Geddes, Laura Judd, Scott Janz, Heesung Chong, and John Sullivan
Atmos. Meas. Tech., 16, 2431–2454, https://doi.org/10.5194/amt-16-2431-2023, https://doi.org/10.5194/amt-16-2431-2023, 2023
Short summary
Short summary
Satellites provide vital information for studying the processes controlling ozone formation. Based on the abundance of particular gases in the atmosphere, ozone formation is sensitive to specific human-induced and natural emission sources. However, errors and biases in satellite retrievals hinder this data source’s application for studying ozone formation sensitivity. We conducted a thorough statistical evaluation of two commonly applied satellites for investigating ozone formation sensitivity.
Brendan Byrne, David F. Baker, Sourish Basu, Michael Bertolacci, Kevin W. Bowman, Dustin Carroll, Abhishek Chatterjee, Frédéric Chevallier, Philippe Ciais, Noel Cressie, David Crisp, Sean Crowell, Feng Deng, Zhu Deng, Nicholas M. Deutscher, Manvendra K. Dubey, Sha Feng, Omaira E. García, David W. T. Griffith, Benedikt Herkommer, Lei Hu, Andrew R. Jacobson, Rajesh Janardanan, Sujong Jeong, Matthew S. Johnson, Dylan B. A. Jones, Rigel Kivi, Junjie Liu, Zhiqiang Liu, Shamil Maksyutov, John B. Miller, Scot M. Miller, Isamu Morino, Justus Notholt, Tomohiro Oda, Christopher W. O'Dell, Young-Suk Oh, Hirofumi Ohyama, Prabir K. Patra, Hélène Peiro, Christof Petri, Sajeev Philip, David F. Pollard, Benjamin Poulter, Marine Remaud, Andrew Schuh, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Colm Sweeney, Yao Té, Hanqin Tian, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, John R. Worden, Debra Wunch, Yuanzhi Yao, Jeongmin Yun, Andrew Zammit-Mangion, and Ning Zeng
Earth Syst. Sci. Data, 15, 963–1004, https://doi.org/10.5194/essd-15-963-2023, https://doi.org/10.5194/essd-15-963-2023, 2023
Short summary
Short summary
Changes in the carbon stocks of terrestrial ecosystems result in emissions and removals of CO2. These can be driven by anthropogenic activities (e.g., deforestation), natural processes (e.g., fires) or in response to rising CO2 (e.g., CO2 fertilization). This paper describes a dataset of CO2 emissions and removals derived from atmospheric CO2 observations. This pilot dataset informs current capabilities and future developments towards top-down monitoring and verification systems.
Amir H. Souri, Matthew S. Johnson, Glenn M. Wolfe, James H. Crawford, Alan Fried, Armin Wisthaler, William H. Brune, Donald R. Blake, Andrew J. Weinheimer, Tijl Verhoelst, Steven Compernolle, Gaia Pinardi, Corinne Vigouroux, Bavo Langerock, Sungyeon Choi, Lok Lamsal, Lei Zhu, Shuai Sun, Ronald C. Cohen, Kyung-Eun Min, Changmin Cho, Sajeev Philip, Xiong Liu, and Kelly Chance
Atmos. Chem. Phys., 23, 1963–1986, https://doi.org/10.5194/acp-23-1963-2023, https://doi.org/10.5194/acp-23-1963-2023, 2023
Short summary
Short summary
We have rigorously characterized different sources of error in satellite-based HCHO / NO2 tropospheric columns, a widely used metric for diagnosing near-surface ozone sensitivity. Specifically, the errors were categorized/quantified into (i) an inherent chemistry error, (ii) the decoupled relationship between columns and the near-surface concentration, (iii) the spatial representativeness error of ground satellite pixels, and (iv) the satellite retrieval errors.
Brendan Byrne, Junjie Liu, Yonghong Yi, Abhishek Chatterjee, Sourish Basu, Rui Cheng, Russell Doughty, Frédéric Chevallier, Kevin W. Bowman, Nicholas C. Parazoo, David Crisp, Xing Li, Jingfeng Xiao, Stephen Sitch, Bertrand Guenet, Feng Deng, Matthew S. Johnson, Sajeev Philip, Patrick C. McGuire, and Charles E. Miller
Biogeosciences, 19, 4779–4799, https://doi.org/10.5194/bg-19-4779-2022, https://doi.org/10.5194/bg-19-4779-2022, 2022
Short summary
Short summary
Plants draw CO2 from the atmosphere during the growing season, while respiration releases CO2 to the atmosphere throughout the year, driving seasonal variations in atmospheric CO2 that can be observed by satellites, such as the Orbiting Carbon Observatory 2 (OCO-2). Using OCO-2 XCO2 data and space-based constraints on plant growth, we show that permafrost-rich northeast Eurasia has a strong seasonal release of CO2 during the autumn, hinting at an unexpectedly large respiration signal from soils.
Hélène Peiro, Sean Crowell, Andrew Schuh, David F. Baker, Chris O'Dell, Andrew R. Jacobson, Frédéric Chevallier, Junjie Liu, Annmarie Eldering, David Crisp, Feng Deng, Brad Weir, Sourish Basu, Matthew S. Johnson, Sajeev Philip, and Ian Baker
Atmos. Chem. Phys., 22, 1097–1130, https://doi.org/10.5194/acp-22-1097-2022, https://doi.org/10.5194/acp-22-1097-2022, 2022
Short summary
Short summary
Satellite CO2 observations are constantly improved. We study an ensemble of different atmospheric models (inversions) from 2015 to 2018 using separate ground-based data or two versions of the OCO-2 satellite. Our study aims to determine if different satellite data corrections can yield different estimates of carbon cycle flux. A difference in the carbon budget between the two versions is found over tropical Africa, which seems to show the impact of corrections applied in satellite data.
Chandra Venkataraman, Michael Brauer, Kushal Tibrewal, Pankaj Sadavarte, Qiao Ma, Aaron Cohen, Sreelekha Chaliyakunnel, Joseph Frostad, Zbigniew Klimont, Randall V. Martin, Dylan B. Millet, Sajeev Philip, Katherine Walker, and Shuxiao Wang
Atmos. Chem. Phys., 18, 8017–8039, https://doi.org/10.5194/acp-18-8017-2018, https://doi.org/10.5194/acp-18-8017-2018, 2018
Shailesh K. Kharol, Chris A. McLinden, Christopher E. Sioris, Mark W. Shephard, Vitali Fioletov, Aaron van Donkelaar, Sajeev Philip, and Randall V. Martin
Atmos. Chem. Phys., 17, 5921–5929, https://doi.org/10.5194/acp-17-5921-2017, https://doi.org/10.5194/acp-17-5921-2017, 2017
Deepangsu Chatterjee, Randall V. Martin, Chi Li, Dandan Zhang, Haihui Zhu, Daven K. Henze, James H. Crawford, Ronald C. Cohen, Lok N. Lamsal, and Alexander M. Cede
Atmos. Chem. Phys., 24, 12687–12706, https://doi.org/10.5194/acp-24-12687-2024, https://doi.org/10.5194/acp-24-12687-2024, 2024
Short summary
Short summary
We investigate the hourly variation of NO2 columns and surface concentrations by applying the GEOS-Chem model to interpret aircraft and ground-based measurements over the US and Pandora sun photometer measurements over the US, Europe, and Asia. Corrections to the Pandora columns and finer model resolution improve the modeled representation of the summertime hourly variation of total NO2 columns to explain the weaker hourly variation in NO2 columns than at the surface.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-519, https://doi.org/10.5194/essd-2024-519, 2024
Preprint under review for ESSD
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Matthew S. Johnson, Sajeev Philip, Scott Meech, Rajesh Kumar, Meytar Sorek-Hamer, Yoichi P. Shiga, and Jia Jung
Atmos. Chem. Phys., 24, 10363–10384, https://doi.org/10.5194/acp-24-10363-2024, https://doi.org/10.5194/acp-24-10363-2024, 2024
Short summary
Short summary
Satellites, like the Ozone Monitoring Instrument (OMI), retrieve proxy species of ozone (O3) formation (formaldehyde and nitrogen dioxide) and the ratios (FNRs) which can define O3 production sensitivity regimes. Here we investigate trends of OMI FNRs from 2005 to 2021, and they have increased in major cities, suggesting a transition from radical- to NOx-limited regimes. OMI also observed the impact of reduced emissions during the 2020 COVID-19 lockdown that resulted in increased FNRs.
Michael Stanley, Mikael Kuusela, Brendan Byrne, and Junjie Liu
Atmos. Chem. Phys., 24, 9419–9433, https://doi.org/10.5194/acp-24-9419-2024, https://doi.org/10.5194/acp-24-9419-2024, 2024
Short summary
Short summary
To serve the uncertainty quantification (UQ) needs of 4D-Var data assimilation (DA) practitioners, we describe and justify a UQ algorithm from carbon flux inversion and incorporate its sampling uncertainty into the final reported UQ. The algorithm is mathematically proved, and its performance is shown for a carbon flux observing system simulation experiment. These results legitimize and generalize this algorithm's current use and make available this effective algorithm to new DA domains.
Matthew S. Johnson, Sofia D. Hamilton, Seongeun Jeong, Yuyan Cui, Dien Wu, Alex Turner, and Marc Fischer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2152, https://doi.org/10.5194/egusphere-2024-2152, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Satellites, such as NASA’s Orbiting Carbon Observatory-2 and -3 (OCO-2/3), retrieve carbon dioxide (CO2) concentrations which provide vital information for estimating surface CO2 emissions. Here we investigate the ability of OCO-2/3 retrievals to constrain CO2 emissions for the state of California for the major emission sectors (i.e., fossil fuels, net ecosystem exchange, wildfire).
Irene C. Dedoussi, Daven K. Henze, Sebastian D. Eastham, Raymond L. Speth, and Steven R. H. Barrett
Geosci. Model Dev., 17, 5689–5703, https://doi.org/10.5194/gmd-17-5689-2024, https://doi.org/10.5194/gmd-17-5689-2024, 2024
Short summary
Short summary
Atmospheric model gradients provide a meaningful tool for better understanding the underlying atmospheric processes. Adjoint modeling enables computationally efficient gradient calculations. We present the adjoint of the GEOS-Chem unified chemistry extension (UCX). With this development, the GEOS-Chem adjoint model can capture stratospheric ozone and other processes jointly with tropospheric processes. We apply it to characterize the Antarctic ozone depletion potential of active halogen species.
Bernhard Lehner, Mira Anand, Etienne Fluet-Chouinard, Florence Tan, Filipe Aires, George H. Allen, Pilippe Bousquet, Josep G. Canadell, Nick Davidson, C. Max Finlayson, Thomas Gumbricht, Lammert Hilarides, Gustaf Hugelius, Robert B. Jackson, Maartje C. Korver, Peter B. McIntyre, Szabolcs Nagy, David Olefeldt, Tamlin M. Pavelsky, Jean-Francois Pekel, Benjamin Poulter, Catherine Prigent, Jida Wang, Thomas A. Worthington, Dai Yamazaki, and Michele Thieme
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-204, https://doi.org/10.5194/essd-2024-204, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
The Global Lakes and Wetlands Database (GLWD) version 2 distinguishes a total of 33 non-overlapping wetland classes, providing a static map of the world’s inland surface waters. It contains cell fractions of wetland extents per class at a grid cell resolution of ~500 m. The total combined extent of all classes including all inland and coastal waterbodies and wetlands of all inundation frequencies—that is, the maximum extent—covers 18.2 million km2, equivalent to 13.4 % of total global land area.
Amir H. Souri, Gonzalo González Abad, Glenn M. Wolfe, Tijl Verhoelst, Corinne Vigouroux, Gaia Pinardi, Steven Compernolle, Bavo Langerock, Bryan N. Duncan, and Matthew S. Johnson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1947, https://doi.org/10.5194/egusphere-2024-1947, 2024
Short summary
Short summary
We establish a simple yet robust relationship between ozone production rates and several geophysical parameters obtained from several intensive atmospheric composition campaigns. We have shown that satellite remote sensing data can effectively constrain these parameters, enabling us to produce the first global maps of ozone production rates with unprecedented resolution.
Zhendong Lu, Jun Wang, Yi Wang, Daven K. Henze, Xi Chen, Tong Sha, and Kang Sun
Atmos. Chem. Phys., 24, 7793–7813, https://doi.org/10.5194/acp-24-7793-2024, https://doi.org/10.5194/acp-24-7793-2024, 2024
Short summary
Short summary
In contrast with past work showing that the reduction of emissions was the dominant factor for the nationwide increase of surface O3 during the lockdown in China, this study finds that the variation in meteorology (temperature and other parameters) plays a more important role. This result is obtained through sensitivity simulations using a chemical transport model constrained by satellite (TROPOMI) data and calibrated with surface observations.
Zhu Deng, Philippe Ciais, Liting Hu, Adrien Martinez, Marielle Saunois, Rona L. Thompson, Kushal Tibrewal, Wouter Peters, Brendan Byrne, Giacomo Grassi, Paul I. Palmer, Ingrid T. Luijkx, Zhu Liu, Junjie Liu, Xuekun Fang, Tengjiao Wang, Hanqin Tian, Katsumasa Tanaka, Ana Bastos, Stephen Sitch, Benjamin Poulter, Clément Albergel, Aki Tsuruta, Shamil Maksyutov, Rajesh Janardanan, Yosuke Niwa, Bo Zheng, Joël Thanwerdas, Dmitry Belikov, Arjo Segers, and Frédéric Chevallier
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-103, https://doi.org/10.5194/essd-2024-103, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This study reconciles national greenhouse gas (GHG) inventories with updated atmospheric inversion results to evaluate discrepancies for three main GHG fluxes at the national level. Compared to the previous study, new satellite-based CO2 inversions were included. Additionally, an updated mask of managed lands was used, improving agreement for Brazil and Canada. The proposed methodology can be regularly applied as a check to assess the gap between top-down inversions and bottom-up inventories.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Xi Yi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1584, https://doi.org/10.5194/egusphere-2024-1584, 2024
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 per year in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter Raymond, Pierre Regnier, Joseph G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihito Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joel Thanwerdas, Hanquin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido van der Werf, Doug E. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-115, https://doi.org/10.5194/essd-2024-115, 2024
Preprint under review for ESSD
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesize and update the budget of the sources and sinks of CH4. This edition benefits from important progresses in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Matthew S. Johnson, Alexei Rozanov, Mark Weber, Nora Mettig, John Sullivan, Michael J. Newchurch, Shi Kuang, Thierry Leblanc, Fernando Chouza, Timothy A. Berkoff, Guillaume Gronoff, Kevin B. Strawbridge, Raul J. Alvarez, Andrew O. Langford, Christoph J. Senff, Guillaume Kirgis, Brandi McCarty, and Larry Twigg
Atmos. Meas. Tech., 17, 2559–2582, https://doi.org/10.5194/amt-17-2559-2024, https://doi.org/10.5194/amt-17-2559-2024, 2024
Short summary
Short summary
Monitoring tropospheric ozone (O3), a harmful pollutant negatively impacting human health, is primarily done using ground-based measurements and ozonesondes. However, these observation types lack the coverage to fully understand tropospheric O3. Satellites can retrieve tropospheric ozone with near-daily global coverage; however, they are known to have biases and errors. This study uses ground-based lidars to validate multiple satellites' ability to observe tropospheric O3.
Hongyu Liu, Bo Zhang, Richard H. Moore, Luke D. Ziemba, Richard A. Ferrare, Hyundeok Choi, Armin Sorooshian, David Painemal, Hailong Wang, Michael A. Shook, Amy Jo Scarino, Johnathan W. Hair, Ewan C. Crosbie, Marta A. Fenn, Taylor J. Shingler, Chris A. Hostetler, Gao Chen, Mary M. Kleb, Gan Luo, Fangqun Yu, Jason L. Tackett, Mark A. Vaughan, Yongxiang Hu, Glenn S. Diskin, John B. Nowak, Joshua P. DiGangi, Yonghoon Choi, Christoph A. Keller, and Matthew S. Johnson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1127, https://doi.org/10.5194/egusphere-2024-1127, 2024
Short summary
Short summary
We use the GEOS-Chem model to simulate aerosols over the western North Atlantic Ocean (WNAO) during the winter and summer campaigns of ACTIVATE 2020. Model results are evaluated against in situ and remote sensing measurements from two aircraft as well as ground-based and satellite observations. The improved understanding of the aerosol life cycle, composition, transport pathways, and distribution has important implications for characterizing aerosol-cloud-meteorology interactions over the WNAO.
Qing Ying, Benjamin Poulter, Jennifer D. Watts, Kyle A. Arndt, Anna-Maria Virkkala, Lori Bruhwiler, Youmi Oh, Brendan M. Rogers, Susan M. Natali, Hilary Sullivan, Luke D. Schiferl, Clayton Elder, Olli Peltola, Annett Bartsch, Amanda Armstrong, Ankur R. Desai, Eugénie Euskirchen, Mathias Göckede, Bernhard Lehner, Mats B. Nilsson, Matthias Peichl, Oliver Sonnentag, Eeva-Stiina Tuittila, Torsten Sachs, Aram Kalhori, Masahito Ueyama, and Zhen Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-84, https://doi.org/10.5194/essd-2024-84, 2024
Preprint under review for ESSD
Short summary
Short summary
We present daily methane fluxes of northern wetlands at 10-km resolution during 2016–2022 (WetCH4) derived from a novel machine-learning framework with improved accuracy. We estimated an average annual CH4 emissions of 20.8 ±2.1 Tg CH4 yr-1. Emissions were intensified in 2016, 2020, and 2022, with the largest interannual variations coming from West Siberia. Continued, all-season tower observations and improved soil moisture products are needed for future improvement of CH4 upscaling.
Tao Zheng, Sha Feng, Jeffrey Steward, Xiaoxu Tian, David Baker, and Martin Baxter
Geosci. Model Dev., 17, 1543–1562, https://doi.org/10.5194/gmd-17-1543-2024, https://doi.org/10.5194/gmd-17-1543-2024, 2024
Short summary
Short summary
The tangent linear and adjoint models have been successfully implemented in the MPAS-CO2 system, which has undergone rigorous accuracy testing. This development lays the groundwork for a global carbon flux data assimilation system, which offers the flexibility of high-resolution focus on specific areas, while maintaining a coarser resolution elsewhere. This approach significantly reduces computational costs and is thus perfectly suited for future CO2 geostationery and imager satellites.
Jonathan Hobbs, Matthias Katzfuss, Hai Nguyen, Vineet Yadav, and Junjie Liu
Geosci. Model Dev., 17, 1133–1151, https://doi.org/10.5194/gmd-17-1133-2024, https://doi.org/10.5194/gmd-17-1133-2024, 2024
Short summary
Short summary
The cycling of carbon among the land, oceans, and atmosphere is a closely monitored process in the global climate system. These exchanges between the atmosphere and the surface can be quantified using a combination of atmospheric carbon dioxide observations and computer models. This study presents a statistical method for investigating the similarities and differences in the estimated surface–atmosphere carbon exchange when different computer model assumptions are invoked.
Tuula Aalto, Aki Tsuruta, Jarmo Mäkelä, Jurek Mueller, Maria Tenkanen, Eleanor Burke, Sarah Chadburn, Yao Gao, Vilma Mannisenaho, Thomas Kleinen, Hanna Lee, Antti Leppänen, Tiina Markkanen, Stefano Materia, Paul Miller, Daniele Peano, Olli Peltola, Benjamin Poulter, Maarit Raivonen, Marielle Saunois, David Wårlind, and Sönke Zaehle
EGUsphere, https://doi.org/10.5194/egusphere-2023-2873, https://doi.org/10.5194/egusphere-2023-2873, 2024
Short summary
Short summary
Wetland methane responses to temperature and precipitation were studied in a boreal wetland-rich region in Northern Europe using ecosystem models, atmospheric inversions and up-scaled flux observations. The ecosystem models differed in their responses to temperature and precipitation and in their seasonality. However, multi-model means, inversions and up-scaled fluxes had similar seasonality, and they suggested co-limitation by temperature and precipitation.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Dien Wu, Joshua L. Laughner, Junjie Liu, Paul I. Palmer, John C. Lin, and Paul O. Wennberg
Geosci. Model Dev., 16, 6161–6185, https://doi.org/10.5194/gmd-16-6161-2023, https://doi.org/10.5194/gmd-16-6161-2023, 2023
Short summary
Short summary
To balance computational expenses and chemical complexity in extracting emission signals from tropospheric NO2 columns, we propose a simplified non-linear Lagrangian chemistry transport model and assess its performance against TROPOMI v2 over power plants and cities. Using this model, we then discuss how NOx chemistry affects the relationship between NOx and CO2 emissions and how studying NO2 columns helps quantify modeled biases in wind directions and prior emissions.
Jeongmin Yun, Junjie Liu, Brendan Byrne, Brad Weir, Lesley E. Ott, Kathryn McKain, Bianca Baier, and Luciana V. Gatti
EGUsphere, https://doi.org/10.5194/egusphere-2023-2258, https://doi.org/10.5194/egusphere-2023-2258, 2023
Short summary
Short summary
Multi-inverse modeling inter-comparison projects offer a chance to assess uncertainties in inversion estimates arising from various sources. This study proposes a method to quantify errors of regional terrestrial biosphere CO2 flux estimates from an inverse model ensemble by using airborne CO2 measurements. Our observation-based error estimates exceed the ensemble spread of flux estimates in regions with high anthropogenic emission regions, suggesting systematic biases in inversion estimates.
Thomas E. Taylor, Christopher W. O'Dell, David Baker, Carol Bruegge, Albert Chang, Lars Chapsky, Abhishek Chatterjee, Cecilia Cheng, Frédéric Chevallier, David Crisp, Lan Dang, Brian Drouin, Annmarie Eldering, Liang Feng, Brendan Fisher, Dejian Fu, Michael Gunson, Vance Haemmerle, Graziela R. Keller, Matthäus Kiel, Le Kuai, Thomas Kurosu, Alyn Lambert, Joshua Laughner, Richard Lee, Junjie Liu, Lucas Mandrake, Yuliya Marchetti, Gregory McGarragh, Aronne Merrelli, Robert R. Nelson, Greg Osterman, Fabiano Oyafuso, Paul I. Palmer, Vivienne H. Payne, Robert Rosenberg, Peter Somkuti, Gary Spiers, Cathy To, Brad Weir, Paul O. Wennberg, Shanshan Yu, and Jia Zong
Atmos. Meas. Tech., 16, 3173–3209, https://doi.org/10.5194/amt-16-3173-2023, https://doi.org/10.5194/amt-16-3173-2023, 2023
Short summary
Short summary
NASA's Orbiting Carbon Observatory 2 and 3 (OCO-2 and OCO-3, respectively) provide complementary spatiotemporal coverage from a sun-synchronous and precession orbit, respectively. Estimates of total column carbon dioxide (XCO2) derived from the two sensors using the same retrieval algorithm show broad consistency over a 2.5-year overlapping time record. This suggests that data from the two satellites may be used together for scientific analysis.
Matthew S. Johnson, Amir H. Souri, Sajeev Philip, Rajesh Kumar, Aaron Naeger, Jeffrey Geddes, Laura Judd, Scott Janz, Heesung Chong, and John Sullivan
Atmos. Meas. Tech., 16, 2431–2454, https://doi.org/10.5194/amt-16-2431-2023, https://doi.org/10.5194/amt-16-2431-2023, 2023
Short summary
Short summary
Satellites provide vital information for studying the processes controlling ozone formation. Based on the abundance of particular gases in the atmosphere, ozone formation is sensitive to specific human-induced and natural emission sources. However, errors and biases in satellite retrievals hinder this data source’s application for studying ozone formation sensitivity. We conducted a thorough statistical evaluation of two commonly applied satellites for investigating ozone formation sensitivity.
Forwood Wiser, Bryan K. Place, Siddhartha Sen, Havala O. T. Pye, Benjamin Yang, Daniel M. Westervelt, Daven K. Henze, Arlene M. Fiore, and V. Faye McNeill
Geosci. Model Dev., 16, 1801–1821, https://doi.org/10.5194/gmd-16-1801-2023, https://doi.org/10.5194/gmd-16-1801-2023, 2023
Short summary
Short summary
We developed a reduced model of atmospheric isoprene oxidation, AMORE-Isoprene 1.0. It was created using a new Automated Model Reduction (AMORE) method designed to simplify complex chemical mechanisms with minimal manual adjustments to the output. AMORE-Isoprene 1.0 has improved accuracy and similar size to other reduced isoprene mechanisms. When included in the CRACMM mechanism, it improved the accuracy of EPA’s CMAQ model predictions for the northeastern USA compared to observations.
Xueying Yu, Dylan B. Millet, Daven K. Henze, Alexander J. Turner, Alba Lorente Delgado, A. Anthony Bloom, and Jianxiong Sheng
Atmos. Chem. Phys., 23, 3325–3346, https://doi.org/10.5194/acp-23-3325-2023, https://doi.org/10.5194/acp-23-3325-2023, 2023
Short summary
Short summary
We combine satellite measurements with a novel downscaling method to map global methane emissions at 0.1°×0.1° resolution. These fine-scale emission estimates reveal unreported emission hotspots and shed light on the roles of agriculture, wetlands, and fossil fuels for regional methane budgets. The satellite-derived emissions point in particular to missing fossil fuel emissions in the Middle East and to a large emission underestimate in South Asia that appears to be tied to monsoon rainfall.
Giacomo Grassi, Clemens Schwingshackl, Thomas Gasser, Richard A. Houghton, Stephen Sitch, Josep G. Canadell, Alessandro Cescatti, Philippe Ciais, Sandro Federici, Pierre Friedlingstein, Werner A. Kurz, Maria J. Sanz Sanchez, Raúl Abad Viñas, Ramdane Alkama, Selma Bultan, Guido Ceccherini, Stefanie Falk, Etsushi Kato, Daniel Kennedy, Jürgen Knauer, Anu Korosuo, Joana Melo, Matthew J. McGrath, Julia E. M. S. Nabel, Benjamin Poulter, Anna A. Romanovskaya, Simone Rossi, Hanqin Tian, Anthony P. Walker, Wenping Yuan, Xu Yue, and Julia Pongratz
Earth Syst. Sci. Data, 15, 1093–1114, https://doi.org/10.5194/essd-15-1093-2023, https://doi.org/10.5194/essd-15-1093-2023, 2023
Short summary
Short summary
Striking differences exist in estimates of land-use CO2 fluxes between the national greenhouse gas inventories and the IPCC assessment reports. These differences hamper an accurate assessment of the collective progress under the Paris Agreement. By implementing an approach that conceptually reconciles land-use CO2 flux from national inventories and the global models used by the IPCC, our study is an important step forward for increasing confidence in land-use CO2 flux estimates.
Brendan Byrne, David F. Baker, Sourish Basu, Michael Bertolacci, Kevin W. Bowman, Dustin Carroll, Abhishek Chatterjee, Frédéric Chevallier, Philippe Ciais, Noel Cressie, David Crisp, Sean Crowell, Feng Deng, Zhu Deng, Nicholas M. Deutscher, Manvendra K. Dubey, Sha Feng, Omaira E. García, David W. T. Griffith, Benedikt Herkommer, Lei Hu, Andrew R. Jacobson, Rajesh Janardanan, Sujong Jeong, Matthew S. Johnson, Dylan B. A. Jones, Rigel Kivi, Junjie Liu, Zhiqiang Liu, Shamil Maksyutov, John B. Miller, Scot M. Miller, Isamu Morino, Justus Notholt, Tomohiro Oda, Christopher W. O'Dell, Young-Suk Oh, Hirofumi Ohyama, Prabir K. Patra, Hélène Peiro, Christof Petri, Sajeev Philip, David F. Pollard, Benjamin Poulter, Marine Remaud, Andrew Schuh, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Colm Sweeney, Yao Té, Hanqin Tian, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, John R. Worden, Debra Wunch, Yuanzhi Yao, Jeongmin Yun, Andrew Zammit-Mangion, and Ning Zeng
Earth Syst. Sci. Data, 15, 963–1004, https://doi.org/10.5194/essd-15-963-2023, https://doi.org/10.5194/essd-15-963-2023, 2023
Short summary
Short summary
Changes in the carbon stocks of terrestrial ecosystems result in emissions and removals of CO2. These can be driven by anthropogenic activities (e.g., deforestation), natural processes (e.g., fires) or in response to rising CO2 (e.g., CO2 fertilization). This paper describes a dataset of CO2 emissions and removals derived from atmospheric CO2 observations. This pilot dataset informs current capabilities and future developments towards top-down monitoring and verification systems.
Amir H. Souri, Matthew S. Johnson, Glenn M. Wolfe, James H. Crawford, Alan Fried, Armin Wisthaler, William H. Brune, Donald R. Blake, Andrew J. Weinheimer, Tijl Verhoelst, Steven Compernolle, Gaia Pinardi, Corinne Vigouroux, Bavo Langerock, Sungyeon Choi, Lok Lamsal, Lei Zhu, Shuai Sun, Ronald C. Cohen, Kyung-Eun Min, Changmin Cho, Sajeev Philip, Xiong Liu, and Kelly Chance
Atmos. Chem. Phys., 23, 1963–1986, https://doi.org/10.5194/acp-23-1963-2023, https://doi.org/10.5194/acp-23-1963-2023, 2023
Short summary
Short summary
We have rigorously characterized different sources of error in satellite-based HCHO / NO2 tropospheric columns, a widely used metric for diagnosing near-surface ozone sensitivity. Specifically, the errors were categorized/quantified into (i) an inherent chemistry error, (ii) the decoupled relationship between columns and the near-surface concentration, (iii) the spatial representativeness error of ground satellite pixels, and (iv) the satellite retrieval errors.
Andrew F. Feldman, Zhen Zhang, Yasuko Yoshida, Abhishek Chatterjee, and Benjamin Poulter
Atmos. Chem. Phys., 23, 1545–1563, https://doi.org/10.5194/acp-23-1545-2023, https://doi.org/10.5194/acp-23-1545-2023, 2023
Short summary
Short summary
We investigate the conditions under which satellite-retrieved column carbon dioxide concentrations directly hold information about surface carbon dioxide fluxes, without the use of inversion models. We show that OCO-2 column carbon dioxide retrievals, available at 1–3 month latency, can be used to directly detect and roughly estimate extreme biospheric CO2 fluxes. As such, these OCO-2 retrievals have value for rapidly monitoring extreme conditions in the terrestrial biosphere.
Benjamin Sapper, Daven Henze, Manjula Canagaratna, and Harald Stark
EGUsphere, https://doi.org/10.5194/egusphere-2022-1221, https://doi.org/10.5194/egusphere-2022-1221, 2022
Short summary
Short summary
Positive Matrix Factorization (PMF) has been used by atmospheric scientists to extract underlying factors present in large datasets. This paper presents a new technique for weighted PMF that drastically reduces the computational costs of previously developed algorithms. We use this technique to deliver interpretative factors and solution diagnostics from an atmospheric chemistry dataset.
Dien Wu, Junjie Liu, Paul O. Wennberg, Paul I. Palmer, Robert R. Nelson, Matthäus Kiel, and Annmarie Eldering
Atmos. Chem. Phys., 22, 14547–14570, https://doi.org/10.5194/acp-22-14547-2022, https://doi.org/10.5194/acp-22-14547-2022, 2022
Short summary
Short summary
Prior studies have derived the combustion efficiency for a region/city using observed CO2 and CO. We further zoomed into the urban domain and accounted for factors affecting the calculation of spatially resolved combustion efficiency from two satellites. The intra-city variability in combustion efficiency was linked to heavy industry within Shanghai and LA without relying on emission inventories. Such an approach can be applied when analyzing data from future geostationary satellites.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Brendan Byrne, Junjie Liu, Yonghong Yi, Abhishek Chatterjee, Sourish Basu, Rui Cheng, Russell Doughty, Frédéric Chevallier, Kevin W. Bowman, Nicholas C. Parazoo, David Crisp, Xing Li, Jingfeng Xiao, Stephen Sitch, Bertrand Guenet, Feng Deng, Matthew S. Johnson, Sajeev Philip, Patrick C. McGuire, and Charles E. Miller
Biogeosciences, 19, 4779–4799, https://doi.org/10.5194/bg-19-4779-2022, https://doi.org/10.5194/bg-19-4779-2022, 2022
Short summary
Short summary
Plants draw CO2 from the atmosphere during the growing season, while respiration releases CO2 to the atmosphere throughout the year, driving seasonal variations in atmospheric CO2 that can be observed by satellites, such as the Orbiting Carbon Observatory 2 (OCO-2). Using OCO-2 XCO2 data and space-based constraints on plant growth, we show that permafrost-rich northeast Eurasia has a strong seasonal release of CO2 during the autumn, hinting at an unexpectedly large respiration signal from soils.
Daniel J. Jacob, Daniel J. Varon, Daniel H. Cusworth, Philip E. Dennison, Christian Frankenberg, Ritesh Gautam, Luis Guanter, John Kelley, Jason McKeever, Lesley E. Ott, Benjamin Poulter, Zhen Qu, Andrew K. Thorpe, John R. Worden, and Riley M. Duren
Atmos. Chem. Phys., 22, 9617–9646, https://doi.org/10.5194/acp-22-9617-2022, https://doi.org/10.5194/acp-22-9617-2022, 2022
Short summary
Short summary
We review the capability of satellite observations of atmospheric methane to quantify methane emissions on all scales. We cover retrieval methods, precision requirements, inverse methods for inferring emissions, source detection thresholds, and observations of system completeness. We show that current instruments already enable quantification of regional and national emissions including contributions from large point sources. Coverage and resolution will increase significantly in coming years.
Colm Sweeney, Abhishek Chatterjee, Sonja Wolter, Kathryn McKain, Robert Bogue, Stephen Conley, Tim Newberger, Lei Hu, Lesley Ott, Benjamin Poulter, Luke Schiferl, Brad Weir, Zhen Zhang, and Charles E. Miller
Atmos. Chem. Phys., 22, 6347–6364, https://doi.org/10.5194/acp-22-6347-2022, https://doi.org/10.5194/acp-22-6347-2022, 2022
Short summary
Short summary
The Arctic Carbon Atmospheric Profiles (Arctic-CAP) project demonstrates the utility of aircraft profiles for independent evaluation of model-derived emissions and uptake of atmospheric CO2, CH4, and CO from land and ocean. Comparison with the Goddard Earth Observing System (GEOS) modeling system suggests that fluxes of CO2 are very consistent with observations, while those of CH4 have some regional and seasonal biases, and that CO comparison is complicated by transport errors.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Zhu Deng, Philippe Ciais, Zitely A. Tzompa-Sosa, Marielle Saunois, Chunjing Qiu, Chang Tan, Taochun Sun, Piyu Ke, Yanan Cui, Katsumasa Tanaka, Xin Lin, Rona L. Thompson, Hanqin Tian, Yuanzhi Yao, Yuanyuan Huang, Ronny Lauerwald, Atul K. Jain, Xiaoming Xu, Ana Bastos, Stephen Sitch, Paul I. Palmer, Thomas Lauvaux, Alexandre d'Aspremont, Clément Giron, Antoine Benoit, Benjamin Poulter, Jinfeng Chang, Ana Maria Roxana Petrescu, Steven J. Davis, Zhu Liu, Giacomo Grassi, Clément Albergel, Francesco N. Tubiello, Lucia Perugini, Wouter Peters, and Frédéric Chevallier
Earth Syst. Sci. Data, 14, 1639–1675, https://doi.org/10.5194/essd-14-1639-2022, https://doi.org/10.5194/essd-14-1639-2022, 2022
Short summary
Short summary
In support of the global stocktake of the Paris Agreement on climate change, we proposed a method for reconciling the results of global atmospheric inversions with data from UNFCCC national greenhouse gas inventories (NGHGIs). Here, based on a new global harmonized database that we compiled from the UNFCCC NGHGIs and a comprehensive framework presented in this study to process the results of inversions, we compared their results of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O).
Meloë S. F. Kacenelenbogen, Qian Tan, Sharon P. Burton, Otto P. Hasekamp, Karl D. Froyd, Yohei Shinozuka, Andreas J. Beyersdorf, Luke Ziemba, Kenneth L. Thornhill, Jack E. Dibb, Taylor Shingler, Armin Sorooshian, Reed W. Espinosa, Vanderlei Martins, Jose L. Jimenez, Pedro Campuzano-Jost, Joshua P. Schwarz, Matthew S. Johnson, Jens Redemann, and Gregory L. Schuster
Atmos. Chem. Phys., 22, 3713–3742, https://doi.org/10.5194/acp-22-3713-2022, https://doi.org/10.5194/acp-22-3713-2022, 2022
Short summary
Short summary
The impact of aerosols on Earth's radiation budget and human health is important and strongly depends on their composition. One desire of our scientific community is to derive the composition of the aerosol from satellite sensors. However, satellites observe aerosol optical properties (and not aerosol composition) based on remote sensing instrumentation. This study assesses how much aerosol optical properties can tell us about aerosol composition.
Philippe Ciais, Ana Bastos, Frédéric Chevallier, Ronny Lauerwald, Ben Poulter, Josep G. Canadell, Gustaf Hugelius, Robert B. Jackson, Atul Jain, Matthew Jones, Masayuki Kondo, Ingrid T. Luijkx, Prabir K. Patra, Wouter Peters, Julia Pongratz, Ana Maria Roxana Petrescu, Shilong Piao, Chunjing Qiu, Celso Von Randow, Pierre Regnier, Marielle Saunois, Robert Scholes, Anatoly Shvidenko, Hanqin Tian, Hui Yang, Xuhui Wang, and Bo Zheng
Geosci. Model Dev., 15, 1289–1316, https://doi.org/10.5194/gmd-15-1289-2022, https://doi.org/10.5194/gmd-15-1289-2022, 2022
Short summary
Short summary
The second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP) will provide updated quantification and process understanding of CO2, CH4, and N2O emissions and sinks for ten regions of the globe. In this paper, we give definitions, review different methods, and make recommendations for estimating different components of the total land–atmosphere carbon exchange for each region in a consistent and complete approach.
David F. Baker, Emily Bell, Kenneth J. Davis, Joel F. Campbell, Bing Lin, and Jeremy Dobler
Geosci. Model Dev., 15, 649–668, https://doi.org/10.5194/gmd-15-649-2022, https://doi.org/10.5194/gmd-15-649-2022, 2022
Short summary
Short summary
The OCO-2 satellite measures many closely spaced column-averaged CO2 values around its orbit. To give these data proper weight in flux inversions, their error correlations must be accounted for. Here we lay out a 1-D error model with correlations that die out exponentially along-track to do so. A correlation length scale of ∼20 km is derived from column CO2 measurements from an airborne lidar flown underneath OCO-2 for use in this model. The model's performance is compared to previous ones.
Hélène Peiro, Sean Crowell, Andrew Schuh, David F. Baker, Chris O'Dell, Andrew R. Jacobson, Frédéric Chevallier, Junjie Liu, Annmarie Eldering, David Crisp, Feng Deng, Brad Weir, Sourish Basu, Matthew S. Johnson, Sajeev Philip, and Ian Baker
Atmos. Chem. Phys., 22, 1097–1130, https://doi.org/10.5194/acp-22-1097-2022, https://doi.org/10.5194/acp-22-1097-2022, 2022
Short summary
Short summary
Satellite CO2 observations are constantly improved. We study an ensemble of different atmospheric models (inversions) from 2015 to 2018 using separate ground-based data or two versions of the OCO-2 satellite. Our study aims to determine if different satellite data corrections can yield different estimates of carbon cycle flux. A difference in the carbon budget between the two versions is found over tropical Africa, which seems to show the impact of corrections applied in satellite data.
Amir H. Souri, Kelly Chance, Kang Sun, Xiong Liu, and Matthew S. Johnson
Atmos. Meas. Tech., 15, 41–59, https://doi.org/10.5194/amt-15-41-2022, https://doi.org/10.5194/amt-15-41-2022, 2022
Short summary
Short summary
The central component of satellite and model validation is pointwise measurements. A point is an element of space, whereas satellite (model) pixels represent an averaged area. These two datasets are inherently different. We leveraged some geostatistical tools to transform discrete points to gridded data with quantified uncertainty, comparable to satellite footprint (and response functions). This in part alleviated some complications concerning point–pixel comparisons.
Xueying Yu, Dylan B. Millet, and Daven K. Henze
Geosci. Model Dev., 14, 7775–7793, https://doi.org/10.5194/gmd-14-7775-2021, https://doi.org/10.5194/gmd-14-7775-2021, 2021
Short summary
Short summary
We conduct observing system simulation experiments to test how well inverse analyses of high-resolution satellite data from sensors such as TROPOMI can quantify methane emissions. Inversions can improve monthly flux estimates at 25 km even with a spatially biased prior or model transport errors, but results are strongly degraded when both are present. We further evaluate a set of alternate formalisms to overcome limitations of the widely used scale factor approach that arise for missing sources.
Simon Besnard, Sujan Koirala, Maurizio Santoro, Ulrich Weber, Jacob Nelson, Jonas Gütter, Bruno Herault, Justin Kassi, Anny N'Guessan, Christopher Neigh, Benjamin Poulter, Tao Zhang, and Nuno Carvalhais
Earth Syst. Sci. Data, 13, 4881–4896, https://doi.org/10.5194/essd-13-4881-2021, https://doi.org/10.5194/essd-13-4881-2021, 2021
Short summary
Short summary
Forest age can determine the capacity of a forest to uptake carbon from the atmosphere. Yet, a lack of global diagnostics that reflect the forest stage and associated disturbance regimes hampers the quantification of age-related differences in forest carbon dynamics. In this paper, we introduced a new global distribution of forest age inferred from forest inventory, remote sensing and climate data in support of a better understanding of the global dynamics in the forest water and carbon cycles.
Louise Chini, George Hurtt, Ritvik Sahajpal, Steve Frolking, Kees Klein Goldewijk, Stephen Sitch, Raphael Ganzenmüller, Lei Ma, Lesley Ott, Julia Pongratz, and Benjamin Poulter
Earth Syst. Sci. Data, 13, 4175–4189, https://doi.org/10.5194/essd-13-4175-2021, https://doi.org/10.5194/essd-13-4175-2021, 2021
Short summary
Short summary
Carbon emissions from land-use change are a large and uncertain component of the global carbon cycle. The Land-Use Harmonization 2 (LUH2) dataset was developed as an input to carbon and climate simulations and has been updated annually for the Global Carbon Budget (GCB) assessments. Here we discuss the methodology for producing these annual LUH2 updates and describe the 2019 version which used new cropland and grazing land data inputs for the globally important region of Brazil.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Benjamin A. Nault, Duseong S. Jo, Brian C. McDonald, Pedro Campuzano-Jost, Douglas A. Day, Weiwei Hu, Jason C. Schroder, James Allan, Donald R. Blake, Manjula R. Canagaratna, Hugh Coe, Matthew M. Coggon, Peter F. DeCarlo, Glenn S. Diskin, Rachel Dunmore, Frank Flocke, Alan Fried, Jessica B. Gilman, Georgios Gkatzelis, Jacqui F. Hamilton, Thomas F. Hanisco, Patrick L. Hayes, Daven K. Henze, Alma Hodzic, James Hopkins, Min Hu, L. Greggory Huey, B. Thomas Jobson, William C. Kuster, Alastair Lewis, Meng Li, Jin Liao, M. Omar Nawaz, Ilana B. Pollack, Jeffrey Peischl, Bernhard Rappenglück, Claire E. Reeves, Dirk Richter, James M. Roberts, Thomas B. Ryerson, Min Shao, Jacob M. Sommers, James Walega, Carsten Warneke, Petter Weibring, Glenn M. Wolfe, Dominique E. Young, Bin Yuan, Qiang Zhang, Joost A. de Gouw, and Jose L. Jimenez
Atmos. Chem. Phys., 21, 11201–11224, https://doi.org/10.5194/acp-21-11201-2021, https://doi.org/10.5194/acp-21-11201-2021, 2021
Short summary
Short summary
Secondary organic aerosol (SOA) is an important aspect of poor air quality for urban regions around the world, where a large fraction of the population lives. However, there is still large uncertainty in predicting SOA in urban regions. Here, we used data from 11 urban campaigns and show that the variability in SOA production in these regions is predictable and is explained by key emissions. These results are used to estimate the premature mortality associated with SOA in urban regions.
Brad Weir, Lesley E. Ott, George J. Collatz, Stephan R. Kawa, Benjamin Poulter, Abhishek Chatterjee, Tomohiro Oda, and Steven Pawson
Atmos. Chem. Phys., 21, 9609–9628, https://doi.org/10.5194/acp-21-9609-2021, https://doi.org/10.5194/acp-21-9609-2021, 2021
Short summary
Short summary
We present a collection of carbon surface fluxes, the Low-order Flux Inversion (LoFI), derived from satellite observations of the Earth's surface and calibrated to match long-term inventories and atmospheric and oceanic records. Simulations using LoFI reproduce background atmospheric carbon dioxide measurements with comparable skill to the leading surface flux products. Available both retrospectively and as a forecast, LoFI enables the study of the carbon cycle as it occurs.
Ilya Stanevich, Dylan B. A. Jones, Kimberly Strong, Martin Keller, Daven K. Henze, Robert J. Parker, Hartmut Boesch, Debra Wunch, Justus Notholt, Christof Petri, Thorsten Warneke, Ralf Sussmann, Matthias Schneider, Frank Hase, Rigel Kivi, Nicholas M. Deutscher, Voltaire A. Velazco, Kaley A. Walker, and Feng Deng
Atmos. Chem. Phys., 21, 9545–9572, https://doi.org/10.5194/acp-21-9545-2021, https://doi.org/10.5194/acp-21-9545-2021, 2021
Short summary
Short summary
We explore the utility of a weak-constraint (WC) four-dimensional variational (4D-Var) data assimilation scheme for mitigating systematic errors in methane simulation in the GEOS-Chem model. We use data from the Greenhouse Gases Observing Satellite (GOSAT) and show that, compared to the traditional 4D-Var approach, the WC scheme improves the agreement between the model and independent observations. We find that the WC corrections to the model provide insight into the source of the errors.
Na Zhao, Xinyi Dong, Kan Huang, Joshua S. Fu, Marianne Tronstad Lund, Kengo Sudo, Daven Henze, Tom Kucsera, Yun Fat Lam, Mian Chin, and Simone Tilmes
Atmos. Chem. Phys., 21, 8637–8654, https://doi.org/10.5194/acp-21-8637-2021, https://doi.org/10.5194/acp-21-8637-2021, 2021
Short summary
Short summary
Black carbon acts as a strong climate forcer, especially in vulnerable pristine regions such as the Arctic. This work utilizes ensemble modeling results from the task force Hemispheric Transport of Air Pollution Phase 2 to investigate the responses of Arctic black carbon and surface temperature to various source emission reductions. East Asia contributed the most to Arctic black carbon. The response of Arctic temperature to black carbon was substantially more sensitive than the global average.
Jia Su, M. Patrick McCormick, Matthew S. Johnson, John T. Sullivan, Michael J. Newchurch, Timothy A. Berkoff, Shi Kuang, and Guillaume P. Gronoff
Atmos. Meas. Tech., 14, 4069–4082, https://doi.org/10.5194/amt-14-4069-2021, https://doi.org/10.5194/amt-14-4069-2021, 2021
Short summary
Short summary
A new technique using a three-wavelength differential absorption lidar (DIAL) technique based on an optical parametric oscillator (OPO) laser is proposed to obtain more accurate measurements of NO2. The retrieval uncertainties in aerosol extinction using the three-wavelength DIAL technique are reduced to less than 2 % of those when using the two-wavelength DIAL technique. Hampton University (HU) lidar NO2 profiles are compared with simulated data from the WRF-Chem model, and they agree well.
Wolfgang A. Obermeier, Julia E. M. S. Nabel, Tammas Loughran, Kerstin Hartung, Ana Bastos, Felix Havermann, Peter Anthoni, Almut Arneth, Daniel S. Goll, Sebastian Lienert, Danica Lombardozzi, Sebastiaan Luyssaert, Patrick C. McGuire, Joe R. Melton, Benjamin Poulter, Stephen Sitch, Michael O. Sullivan, Hanqin Tian, Anthony P. Walker, Andrew J. Wiltshire, Soenke Zaehle, and Julia Pongratz
Earth Syst. Dynam., 12, 635–670, https://doi.org/10.5194/esd-12-635-2021, https://doi.org/10.5194/esd-12-635-2021, 2021
Short summary
Short summary
We provide the first spatio-temporally explicit comparison of different model-derived fluxes from land use and land cover changes (fLULCCs) by using the TRENDY v8 dynamic global vegetation models used in the 2019 global carbon budget. We find huge regional fLULCC differences resulting from environmental assumptions, simulated periods, and the timing of land use and land cover changes, and we argue for a method consistent across time and space and for carefully choosing the accounting period.
Zhen Zhang, Etienne Fluet-Chouinard, Katherine Jensen, Kyle McDonald, Gustaf Hugelius, Thomas Gumbricht, Mark Carroll, Catherine Prigent, Annett Bartsch, and Benjamin Poulter
Earth Syst. Sci. Data, 13, 2001–2023, https://doi.org/10.5194/essd-13-2001-2021, https://doi.org/10.5194/essd-13-2001-2021, 2021
Short summary
Short summary
The spatiotemporal distribution of wetlands is one of the important and yet uncertain factors determining the time and locations of methane fluxes. The Wetland Area and Dynamics for Methane Modeling (WAD2M) dataset describes the global data product used to quantify the areal dynamics of natural wetlands and how global wetlands are changing in response to climate.
Leonardo Calle and Benjamin Poulter
Geosci. Model Dev., 14, 2575–2601, https://doi.org/10.5194/gmd-14-2575-2021, https://doi.org/10.5194/gmd-14-2575-2021, 2021
Short summary
Short summary
We developed a model to simulate and track the age of ecosystems on Earth. We found that the effect of ecosystem age on net primary production and ecosystem respiration is as important as climate in large areas of every vegetated continent. The LPJ-wsl v2.0 age-class model simulates dynamic age-class distributions on Earth and represents another step forward towards understanding the role of demography in global ecosystems.
Zichong Chen, Junjie Liu, Daven K. Henze, Deborah N. Huntzinger, Kelley C. Wells, Stephen Sitch, Pierre Friedlingstein, Emilie Joetzjer, Vladislav Bastrikov, Daniel S. Goll, Vanessa Haverd, Atul K. Jain, Etsushi Kato, Sebastian Lienert, Danica L. Lombardozzi, Patrick C. McGuire, Joe R. Melton, Julia E. M. S. Nabel, Benjamin Poulter, Hanqin Tian, Andrew J. Wiltshire, Sönke Zaehle, and Scot M. Miller
Atmos. Chem. Phys., 21, 6663–6680, https://doi.org/10.5194/acp-21-6663-2021, https://doi.org/10.5194/acp-21-6663-2021, 2021
Short summary
Short summary
NASA's Orbiting Carbon Observatory 2 (OCO-2) satellite observes atmospheric CO2 globally. We use a multiple regression and inverse model to quantify the relationships between OCO-2 and environmental drivers within individual years for 2015–2018 and within seven global biomes. Our results point to limitations of current space-based observations for inferring environmental relationships but also indicate the potential to inform key relationships that are very uncertain in process-based models.
Fernando Chouza, Thierry Leblanc, Mark Brewer, Patrick Wang, Sabino Piazzolla, Gabriele Pfister, Rajesh Kumar, Carl Drews, Simone Tilmes, Louisa Emmons, and Matthew Johnson
Atmos. Chem. Phys., 21, 6129–6153, https://doi.org/10.5194/acp-21-6129-2021, https://doi.org/10.5194/acp-21-6129-2021, 2021
Short summary
Short summary
The tropospheric ozone lidar at the JPL Table Mountain Facility (TMF) was used to investigate the impact of Los Angeles (LA) Basin pollution transport and stratospheric intrusions in the planetary boundary layer on the San Gabriel Mountains. The results of this study indicate a dominant role of the LA Basin pollution on days when high ozone levels were observed at TMF (March–October period).
Steven T. Massie, Heather Cronk, Aronne Merrelli, Christopher O'Dell, K. Sebastian Schmidt, Hong Chen, and David Baker
Atmos. Meas. Tech., 14, 1475–1499, https://doi.org/10.5194/amt-14-1475-2021, https://doi.org/10.5194/amt-14-1475-2021, 2021
Short summary
Short summary
The OCO-2 science team is working to retrieve CO2 measurements that can be used by the carbon cycle community to calculate regional sources and sinks of CO2. The retrieved data, however, are in need of improvements in accuracy. This paper discusses several ways in which 3D cloud metrics (such as the distance of a measurement to the nearest cloud) can be used to account for cloud effects in the OCO-2 CO2 data files.
Yilin Chen, Huizhong Shen, Jennifer Kaiser, Yongtao Hu, Shannon L. Capps, Shunliu Zhao, Amir Hakami, Jhih-Shyang Shih, Gertrude K. Pavur, Matthew D. Turner, Daven K. Henze, Jaroslav Resler, Athanasios Nenes, Sergey L. Napelenok, Jesse O. Bash, Kathleen M. Fahey, Gregory R. Carmichael, Tianfeng Chai, Lieven Clarisse, Pierre-François Coheur, Martin Van Damme, and Armistead G. Russell
Atmos. Chem. Phys., 21, 2067–2082, https://doi.org/10.5194/acp-21-2067-2021, https://doi.org/10.5194/acp-21-2067-2021, 2021
Short summary
Short summary
Ammonia (NH3) emissions can exert adverse impacts on air quality and ecosystem well-being. NH3 emission inventories are viewed as highly uncertain. Here we optimize the NH3 emission estimates in the US using an air quality model and NH3 measurements from the IASI satellite instruments. The optimized NH3 emissions are much higher than the National Emissions Inventory estimates in April. The optimized NH3 emissions improved model performance when evaluated against independent observation.
Junjie Liu, Latha Baskaran, Kevin Bowman, David Schimel, A. Anthony Bloom, Nicholas C. Parazoo, Tomohiro Oda, Dustin Carroll, Dimitris Menemenlis, Joanna Joiner, Roisin Commane, Bruce Daube, Lucianna V. Gatti, Kathryn McKain, John Miller, Britton B. Stephens, Colm Sweeney, and Steven Wofsy
Earth Syst. Sci. Data, 13, 299–330, https://doi.org/10.5194/essd-13-299-2021, https://doi.org/10.5194/essd-13-299-2021, 2021
Short summary
Short summary
On average, the terrestrial biosphere carbon sink is equivalent to ~ 20 % of fossil fuel emissions. Understanding where and why the terrestrial biosphere absorbs carbon from the atmosphere is pivotal to any mitigation policy. Here we present a regionally resolved satellite-constrained net biosphere exchange (NBE) dataset with corresponding uncertainties between 2010–2018: CMS-Flux NBE 2020. The dataset provides a unique perspective on monitoring regional contributions to the CO2 growth rate.
Xueying Yu, Dylan B. Millet, Kelley C. Wells, Daven K. Henze, Hansen Cao, Timothy J. Griffis, Eric A. Kort, Genevieve Plant, Malte J. Deventer, Randall K. Kolka, D. Tyler Roman, Kenneth J. Davis, Ankur R. Desai, Bianca C. Baier, Kathryn McKain, Alan C. Czarnetzki, and A. Anthony Bloom
Atmos. Chem. Phys., 21, 951–971, https://doi.org/10.5194/acp-21-951-2021, https://doi.org/10.5194/acp-21-951-2021, 2021
Short summary
Short summary
Methane concentrations have doubled since 1750. The US Upper Midwest is a key region contributing to such trends, but sources are poorly understood. We collected and analyzed aircraft data to resolve spatial and timing biases in wetland and livestock emission estimates and uncover errors in inventory treatment of manure management. We highlight the importance of intensive agriculture for the regional and US methane budgets and the potential for methane mitigation through improved management.
Sudhanshu Pandey, Sander Houweling, Alba Lorente, Tobias Borsdorff, Maria Tsivlidou, A. Anthony Bloom, Benjamin Poulter, Zhen Zhang, and Ilse Aben
Biogeosciences, 18, 557–572, https://doi.org/10.5194/bg-18-557-2021, https://doi.org/10.5194/bg-18-557-2021, 2021
Short summary
Short summary
We use atmospheric methane observations from the novel TROPOspheric Monitoring Instrument (TROPOMI; Sentinel-5p) to estimate methane emissions from South Sudan's wetlands. Our emission estimates are an order of magnitude larger than the estimate of process-based wetland models. We find that this underestimation by the models is likely due to their misrepresentation of the wetlands' inundation extent and temperature dependences.
A. Anthony Bloom, Kevin W. Bowman, Junjie Liu, Alexandra G. Konings, John R. Worden, Nicholas C. Parazoo, Victoria Meyer, John T. Reager, Helen M. Worden, Zhe Jiang, Gregory R. Quetin, T. Luke Smallman, Jean-François Exbrayat, Yi Yin, Sassan S. Saatchi, Mathew Williams, and David S. Schimel
Biogeosciences, 17, 6393–6422, https://doi.org/10.5194/bg-17-6393-2020, https://doi.org/10.5194/bg-17-6393-2020, 2020
Short summary
Short summary
We use a model of the 2001–2015 tropical land carbon cycle, with satellite measurements of land and atmospheric carbon, to disentangle lagged and concurrent effects (due to past and concurrent meteorological events, respectively) on annual land–atmosphere carbon exchanges. The variability of lagged effects explains most 2001–2015 inter-annual carbon flux variations. We conclude that concurrent and lagged effects need to be accurately resolved to better predict the world's land carbon sink.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Yonghong Yi, John S. Kimball, Jennifer D. Watts, Susan M. Natali, Donatella Zona, Junjie Liu, Masahito Ueyama, Hideki Kobayashi, Walter Oechel, and Charles E. Miller
Biogeosciences, 17, 5861–5882, https://doi.org/10.5194/bg-17-5861-2020, https://doi.org/10.5194/bg-17-5861-2020, 2020
Short summary
Short summary
We developed a 1 km satellite-data-driven permafrost carbon model to evaluate soil respiration sensitivity to recent snow cover changes in Alaska. Results show earlier snowmelt enhances growing-season soil respiration and reduces annual carbon uptake, while early cold-season soil respiration is linked to the number of snow-free days after the land surface freezes. Our results also show nonnegligible influences of subgrid variability in surface conditions on model-simulated CO2 seasonal cycles.
George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang
Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, https://doi.org/10.5194/gmd-13-5425-2020, 2020
Short summary
Short summary
To estimate the effects of human land use activities on the carbon–climate system, a new set of global gridded land use forcing datasets was developed to link historical land use data to eight future scenarios in a standard format required by climate models. This new generation of land use harmonization (LUH2) includes updated inputs, higher spatial resolution, more detailed land use transitions, and the addition of important agricultural management layers; it will be used for CMIP6 simulations.
Zhen Qu, Daven K. Henze, Owen R. Cooper, and Jessica L. Neu
Atmos. Chem. Phys., 20, 13109–13130, https://doi.org/10.5194/acp-20-13109-2020, https://doi.org/10.5194/acp-20-13109-2020, 2020
Short summary
Short summary
We use satellite observations and chemical transport modeling to quantify sources of NOx, a major air pollutant, over the past decade. We find improved simulations of the magnitude, seasonality, and trends of NO2 and ozone concentrations using these derived emissions. Changes in ozone pollution driven by human and natural sources are identified in different regions. This work shows the benefits of remote-sensing data and inverse modeling for more accurate ozone simulations.
Yiqi Zheng, Joel A. Thornton, Nga Lee Ng, Hansen Cao, Daven K. Henze, Erin E. McDuffie, Weiwei Hu, Jose L. Jimenez, Eloise A. Marais, Eric Edgerton, and Jingqiu Mao
Atmos. Chem. Phys., 20, 13091–13107, https://doi.org/10.5194/acp-20-13091-2020, https://doi.org/10.5194/acp-20-13091-2020, 2020
Short summary
Short summary
This study aims to address a challenge in biosphere–atmosphere interactions: to what extent can biogenic organic aerosol (OA) be modified through human activities? From three surface network observations, we show OA is weakly dependent on sulfate and aerosol acidity in the summer southeast US, on both long-term trends and monthly variability. The results are in strong contrast to a global model, GEOS-Chem, suggesting the need to revisit the representation of aqueous-phase secondary OA formation.
Rachel L. Tunnicliffe, Anita L. Ganesan, Robert J. Parker, Hartmut Boesch, Nicola Gedney, Benjamin Poulter, Zhen Zhang, Jošt V. Lavrič, David Walter, Matthew Rigby, Stephan Henne, Dickon Young, and Simon O'Doherty
Atmos. Chem. Phys., 20, 13041–13067, https://doi.org/10.5194/acp-20-13041-2020, https://doi.org/10.5194/acp-20-13041-2020, 2020
Short summary
Short summary
This study quantifies Brazil’s emissions of a potent atmospheric greenhouse gas, methane. This is in the field of atmospheric modelling and uses remotely sensed data and surface measurements of methane concentrations as well as an atmospheric transport model to interpret the data. Because of Brazil’s large emissions from wetlands, agriculture and biomass burning, these emissions affect global methane concentrations and thus are of global significance.
Marielle Saunois, Ann R. Stavert, Ben Poulter, Philippe Bousquet, Josep G. Canadell, Robert B. Jackson, Peter A. Raymond, Edward J. Dlugokencky, Sander Houweling, Prabir K. Patra, Philippe Ciais, Vivek K. Arora, David Bastviken, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Kimberly M. Carlson, Mark Carrol, Simona Castaldi, Naveen Chandra, Cyril Crevoisier, Patrick M. Crill, Kristofer Covey, Charles L. Curry, Giuseppe Etiope, Christian Frankenberg, Nicola Gedney, Michaela I. Hegglin, Lena Höglund-Isaksson, Gustaf Hugelius, Misa Ishizawa, Akihiko Ito, Greet Janssens-Maenhout, Katherine M. Jensen, Fortunat Joos, Thomas Kleinen, Paul B. Krummel, Ray L. Langenfelds, Goulven G. Laruelle, Licheng Liu, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Joe McNorton, Paul A. Miller, Joe R. Melton, Isamu Morino, Jurek Müller, Fabiola Murguia-Flores, Vaishali Naik, Yosuke Niwa, Sergio Noce, Simon O'Doherty, Robert J. Parker, Changhui Peng, Shushi Peng, Glen P. Peters, Catherine Prigent, Ronald Prinn, Michel Ramonet, Pierre Regnier, William J. Riley, Judith A. Rosentreter, Arjo Segers, Isobel J. Simpson, Hao Shi, Steven J. Smith, L. Paul Steele, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Francesco N. Tubiello, Aki Tsuruta, Nicolas Viovy, Apostolos Voulgarakis, Thomas S. Weber, Michiel van Weele, Guido R. van der Werf, Ray F. Weiss, Doug Worthy, Debra Wunch, Yi Yin, Yukio Yoshida, Wenxin Zhang, Zhen Zhang, Yuanhong Zhao, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, https://doi.org/10.5194/essd-12-1561-2020, 2020
Short summary
Short summary
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. We have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. This is the second version of the review dedicated to the decadal methane budget, integrating results of top-down and bottom-up estimates.
Simon Jones, Lucy Rowland, Peter Cox, Deborah Hemming, Andy Wiltshire, Karina Williams, Nicholas C. Parazoo, Junjie Liu, Antonio C. L. da Costa, Patrick Meir, Maurizio Mencuccini, and Anna B. Harper
Biogeosciences, 17, 3589–3612, https://doi.org/10.5194/bg-17-3589-2020, https://doi.org/10.5194/bg-17-3589-2020, 2020
Short summary
Short summary
Non-structural carbohydrates (NSCs) are an important set of molecules that help plants to grow and respire when photosynthesis is restricted by extreme climate events. In this paper we present a simple model of NSC storage and assess the effect that it has on simulations of vegetation at the ecosystem scale. Our model has the potential to significantly change predictions of plant behaviour in global vegetation models, which would have large implications for predictions of the future climate.
Shunliu Zhao, Matthew G. Russell, Amir Hakami, Shannon L. Capps, Matthew D. Turner, Daven K. Henze, Peter B. Percell, Jaroslav Resler, Huizhong Shen, Armistead G. Russell, Athanasios Nenes, Amanda J. Pappin, Sergey L. Napelenok, Jesse O. Bash, Kathleen M. Fahey, Gregory R. Carmichael, Charles O. Stanier, and Tianfeng Chai
Geosci. Model Dev., 13, 2925–2944, https://doi.org/10.5194/gmd-13-2925-2020, https://doi.org/10.5194/gmd-13-2925-2020, 2020
Matthew J. Cooper, Randall V. Martin, Daven K. Henze, and Dylan B. A. Jones
Atmos. Chem. Phys., 20, 7231–7241, https://doi.org/10.5194/acp-20-7231-2020, https://doi.org/10.5194/acp-20-7231-2020, 2020
Short summary
Short summary
Comparisons between satellite-retrieved and model-simulated NO2 columns are affected by differences between the model vertical profile and the assumed profile used in the retrieval process. We examine how such differences impact NOx emission estimates from satellite observations. Larger differences between the simulated and assumed profile shape correspond to larger emission errors. This reveals the importance of using consistent profile information when comparing satellite columns to models.
Yi Wang, Jun Wang, Xiaoguang Xu, Daven K. Henze, Zhen Qu, and Kai Yang
Atmos. Chem. Phys., 20, 6631–6650, https://doi.org/10.5194/acp-20-6631-2020, https://doi.org/10.5194/acp-20-6631-2020, 2020
Short summary
Short summary
The use of OMPS satellite observations to inverse-model SO2 and NO2 emissions is presented through the GEOS-Chem adjoint modeling framework. The work is illustrated over China. The robustness of the results is studied through separate and joint inversions of SO2 and NO2 and the consideration of NH3 uncertainty. Independent validation is performed with OMI SO2 and NO2 data. It is shown that simultaneous inversion of NO2 and SO2 from OMPS provides an effective way to rapidly update emissions.
Yi Wang, Jun Wang, Meng Zhou, Daven K. Henze, Cui Ge, and Wei Wang
Atmos. Chem. Phys., 20, 6651–6670, https://doi.org/10.5194/acp-20-6651-2020, https://doi.org/10.5194/acp-20-6651-2020, 2020
Short summary
Short summary
We developed four different methods to downscale SO2 and NO2 emissions derived from OMPS satellite observations (in Part 1) for regional air quality modeling at a spatial resolution that is finer than satellite observations. The VIIRS (city lights), TROPOMI, and OMI satellite data as well as surface data are used to evaluate the model. The method of using the top-down emissions from the past month for the air quality forecast in the present month is also shown to have practical merit.
Sojin Lee, Chul Han Song, Kyung Man Han, Daven K. Henze, Kyunghwa Lee, Jinhyeok Yu, Jung-Hun Woo, Jia Jung, Yunsoo Choi, Pablo E. Saide, and Gregory R. Carmichael
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-116, https://doi.org/10.5194/gmd-2020-116, 2020
Revised manuscript not accepted
Shufen Pan, Naiqing Pan, Hanqin Tian, Pierre Friedlingstein, Stephen Sitch, Hao Shi, Vivek K. Arora, Vanessa Haverd, Atul K. Jain, Etsushi Kato, Sebastian Lienert, Danica Lombardozzi, Julia E. M. S. Nabel, Catherine Ottlé, Benjamin Poulter, Sönke Zaehle, and Steven W. Running
Hydrol. Earth Syst. Sci., 24, 1485–1509, https://doi.org/10.5194/hess-24-1485-2020, https://doi.org/10.5194/hess-24-1485-2020, 2020
Short summary
Short summary
Evapotranspiration (ET) links global water, carbon and energy cycles. We used 4 remote sensing models, 2 machine-learning algorithms and 14 land surface models to analyze the changes in global terrestrial ET. These three categories of approaches agreed well in terms of ET intensity. For 1982–2011, all models showed that Earth greening enhanced terrestrial ET. The small interannual variability of global terrestrial ET suggests it has a potential planetary boundary of around 600 mm yr-1.
Binghao Jia, Xin Luo, Ximing Cai, Atul Jain, Deborah N. Huntzinger, Zhenghui Xie, Ning Zeng, Jiafu Mao, Xiaoying Shi, Akihiko Ito, Yaxing Wei, Hanqin Tian, Benjamin Poulter, Dan Hayes, and Kevin Schaefer
Earth Syst. Dynam., 11, 235–249, https://doi.org/10.5194/esd-11-235-2020, https://doi.org/10.5194/esd-11-235-2020, 2020
Short summary
Short summary
We quantitatively examined the relative contributions of climate change, land
use and land cover change, and elevated CO2 to interannual variations and seasonal cycle amplitude of gross primary productivity (GPP) in China based on multi-model ensemble simulations. The contributions of major subregions to the temporal change in China's total GPP are also presented. This work may help us better understand GPP spatiotemporal patterns and their responses to regional changes and human activities.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Judith Hauck, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Dorothee C. E. Bakker, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Peter Anthoni, Leticia Barbero, Ana Bastos, Vladislav Bastrikov, Meike Becker, Laurent Bopp, Erik Buitenhuis, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Kim I. Currie, Richard A. Feely, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Daniel S. Goll, Nicolas Gruber, Sören Gutekunst, Ian Harris, Vanessa Haverd, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Jed O. Kaplan, Etsushi Kato, Kees Klein Goldewijk, Jan Ivar Korsbakken, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Gregg Marland, Patrick C. McGuire, Joe R. Melton, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Craig Neill, Abdirahman M. Omar, Tsuneo Ono, Anna Peregon, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Roland Séférian, Jörg Schwinger, Naomi Smith, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Guido R. van der Werf, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 11, 1783–1838, https://doi.org/10.5194/essd-11-1783-2019, https://doi.org/10.5194/essd-11-1783-2019, 2019
Short summary
Short summary
The Global Carbon Budget 2019 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Cheng Chen, Oleg Dubovik, Daven K. Henze, Mian Chin, Tatyana Lapyonok, Gregory L. Schuster, Fabrice Ducos, David Fuertes, Pavel Litvinov, Lei Li, Anton Lopatin, Qiaoyun Hu, and Benjamin Torres
Atmos. Chem. Phys., 19, 14585–14606, https://doi.org/10.5194/acp-19-14585-2019, https://doi.org/10.5194/acp-19-14585-2019, 2019
Short summary
Short summary
Global BC, OC and DD aerosol emissions are inverted from POLDER/PARASOL observations for the year 2010 based on the GEOS-Chem inverse modeling framework. The retrieved emissions are 18.4 Tg yr−1 BC, 109.9 Tg yr−1 OC and 731.6 Tg yr−1 DD, which indicate an increase of 166.7 % for BC and 184.0 % for OC, while a decrease of 42.4 % for DD with respect to GEOS-Chem a priori emission inventories is seen. Global annul mean AOD and AAOD resulting from retrieved emissions are 0.119 and 0.0071 at 550 nm.
Frédéric Chevallier, Marine Remaud, Christopher W. O'Dell, David Baker, Philippe Peylin, and Anne Cozic
Atmos. Chem. Phys., 19, 14233–14251, https://doi.org/10.5194/acp-19-14233-2019, https://doi.org/10.5194/acp-19-14233-2019, 2019
Short summary
Short summary
We present a way to rate the CO2 flux estimates made from inversion of a global atmospheric transport model. Our approach relies on accurate aircraft measurements in the free troposphere. It shows that some satellite soundings can now provide inversion results that are, despite their uncertainty, comparable in credibility to traditional inversions using the accurate but sparse surface network and that these inversions are, therefore, complementary for studies of the global carbon budget.
Susan S. Kulawik, Sean Crowell, David Baker, Junjie Liu, Kathryn McKain, Colm Sweeney, Sebastien C. Biraud, Steve Wofsy, Christopher W. O'Dell, Paul O. Wennberg, Debra Wunch, Coleen M. Roehl, Nicholas M. Deutscher, Matthäus Kiel, David W. T. Griffith, Voltaire A. Velazco, Justus Notholt, Thorsten Warneke, Christof Petri, Martine De Mazière, Mahesh K. Sha, Ralf Sussmann, Markus Rettinger, Dave F. Pollard, Isamu Morino, Osamu Uchino, Frank Hase, Dietrich G. Feist, Sébastien Roche, Kimberly Strong, Rigel Kivi, Laura Iraci, Kei Shiomi, Manvendra K. Dubey, Eliezer Sepulveda, Omaira Elena Garcia Rodriguez, Yao Té, Pascal Jeseck, Pauli Heikkinen, Edward J. Dlugokencky, Michael R. Gunson, Annmarie Eldering, David Crisp, Brendan Fisher, and Gregory B. Osterman
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-257, https://doi.org/10.5194/amt-2019-257, 2019
Publication in AMT not foreseen
Short summary
Short summary
This paper provides a benchmark of OCO-2 v8 and ACOS-GOSAT v7.3 XCO2 and lowermost tropospheric (LMT) errors. The paper focuses on the systematic errors and subtracts out validation, co-location, and random errors, looks at the correlation scale-length (spatially and temporally) of systematic errors, finding that the scale lengths are similar to bias correction scale-lengths. The assimilates of the bias correction term is used to place an error on fluxes estimates.
Brendan Byrne, Dylan B. A. Jones, Kimberly Strong, Saroja M. Polavarapu, Anna B. Harper, David F. Baker, and Shamil Maksyutov
Atmos. Chem. Phys., 19, 13017–13035, https://doi.org/10.5194/acp-19-13017-2019, https://doi.org/10.5194/acp-19-13017-2019, 2019
Short summary
Short summary
Interannual variations in net ecosystem exchange (NEE) estimated from the Greenhouse Gases Observing Satellite (GOSAT) XCO2 measurements are shown to be correlated (P < 0.05) with temperature and FLUXCOM NEE anomalies. Furthermore, the GOSAT-informed NEE anomalies are found to be better correlated with temperature and FLUXCOM anomalies than NEE estimates from most terrestrial biosphere models, suggesting that GOSAT CO2 measurements provide a useful constraint on NEE interannual variability.
Ana Bastos, Philippe Ciais, Frédéric Chevallier, Christian Rödenbeck, Ashley P. Ballantyne, Fabienne Maignan, Yi Yin, Marcos Fernández-Martínez, Pierre Friedlingstein, Josep Peñuelas, Shilong L. Piao, Stephen Sitch, William K. Smith, Xuhui Wang, Zaichun Zhu, Vanessa Haverd, Etsushi Kato, Atul K. Jain, Sebastian Lienert, Danica Lombardozzi, Julia E. M. S. Nabel, Philippe Peylin, Benjamin Poulter, and Dan Zhu
Atmos. Chem. Phys., 19, 12361–12375, https://doi.org/10.5194/acp-19-12361-2019, https://doi.org/10.5194/acp-19-12361-2019, 2019
Short summary
Short summary
Here we show that land-surface models improved their ability to simulate the increase in the amplitude of seasonal CO2-cycle exchange (SCANBP) by ecosystems compared to estimates by two atmospheric inversions. We find a dominant role of vegetation growth over boreal Eurasia to the observed increase in SCANBP, strongly driven by CO2 fertilization, and an overall negative effect of temperature on SCANBP. Biases can be explained by the sensitivity of simulated microbial respiration to temperature.
Sean Crowell, David Baker, Andrew Schuh, Sourish Basu, Andrew R. Jacobson, Frederic Chevallier, Junjie Liu, Feng Deng, Liang Feng, Kathryn McKain, Abhishek Chatterjee, John B. Miller, Britton B. Stephens, Annmarie Eldering, David Crisp, David Schimel, Ray Nassar, Christopher W. O'Dell, Tomohiro Oda, Colm Sweeney, Paul I. Palmer, and Dylan B. A. Jones
Atmos. Chem. Phys., 19, 9797–9831, https://doi.org/10.5194/acp-19-9797-2019, https://doi.org/10.5194/acp-19-9797-2019, 2019
Short summary
Short summary
Space-based retrievals of carbon dioxide offer the potential to provide dense data in regions that are sparsely observed by the surface network. We find that flux estimates that are informed by the Orbiting Carbon Observatory-2 (OCO-2) show different character from that inferred using surface measurements in tropical land regions, particularly in Africa, with a much larger total emission and larger amplitude seasonal cycle.
Alexandra G. Konings, A. Anthony Bloom, Junjie Liu, Nicholas C. Parazoo, David S. Schimel, and Kevin W. Bowman
Biogeosciences, 16, 2269–2284, https://doi.org/10.5194/bg-16-2269-2019, https://doi.org/10.5194/bg-16-2269-2019, 2019
Short summary
Short summary
We estimate heterotrophic respiration (Rh) – the respiration from microbes in the soil – using satellite estimates of the net carbon flux and other quantities. Rh is an important carbon flux but is rarely studied by itself. Our method is the first to estimate how Rh varies in both space and time. The resulting new estimate of Rh is compared to the best currently available alternative, which is based on interpolating field measurements globally. The two estimates disagree and are both uncertain.
Zainab Q. Hakim, Scott Archer-Nicholls, Gufran Beig, Gerd A. Folberth, Kengo Sudo, Nathan Luke Abraham, Sachin Ghude, Daven K. Henze, and Alexander T. Archibald
Atmos. Chem. Phys., 19, 6437–6458, https://doi.org/10.5194/acp-19-6437-2019, https://doi.org/10.5194/acp-19-6437-2019, 2019
Short summary
Short summary
Surface ozone is an important air pollutant and recent work has calculated that large numbers of people die prematurely because of exposure to high levels of surface ozone in India. However, these calculations require model simulations of ozone as key inputs.
Here we perform the most thorough evaluation of global model surface ozone over India to date. These analyses of model simulations and observations highlight some successes and shortcomings and the need for further process-based studies.
Leonardo Calle, Benjamin Poulter, and Prabir K. Patra
Atmos. Meas. Tech., 12, 2611–2629, https://doi.org/10.5194/amt-12-2611-2019, https://doi.org/10.5194/amt-12-2611-2019, 2019
Short summary
Short summary
Satellite observations of atmospheric carbon dioxide offer extraordinary insights into terrestrial ecosystem activity on Earth. The algorithm we present provides researchers with a great deal more information from these satellite data than has been available in the past. We hope the application of this algorithm and analyses tools provides insight into atmospheric dynamics of carbon dioxide and helps inform the development of global ecosystem models in the future.
Martha P. Butler, Thomas Lauvaux, Sha Feng, Junjie Liu, Kevin W. Bowman, and Kenneth J. Davis
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-342, https://doi.org/10.5194/gmd-2018-342, 2019
Revised manuscript not accepted
Short summary
Short summary
This paper describes a mass-conserving framework for computing time-varying lateral boundary conditions from global model carbon dioxide concentrations for introduction into the WRF-Chem regional model. The goal is to create a laboratory environment in which carbon dioxide transport uncertainties may be explored separately from inversion-derived flux uncertainties. The software is currently available on GitHub at https://github.com/psu-inversion/WRF_Boundary_Coupling.
Christopher W. O'Dell, Annmarie Eldering, Paul O. Wennberg, David Crisp, Michael R. Gunson, Brendan Fisher, Christian Frankenberg, Matthäus Kiel, Hannakaisa Lindqvist, Lukas Mandrake, Aronne Merrelli, Vijay Natraj, Robert R. Nelson, Gregory B. Osterman, Vivienne H. Payne, Thomas E. Taylor, Debra Wunch, Brian J. Drouin, Fabiano Oyafuso, Albert Chang, James McDuffie, Michael Smyth, David F. Baker, Sourish Basu, Frédéric Chevallier, Sean M. R. Crowell, Liang Feng, Paul I. Palmer, Mavendra Dubey, Omaira E. García, David W. T. Griffith, Frank Hase, Laura T. Iraci, Rigel Kivi, Isamu Morino, Justus Notholt, Hirofumi Ohyama, Christof Petri, Coleen M. Roehl, Mahesh K. Sha, Kimberly Strong, Ralf Sussmann, Yao Te, Osamu Uchino, and Voltaire A. Velazco
Atmos. Meas. Tech., 11, 6539–6576, https://doi.org/10.5194/amt-11-6539-2018, https://doi.org/10.5194/amt-11-6539-2018, 2018
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Judith Hauck, Julia Pongratz, Penelope A. Pickers, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Almut Arneth, Vivek K. Arora, Leticia Barbero, Ana Bastos, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Scott C. Doney, Thanos Gkritzalis, Daniel S. Goll, Ian Harris, Vanessa Haverd, Forrest M. Hoffman, Mario Hoppema, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Truls Johannessen, Chris D. Jones, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Peter Landschützer, Nathalie Lefèvre, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Craig Neill, Are Olsen, Tsueno Ono, Prabir Patra, Anna Peregon, Wouter Peters, Philippe Peylin, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Matthias Rocher, Christian Rödenbeck, Ute Schuster, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Tobias Steinhoff, Adrienne Sutton, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Nicolas Viovy, Anthony P. Walker, Andrew J. Wiltshire, Rebecca Wright, Sönke Zaehle, and Bo Zheng
Earth Syst. Sci. Data, 10, 2141–2194, https://doi.org/10.5194/essd-10-2141-2018, https://doi.org/10.5194/essd-10-2141-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2018 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Jacob K. Hedelius, Junjie Liu, Tomohiro Oda, Shamil Maksyutov, Coleen M. Roehl, Laura T. Iraci, James R. Podolske, Patrick W. Hillyard, Jianming Liang, Kevin R. Gurney, Debra Wunch, and Paul O. Wennberg
Atmos. Chem. Phys., 18, 16271–16291, https://doi.org/10.5194/acp-18-16271-2018, https://doi.org/10.5194/acp-18-16271-2018, 2018
Short summary
Short summary
Human activities can cause concentrated emissions of greenhouse gases and other pollutants from cities. There is ongoing effort to convert new satellite observations of pollutants into fluxes for many cities. Here we present a method for determining the flux of three species (CO2, CH4, and CO) from the greater LA area using satellite (CO2 only) and ground-based (all three species) observations. We run tests to estimate uncertainty and find the direct net CO2 flux is 104 ± 26 Tg CO2 yr−1.
HyeJin Kim, Isabel M. D. Rosa, Rob Alkemade, Paul Leadley, George Hurtt, Alexander Popp, Detlef P. van Vuuren, Peter Anthoni, Almut Arneth, Daniele Baisero, Emma Caton, Rebecca Chaplin-Kramer, Louise Chini, Adriana De Palma, Fulvio Di Fulvio, Moreno Di Marco, Felipe Espinoza, Simon Ferrier, Shinichiro Fujimori, Ricardo E. Gonzalez, Maya Gueguen, Carlos Guerra, Mike Harfoot, Thomas D. Harwood, Tomoko Hasegawa, Vanessa Haverd, Petr Havlík, Stefanie Hellweg, Samantha L. L. Hill, Akiko Hirata, Andrew J. Hoskins, Jan H. Janse, Walter Jetz, Justin A. Johnson, Andreas Krause, David Leclère, Ines S. Martins, Tetsuya Matsui, Cory Merow, Michael Obersteiner, Haruka Ohashi, Benjamin Poulter, Andy Purvis, Benjamin Quesada, Carlo Rondinini, Aafke M. Schipper, Richard Sharp, Kiyoshi Takahashi, Wilfried Thuiller, Nicolas Titeux, Piero Visconti, Christopher Ware, Florian Wolf, and Henrique M. Pereira
Geosci. Model Dev., 11, 4537–4562, https://doi.org/10.5194/gmd-11-4537-2018, https://doi.org/10.5194/gmd-11-4537-2018, 2018
Short summary
Short summary
This paper lays out the protocol for the Biodiversity and Ecosystem Services Scenario-based Intercomparison of Models (BES-SIM) that projects the global impacts of land use and climate change on biodiversity and ecosystem services over the coming decades, compared to the 20th century. BES-SIM uses harmonized scenarios and input data and a set of common output metrics at multiple scales, and identifies model uncertainties and research gaps.
Thierry Leblanc, Mark A. Brewer, Patrick S. Wang, Maria Jose Granados-Muñoz, Kevin B. Strawbridge, Michael Travis, Bernard Firanski, John T. Sullivan, Thomas J. McGee, Grant K. Sumnicht, Laurence W. Twigg, Timothy A. Berkoff, William Carrion, Guillaume Gronoff, Ali Aknan, Gao Chen, Raul J. Alvarez, Andrew O. Langford, Christoph J. Senff, Guillaume Kirgis, Matthew S. Johnson, Shi Kuang, and Michael J. Newchurch
Atmos. Meas. Tech., 11, 6137–6162, https://doi.org/10.5194/amt-11-6137-2018, https://doi.org/10.5194/amt-11-6137-2018, 2018
Short summary
Short summary
This article reviews the capability of five ozone lidars from the North American TOLNet lidar network. These ground-based laser remote-sensing instruments typically measure ozone in the troposphere with a precision of 5 % and vertical and time resolutions of 100 m and 10 min, respectively. Understanding ozone variability at high spatiotemporal scales is essential for monitoring air quality, human health, and climate. The article shows that the TOLNet lidars are very well suited for this purpose.
Stelios Myriokefalitakis, Akinori Ito, Maria Kanakidou, Athanasios Nenes, Maarten C. Krol, Natalie M. Mahowald, Rachel A. Scanza, Douglas S. Hamilton, Matthew S. Johnson, Nicholas Meskhidze, Jasper F. Kok, Cecile Guieu, Alex R. Baker, Timothy D. Jickells, Manmohan M. Sarin, Srinivas Bikkina, Rachel Shelley, Andrew Bowie, Morgane M. G. Perron, and Robert A. Duce
Biogeosciences, 15, 6659–6684, https://doi.org/10.5194/bg-15-6659-2018, https://doi.org/10.5194/bg-15-6659-2018, 2018
Short summary
Short summary
The first atmospheric iron (Fe) deposition model intercomparison is presented in this study, as a result of the deliberations of the United Nations Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP; http://www.gesamp.org/) Working Group 38. We conclude that model diversity over remote oceans reflects uncertainty in the Fe content parameterizations of dust aerosols, combustion aerosol emissions and the size distribution of transported aerosol Fe.
Xinyi Dong, Joshua S. Fu, Qingzhao Zhu, Jian Sun, Jiani Tan, Terry Keating, Takashi Sekiya, Kengo Sudo, Louisa Emmons, Simone Tilmes, Jan Eiof Jonson, Michael Schulz, Huisheng Bian, Mian Chin, Yanko Davila, Daven Henze, Toshihiko Takemura, Anna Maria Katarina Benedictow, and Kan Huang
Atmos. Chem. Phys., 18, 15581–15600, https://doi.org/10.5194/acp-18-15581-2018, https://doi.org/10.5194/acp-18-15581-2018, 2018
Short summary
Short summary
We have applied the HTAP phase II multi-model data to investigate the long-range transport impacts on surface concentration and column density of PM from Europe and Russia, Belarus, and Ukraine to eastern Asia, with a special focus on the long-range transport contribution during haze episodes in China. We found that long-range transport plays a more important role in elevating the background concentration of surface PM during the haze days.
Hansen Cao, Tzung-May Fu, Lin Zhang, Daven K. Henze, Christopher Chan Miller, Christophe Lerot, Gonzalo González Abad, Isabelle De Smedt, Qiang Zhang, Michel van Roozendael, François Hendrick, Kelly Chance, Jie Li, Junyu Zheng, and Yuanhong Zhao
Atmos. Chem. Phys., 18, 15017–15046, https://doi.org/10.5194/acp-18-15017-2018, https://doi.org/10.5194/acp-18-15017-2018, 2018
Short summary
Short summary
Our top-down estimates for annual total Chinese NMVOC emissions was 30.7 to 49.5 Tg y−1, including 16.4 to 23.6 Tg y−1 from anthropogenic sources, 12.2 to 22.8 Tg y−1 from biogenic sources, and 2.08 to 3.13 Tg y−1 from biomass burning. Our four inversions consistently showed that the emissions of Chinese anthropogenic NMVOC precursors of glyoxal were larger than the a priori estimates. The glyoxal and formaldehyde constraints helped distinguish the NMVOC species from different sources.
Jan Eiof Jonson, Michael Schulz, Louisa Emmons, Johannes Flemming, Daven Henze, Kengo Sudo, Marianne Tronstad Lund, Meiyun Lin, Anna Benedictow, Brigitte Koffi, Frank Dentener, Terry Keating, Rigel Kivi, and Yanko Davila
Atmos. Chem. Phys., 18, 13655–13672, https://doi.org/10.5194/acp-18-13655-2018, https://doi.org/10.5194/acp-18-13655-2018, 2018
Short summary
Short summary
Focusing on Europe, this HTAP 2 study computes ozone in several global models when reducing anthropogenic emissions by 20 % in different world regions. The differences in model results are explored
by use of a novel stepwise approach combining a tracer, CO and ozone. For ozone the contributions from the rest of the world are larger than from Europe, with the largest contributions from North America and eastern Asia. Contributions do, however, depend on the choice of ozone metric.
Eunjee Lee, Fan-Wei Zeng, Randal D. Koster, Brad Weir, Lesley E. Ott, and Benjamin Poulter
Biogeosciences, 15, 5635–5652, https://doi.org/10.5194/bg-15-5635-2018, https://doi.org/10.5194/bg-15-5635-2018, 2018
Short summary
Short summary
Land carbon fluxes are controlled in part by the responses of terrestrial ecosystems to atmospheric conditions near the Earth's surface. This study offers a comprehensive evaluation of the consequences of multiple facets of spatiotemporal variability in atmospheric CO2 for carbon cycle dynamics. Globally, consideration of the diurnal CO2 variability reduces the gross primary production and net land carbon uptake. The relative contributions of other variability vary regionally and seasonally.
Cheng Chen, Oleg Dubovik, Daven K. Henze, Tatyana Lapyonak, Mian Chin, Fabrice Ducos, Pavel Litvinov, Xin Huang, and Lei Li
Atmos. Chem. Phys., 18, 12551–12580, https://doi.org/10.5194/acp-18-12551-2018, https://doi.org/10.5194/acp-18-12551-2018, 2018
Short summary
Short summary
This paper introduces a method to use satellite-observed spectral AOD and AAOD to derive three types of aerosol emission sources simultaneously based on inverse modelling at a high spatial and temporal resolution. This study shows it is possible to estimate aerosol emissions and improve the atmospheric aerosol simulation using detailed aerosol optical and microphysical information from satellite observations.
Ciao-Kai Liang, J. Jason West, Raquel A. Silva, Huisheng Bian, Mian Chin, Yanko Davila, Frank J. Dentener, Louisa Emmons, Johannes Flemming, Gerd Folberth, Daven Henze, Ulas Im, Jan Eiof Jonson, Terry J. Keating, Tom Kucsera, Allen Lenzen, Meiyun Lin, Marianne Tronstad Lund, Xiaohua Pan, Rokjin J. Park, R. Bradley Pierce, Takashi Sekiya, Kengo Sudo, and Toshihiko Takemura
Atmos. Chem. Phys., 18, 10497–10520, https://doi.org/10.5194/acp-18-10497-2018, https://doi.org/10.5194/acp-18-10497-2018, 2018
Short summary
Short summary
Emissions from one continent affect air quality and health elsewhere. Here we quantify the effects of intercontinental PM2.5 and ozone transport on human health using a new multi-model ensemble, evaluating the health effects of emissions from six world regions and three emission source sectors. Emissions from one region have significant health impacts outside of that source region; similarly, foreign emissions contribute significantly to air-pollution-related deaths in several world regions.
Emilie Joetzjer, Fabienne Maignan, Jérôme Chave, Daniel Goll, Ben Poulter, Jonathan Barichivich, Isabelle Maréchaux, Sebastiaan Luyssaert, Matthieu Guimberteau, Kim Naudts, Damien Bonal, and Philippe Ciais
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-308, https://doi.org/10.5194/bg-2018-308, 2018
Revised manuscript not accepted
Short summary
Short summary
This study explores the relative contributions of tree demographic, canopy structure and hydraulic processes on the Amazonian carbon and water cycles using large-scale process-based model. Our results imply that explicit coupling of the water and carbon cycles improves the representation of biogeochemical cycles and their spatial variability. Representing the variation in the ecological functioning of Amazonia should be the next step to improve the performance and predictive ability of models.
Steven T. Turnock, Oliver Wild, Frank J. Dentener, Yanko Davila, Louisa K. Emmons, Johannes Flemming, Gerd A. Folberth, Daven K. Henze, Jan E. Jonson, Terry J. Keating, Sudo Kengo, Meiyun Lin, Marianne Lund, Simone Tilmes, and Fiona M. O'Connor
Atmos. Chem. Phys., 18, 8953–8978, https://doi.org/10.5194/acp-18-8953-2018, https://doi.org/10.5194/acp-18-8953-2018, 2018
Short summary
Short summary
A simple parameterisation was developed in this study to provide a rapid assessment of the impacts and uncertainties associated with future emission control strategies by predicting changes to surface ozone air quality and near-term climate forcing of ozone. Future emissions scenarios based on currently implemented legislation are shown to worsen surface ozone air quality and enhance near-term climate warming, with changes in methane becoming increasingly important in the future.
Stefano Galmarini, Ioannis Kioutsioukis, Efisio Solazzo, Ummugulsum Alyuz, Alessandra Balzarini, Roberto Bellasio, Anna M. K. Benedictow, Roberto Bianconi, Johannes Bieser, Joergen Brandt, Jesper H. Christensen, Augustin Colette, Gabriele Curci, Yanko Davila, Xinyi Dong, Johannes Flemming, Xavier Francis, Andrea Fraser, Joshua Fu, Daven K. Henze, Christian Hogrefe, Ulas Im, Marta Garcia Vivanco, Pedro Jiménez-Guerrero, Jan Eiof Jonson, Nutthida Kitwiroon, Astrid Manders, Rohit Mathur, Laura Palacios-Peña, Guido Pirovano, Luca Pozzoli, Marie Prank, Martin Schultz, Rajeet S. Sokhi, Kengo Sudo, Paolo Tuccella, Toshihiko Takemura, Takashi Sekiya, and Alper Unal
Atmos. Chem. Phys., 18, 8727–8744, https://doi.org/10.5194/acp-18-8727-2018, https://doi.org/10.5194/acp-18-8727-2018, 2018
Short summary
Short summary
An ensemble of model results relating to ozone concentrations in Europe in 2010 has been produced and studied. The novelty consists in the fact that the ensemble is made of results of models working at two different scales (regional and global), therefore contributing in detail two different parts of the atmospheric spectrum. The ensemble defined as a hybrid has been studied in detail and shown to bring additional value to the assessment of air quality.
Matthew S. Johnson, Xiong Liu, Peter Zoogman, John Sullivan, Michael J. Newchurch, Shi Kuang, Thierry Leblanc, and Thomas McGee
Atmos. Meas. Tech., 11, 3457–3477, https://doi.org/10.5194/amt-11-3457-2018, https://doi.org/10.5194/amt-11-3457-2018, 2018
Short summary
Short summary
This research was conducted to determine the impact of multiple a priori ozone (O3) profile products on Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite retrievals. It was determined that non-climatological model predictions, in particular those from a chemical transport model, when applied as the a priori profile improved the accuracy of TEMPO tropospheric O3 retrievals in comparison to the TB-Clim product that is currently suggested for use in the TEMPO retrieval algorithm.
Donghai Wu, Philippe Ciais, Nicolas Viovy, Alan K. Knapp, Kevin Wilcox, Michael Bahn, Melinda D. Smith, Sara Vicca, Simone Fatichi, Jakob Zscheischler, Yue He, Xiangyi Li, Akihiko Ito, Almut Arneth, Anna Harper, Anna Ukkola, Athanasios Paschalis, Benjamin Poulter, Changhui Peng, Daniel Ricciuto, David Reinthaler, Guangsheng Chen, Hanqin Tian, Hélène Genet, Jiafu Mao, Johannes Ingrisch, Julia E. S. M. Nabel, Julia Pongratz, Lena R. Boysen, Markus Kautz, Michael Schmitt, Patrick Meir, Qiuan Zhu, Roland Hasibeder, Sebastian Sippel, Shree R. S. Dangal, Stephen Sitch, Xiaoying Shi, Yingping Wang, Yiqi Luo, Yongwen Liu, and Shilong Piao
Biogeosciences, 15, 3421–3437, https://doi.org/10.5194/bg-15-3421-2018, https://doi.org/10.5194/bg-15-3421-2018, 2018
Short summary
Short summary
Our results indicate that most ecosystem models do not capture the observed asymmetric responses under normal precipitation conditions, suggesting an overestimate of the drought effects and/or underestimate of the watering impacts on primary productivity, which may be the result of inadequate representation of key eco-hydrological processes. Collaboration between modelers and site investigators needs to be strengthened to improve the specific processes in ecosystem models in following studies.
Chandra Venkataraman, Michael Brauer, Kushal Tibrewal, Pankaj Sadavarte, Qiao Ma, Aaron Cohen, Sreelekha Chaliyakunnel, Joseph Frostad, Zbigniew Klimont, Randall V. Martin, Dylan B. Millet, Sajeev Philip, Katherine Walker, and Shuxiao Wang
Atmos. Chem. Phys., 18, 8017–8039, https://doi.org/10.5194/acp-18-8017-2018, https://doi.org/10.5194/acp-18-8017-2018, 2018
Sourish Basu, David F. Baker, Frédéric Chevallier, Prabir K. Patra, Junjie Liu, and John B. Miller
Atmos. Chem. Phys., 18, 7189–7215, https://doi.org/10.5194/acp-18-7189-2018, https://doi.org/10.5194/acp-18-7189-2018, 2018
Short summary
Short summary
CO2 measurements from the global surface network and CO2 estimates from satellites such as the Orbiting Carbon Observatory 2 (OCO-2) are currently used to quantify the surface sources and sinks of CO2, using what we know about atmospheric transport of gases. In this work, we quantify the uncertainties in those surface source/sink estimates that stem from errors in our atmospheric transport models, using an observing system simulation experiment (OSSE).
Jiani Tan, Joshua S. Fu, Frank Dentener, Jian Sun, Louisa Emmons, Simone Tilmes, Kengo Sudo, Johannes Flemming, Jan Eiof Jonson, Sylvie Gravel, Huisheng Bian, Yanko Davila, Daven K. Henze, Marianne T. Lund, Tom Kucsera, Toshihiko Takemura, and Terry Keating
Atmos. Chem. Phys., 18, 6847–6866, https://doi.org/10.5194/acp-18-6847-2018, https://doi.org/10.5194/acp-18-6847-2018, 2018
Short summary
Short summary
We study the distributions of sulfur and nitrogen deposition, which are associated with current environmental issues such as formation of acid rain and ecosystem eutrophication and result in widespread problems such as loss of environmental diversity, harming the crop yield and even food insecurity. According to our study, both the amount and distribution of sulfate and nitrogen deposition have changed significantly in the last decade, particularly in East Asia, South Asia and Southeast Asia.
Kira Sadighi, Evan Coffey, Andrea Polidori, Brandon Feenstra, Qin Lv, Daven K. Henze, and Michael Hannigan
Atmos. Meas. Tech., 11, 1777–1792, https://doi.org/10.5194/amt-11-1777-2018, https://doi.org/10.5194/amt-11-1777-2018, 2018
Short summary
Short summary
Ground-level ozone has negative human health impacts. In the summer of 2015, 13 low-cost sensor monitors were deployed to several neighborhoods around Riverside, California. There were significant spatial differences between monitors. This is important because it means that ozone in certain places may be higher than what EPA monitors report for an area, which is pertinent for residents of those communities. This research helps inform the limitations and advantages of low-cost sensor networks.
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Julia Pongratz, Andrew C. Manning, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Robert B. Jackson, Thomas A. Boden, Pieter P. Tans, Oliver D. Andrews, Vivek K. Arora, Dorothee C. E. Bakker, Leticia Barbero, Meike Becker, Richard A. Betts, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Catherine E. Cosca, Jessica Cross, Kim Currie, Thomas Gasser, Ian Harris, Judith Hauck, Vanessa Haverd, Richard A. Houghton, Christopher W. Hunt, George Hurtt, Tatiana Ilyina, Atul K. Jain, Etsushi Kato, Markus Kautz, Ralph F. Keeling, Kees Klein Goldewijk, Arne Körtzinger, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Ivan Lima, Danica Lombardozzi, Nicolas Metzl, Frank Millero, Pedro M. S. Monteiro, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Yukihiro Nojiri, X. Antonio Padin, Anna Peregon, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Janet Reimer, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Benjamin D. Stocker, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Steven van Heuven, Nicolas Viovy, Nicolas Vuichard, Anthony P. Walker, Andrew J. Watson, Andrew J. Wiltshire, Sönke Zaehle, and Dan Zhu
Earth Syst. Sci. Data, 10, 405–448, https://doi.org/10.5194/essd-10-405-2018, https://doi.org/10.5194/essd-10-405-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2017 describes data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. It is the 12th annual update and the 6th published in this journal.
Kelley C. Wells, Dylan B. Millet, Nicolas Bousserez, Daven K. Henze, Timothy J. Griffis, Sreelekha Chaliyakunnel, Edward J. Dlugokencky, Eri Saikawa, Gao Xiang, Ronald G. Prinn, Simon O'Doherty, Dickon Young, Ray F. Weiss, Geoff S. Dutton, James W. Elkins, Paul B. Krummel, Ray Langenfelds, and L. Paul Steele
Atmos. Chem. Phys., 18, 735–756, https://doi.org/10.5194/acp-18-735-2018, https://doi.org/10.5194/acp-18-735-2018, 2018
Short summary
Short summary
This paper uses three different frameworks to derive nitrous oxide (N2O) emissions based on global surface observations. One of these frameworks employs a new approach that allows for fast computation and explores a larger solution space than other methods. Our results point to a few conclusions about the global N2O budget, including a larger contribution from tropical sources, an overestimate of natural soil emissions, and an underestimate of agricultural sources particularly in springtime.
Lin Zhang, Youfan Chen, Yuanhong Zhao, Daven K. Henze, Liye Zhu, Yu Song, Fabien Paulot, Xuejun Liu, Yuepeng Pan, Yi Lin, and Binxiang Huang
Atmos. Chem. Phys., 18, 339–355, https://doi.org/10.5194/acp-18-339-2018, https://doi.org/10.5194/acp-18-339-2018, 2018
Short summary
Short summary
Substantial differences exist in current estimates of agricultural ammonia emissions in China, hindering understanding of their environmental consequences. This study applies both bottom-up and top-down methods to better quantify agricultural ammonia sources in China using observations from satellite and surface networks interpreted by a chemical transport model. Our estimate of annual Chinese anthropogenic ammonia emission is 11.7 tg (teragram) for 2008 with a strong seasonality peak in summer.
Wei Li, Philippe Ciais, Shushi Peng, Chao Yue, Yilong Wang, Martin Thurner, Sassan S. Saatchi, Almut Arneth, Valerio Avitabile, Nuno Carvalhais, Anna B. Harper, Etsushi Kato, Charles Koven, Yi Y. Liu, Julia E.M.S. Nabel, Yude Pan, Julia Pongratz, Benjamin Poulter, Thomas A. M. Pugh, Maurizio Santoro, Stephen Sitch, Benjamin D. Stocker, Nicolas Viovy, Andy Wiltshire, Rasoul Yousefpour, and Sönke Zaehle
Biogeosciences, 14, 5053–5067, https://doi.org/10.5194/bg-14-5053-2017, https://doi.org/10.5194/bg-14-5053-2017, 2017
Short summary
Short summary
We used several observation-based biomass datasets to constrain the historical land-use change carbon emissions simulated by models. Compared to the range of the original modeled emissions (from 94 to 273 Pg C), the observationally constrained global cumulative emission estimate is 155 ± 50 Pg C (1σ Gaussian error) from 1901 to 2012. Our approach can also be applied to evaluate the LULCC impact of land-based climate mitigation policies.
Jun-Wei Xu, Randall V. Martin, Andrew Morrow, Sangeeta Sharma, Lin Huang, W. Richard Leaitch, Julia Burkart, Hannes Schulz, Marco Zanatta, Megan D. Willis, Daven K. Henze, Colin J. Lee, Andreas B. Herber, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 17, 11971–11989, https://doi.org/10.5194/acp-17-11971-2017, https://doi.org/10.5194/acp-17-11971-2017, 2017
Short summary
Short summary
We interpret a series of recent airborne and ground-based measurements with the GEOS-Chem model and its adjoint to attribute the sources of Arctic BC. Anthropogenic emissions in eastern and southern Asia make the largest contribution to Arctic BC. Gas flaring emissions from oilfields in western Siberia and from the Tarim oilfield in western China could have striking impacts on Arctic BC loadings.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Ray Weiss, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Atmos. Chem. Phys., 17, 11135–11161, https://doi.org/10.5194/acp-17-11135-2017, https://doi.org/10.5194/acp-17-11135-2017, 2017
Short summary
Short summary
Following the Global Methane Budget 2000–2012 published in Saunois et al. (2016), we use the same dataset of bottom-up and top-down approaches to discuss the variations in methane emissions over the period 2000–2012. The changes in emissions are discussed both in terms of trends and quasi-decadal changes. The ensemble gathered here allows us to synthesise the robust changes in terms of regional and sectorial contributions to the increasing methane emissions.
Ling Qi, Qinbin Li, Daven K. Henze, Hsien-Liang Tseng, and Cenlin He
Atmos. Chem. Phys., 17, 9697–9716, https://doi.org/10.5194/acp-17-9697-2017, https://doi.org/10.5194/acp-17-9697-2017, 2017
Short summary
Short summary
We find that Asian anthropogenic sources are the largest contributors (~ 40 %) to surface BC in spring in the Arctic, inconsistent with previous studies which repeatedly identified sources of surface BC as anthropogenic emissions from Europe and Russia. It takes 12–17 days for Asian anthropogenic emissions to be transported to the Arctic surface. Additionally, a large fraction (40–65 %) of Asian contribution is in the form of chronic pollution on 1- to 2-month timescales.
Jakob Zscheischler, Miguel D. Mahecha, Valerio Avitabile, Leonardo Calle, Nuno Carvalhais, Philippe Ciais, Fabian Gans, Nicolas Gruber, Jens Hartmann, Martin Herold, Kazuhito Ichii, Martin Jung, Peter Landschützer, Goulven G. Laruelle, Ronny Lauerwald, Dario Papale, Philippe Peylin, Benjamin Poulter, Deepak Ray, Pierre Regnier, Christian Rödenbeck, Rosa M. Roman-Cuesta, Christopher Schwalm, Gianluca Tramontana, Alexandra Tyukavina, Riccardo Valentini, Guido van der Werf, Tristram O. West, Julie E. Wolf, and Markus Reichstein
Biogeosciences, 14, 3685–3703, https://doi.org/10.5194/bg-14-3685-2017, https://doi.org/10.5194/bg-14-3685-2017, 2017
Short summary
Short summary
Here we synthesize a wide range of global spatiotemporal observational data on carbon exchanges between the Earth surface and the atmosphere. A key challenge was to consistently combining observational products of terrestrial and aquatic surfaces. Our primary goal is to identify today’s key uncertainties and observational shortcomings that would need to be addressed in future measurement campaigns or expansions of in situ observatories.
Jonathan J. Guerrette and Daven K. Henze
Atmos. Chem. Phys., 17, 7605–7633, https://doi.org/10.5194/acp-17-7605-2017, https://doi.org/10.5194/acp-17-7605-2017, 2017
Short summary
Short summary
This work describes the implementation and application of a new advanced tool, WRFDA-Chem, for top-down constraints of regional atmospheric chemical emissions. Aircraft and surface observations of black carbon are traced to anthropogenic and biomass burning sources in California during ARCTAS-CARB. The information content of the observations is quantified through variance reduction and degrees of freedom of signal, which can be used to assess observing strategies and emission inventories.
Zhe Jiang, Helen Worden, John R. Worden, Daven K. Henze, Dylan B. A. Jones, Avelino F. Arellano, Emily V. Fischer, Liye Zhu, Kazuyuki Miyazaki, K. Folkert Boersma, and Vivienne H. Payne
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-382, https://doi.org/10.5194/acp-2017-382, 2017
Preprint withdrawn
Short summary
Short summary
We investigated the variation of US tropospheric NO2 in the past decade. We demonstrated significant divergence between the time variation in tropospheric NO2 columns from OMI retrievals and surface measurements. Our analysis suggests limited contributions from local effects such as fossil fuel emissions, lightning, or instrument artifacts, and indicates possible important contributions from long-range transport of Asian emissions that are modulated by ENSO.
Shailesh K. Kharol, Chris A. McLinden, Christopher E. Sioris, Mark W. Shephard, Vitali Fioletov, Aaron van Donkelaar, Sajeev Philip, and Randall V. Martin
Atmos. Chem. Phys., 17, 5921–5929, https://doi.org/10.5194/acp-17-5921-2017, https://doi.org/10.5194/acp-17-5921-2017, 2017
Min Huang, Gregory R. Carmichael, R. Bradley Pierce, Duseong S. Jo, Rokjin J. Park, Johannes Flemming, Louisa K. Emmons, Kevin W. Bowman, Daven K. Henze, Yanko Davila, Kengo Sudo, Jan Eiof Jonson, Marianne Tronstad Lund, Greet Janssens-Maenhout, Frank J. Dentener, Terry J. Keating, Hilke Oetjen, and Vivienne H. Payne
Atmos. Chem. Phys., 17, 5721–5750, https://doi.org/10.5194/acp-17-5721-2017, https://doi.org/10.5194/acp-17-5721-2017, 2017
Short summary
Short summary
In support of the HTAP phase 2 experiment, we conducted a number of regional-scale Sulfur Transport and dEposition Model base and sensitivity simulations over North America during May–June 2010. The STEM chemical boundary conditions were downscaled from three (GEOS-Chem, RAQMS, and ECMWF C-IFS) global chemical transport models' simulations. Analyses were performed on large spatial–temporal scales relative to HTAP1 and also on subcontinental and event scales including the use of satellite data.
Zhe Jiang, John R. Worden, Helen Worden, Merritt Deeter, Dylan B. A. Jones, Avelino F. Arellano, and Daven K. Henze
Atmos. Chem. Phys., 17, 4565–4583, https://doi.org/10.5194/acp-17-4565-2017, https://doi.org/10.5194/acp-17-4565-2017, 2017
Short summary
Short summary
We constrain the long-term variation in global CO emissions for 2001–2015. Our results confirm that the decreasing trend of tropospheric CO in the Northern Hemisphere is due to decreasing CO emissions from anthropogenic and biomass burning sources. In particular, we find decreasing CO emissions from the United States and China in the past 15 years, unchanged anthropogenic CO emissions from Europe since 2008, and likely a positive trend from India and southeast Asia.
Chantelle R. Lonsdale, Jennifer D. Hegarty, Karen E. Cady-Pereira, Matthew J. Alvarado, Daven K. Henze, Matthew D. Turner, Shannon L. Capps, John B. Nowak, J. Andy Neuman, Ann M. Middlebrook, Roya Bahreini, Jennifer G. Murphy, Milos Z. Markovic, Trevor C. VandenBoer, Lynn M. Russell, and Amy Jo Scarino
Atmos. Chem. Phys., 17, 2721–2739, https://doi.org/10.5194/acp-17-2721-2017, https://doi.org/10.5194/acp-17-2721-2017, 2017
Short summary
Short summary
This study takes advantage of the high-resolution observations of NH3(g) made by the TES satellite instrument over Bakersfield during the CalNex campaign, along with campaign measurements, to compare CMAQ model results in the San Joaquin Valley, California. Additionally we evaluate the CMAQ bi-directional ammonia flux results using the CARB emissions inventory against these satellite and campaign measurements, not previously explored in combination.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Victor Brovkin, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Charles Curry, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Julia Marshall, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Catherine Prigent, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Paul Steele, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Michiel van Weele, Guido R. van der Werf, Ray Weiss, Christine Wiedinmyer, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Earth Syst. Sci. Data, 8, 697–751, https://doi.org/10.5194/essd-8-697-2016, https://doi.org/10.5194/essd-8-697-2016, 2016
Short summary
Short summary
An accurate assessment of the methane budget is important to understand the atmospheric methane concentrations and trends and to provide realistic pathways for climate change mitigation. The various and diffuse sources of methane as well and its oxidation by a very short lifetime radical challenge this assessment. We quantify the methane sources and sinks as well as their uncertainties based on both bottom-up and top-down approaches provided by a broad international scientific community.
Corinne Le Quéré, Robbie M. Andrew, Josep G. Canadell, Stephen Sitch, Jan Ivar Korsbakken, Glen P. Peters, Andrew C. Manning, Thomas A. Boden, Pieter P. Tans, Richard A. Houghton, Ralph F. Keeling, Simone Alin, Oliver D. Andrews, Peter Anthoni, Leticia Barbero, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Kim Currie, Christine Delire, Scott C. Doney, Pierre Friedlingstein, Thanos Gkritzalis, Ian Harris, Judith Hauck, Vanessa Haverd, Mario Hoppema, Kees Klein Goldewijk, Atul K. Jain, Etsushi Kato, Arne Körtzinger, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Joe R. Melton, Nicolas Metzl, Frank Millero, Pedro M. S. Monteiro, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Kevin O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Christian Rödenbeck, Joe Salisbury, Ute Schuster, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Benjamin D. Stocker, Adrienne J. Sutton, Taro Takahashi, Hanqin Tian, Bronte Tilbrook, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Nicolas Viovy, Anthony P. Walker, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 8, 605–649, https://doi.org/10.5194/essd-8-605-2016, https://doi.org/10.5194/essd-8-605-2016, 2016
Short summary
Short summary
The Global Carbon Budget 2016 is the 11th annual update of emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land, and ocean. This data synthesis brings together measurements, statistical information, and analyses of model results in order to provide an assessment of the global carbon budget and their uncertainties for years 1959 to 2015, with a projection for year 2016.
Camilla Weum Stjern, Bjørn Hallvard Samset, Gunnar Myhre, Huisheng Bian, Mian Chin, Yanko Davila, Frank Dentener, Louisa Emmons, Johannes Flemming, Amund Søvde Haslerud, Daven Henze, Jan Eiof Jonson, Tom Kucsera, Marianne Tronstad Lund, Michael Schulz, Kengo Sudo, Toshihiko Takemura, and Simone Tilmes
Atmos. Chem. Phys., 16, 13579–13599, https://doi.org/10.5194/acp-16-13579-2016, https://doi.org/10.5194/acp-16-13579-2016, 2016
Short summary
Short summary
Air pollution can reach distant regions through intercontinental transport. Here we first present results from the Hemispheric Transport of Air Pollution Phase 2 exercise, where many models performed the same set of coordinated emission-reduction experiments. We find that mitigations have considerable extra-regional effects, and show that this is particularly true for black carbon emissions, as long-range transport elevates aerosols to higher levels where their radiative influence is stronger.
Zeli Tan, Qianlai Zhuang, Daven K. Henze, Christian Frankenberg, Ed Dlugokencky, Colm Sweeney, Alexander J. Turner, Motoki Sasakawa, and Toshinobu Machida
Atmos. Chem. Phys., 16, 12649–12666, https://doi.org/10.5194/acp-16-12649-2016, https://doi.org/10.5194/acp-16-12649-2016, 2016
Short summary
Short summary
Methane emissions from the pan-Arctic could be important in understanding the global carbon cycle but are still poorly constrained to date. This study demonstrated that satellite retrievals can be used to reduce the uncertainty of the estimates of these emissions. We also provided additional evidence for the existence of large methane emissions from pan-Arctic lakes in the Siberian yedoma permafrost region. We found that biogeochemical models should be improved for better estimates.
Fang Zhao, Ning Zeng, Ghassem Asrar, Pierre Friedlingstein, Akihiko Ito, Atul Jain, Eugenia Kalnay, Etsushi Kato, Charles D. Koven, Ben Poulter, Rashid Rafique, Stephen Sitch, Shijie Shu, Beni Stocker, Nicolas Viovy, Andy Wiltshire, and Sonke Zaehle
Biogeosciences, 13, 5121–5137, https://doi.org/10.5194/bg-13-5121-2016, https://doi.org/10.5194/bg-13-5121-2016, 2016
Short summary
Short summary
The increasing seasonality of atmospheric CO2 is strongly linked with enhanced land vegetation activities in the last 5 decades, for which the importance of increasing CO2, climate and land use/cover change was evaluated in single model studies (Zeng et al., 2014; Forkel et al., 2016). Here we examine the relative importance of these factors in multiple models. Our results highlight models can show similar results in some benchmarks with different underlying regional dynamics.
Xiyan Xu, William J. Riley, Charles D. Koven, Dave P. Billesbach, Rachel Y.-W. Chang, Róisín Commane, Eugénie S. Euskirchen, Sean Hartery, Yoshinobu Harazono, Hiroki Iwata, Kyle C. McDonald, Charles E. Miller, Walter C. Oechel, Benjamin Poulter, Naama Raz-Yaseef, Colm Sweeney, Margaret Torn, Steven C. Wofsy, Zhen Zhang, and Donatella Zona
Biogeosciences, 13, 5043–5056, https://doi.org/10.5194/bg-13-5043-2016, https://doi.org/10.5194/bg-13-5043-2016, 2016
Short summary
Short summary
Wetlands are the largest global natural methane source. Peat-rich bogs and fens lying between 50°N and 70°N contribute 10–30% to this source. The predictive capability of the seasonal methane cycle can directly affect the estimation of global methane budget. We present multiscale methane seasonal emission by observations and modeling and find that the uncertainties in predicting the seasonal methane emissions are from the wetland extent, cold-season CH4 production and CH4 transport processes.
Joshua B. Fisher, Munish Sikka, Deborah N. Huntzinger, Christopher Schwalm, and Junjie Liu
Biogeosciences, 13, 4271–4277, https://doi.org/10.5194/bg-13-4271-2016, https://doi.org/10.5194/bg-13-4271-2016, 2016
Short summary
Short summary
Atmospheric models of CO2 require estimates of land CO2 fluxes at relatively high temporal resolutions because of the high rate of atmospheric mixing and wind heterogeneity. However, land CO2 fluxes are often provided at monthly time steps. Here, we describe a new dataset created from 15 global land models and 4 combined products in the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP), which we have converted from monthly to 3-hourly output.
Rosa Maria Roman-Cuesta, Mariana C. Rufino, Martin Herold, Klaus Butterbach-Bahl, Todd S. Rosenstock, Mario Herrero, Stephen Ogle, Changsheng Li, Benjamin Poulter, Louis Verchot, Christopher Martius, John Stuiver, and Sytze de Bruin
Biogeosciences, 13, 4253–4269, https://doi.org/10.5194/bg-13-4253-2016, https://doi.org/10.5194/bg-13-4253-2016, 2016
Short summary
Short summary
This research provides spatial data on gross emissions from the land use sector for the tropical region for the period 2000–2005. This sector contributes up to 24 % of the global emissions, but there is little understanding of where the hotspots of emissions are, how uncertain they are, and what the human activities behind these emissions are. Data provided here should assist countries to identify priority areas for mitigation action and contrast the effectiveness of their current measures.
Zhe Jiang, Kazuyuki Miyazaki, John R. Worden, Jane J. Liu, Dylan B. A. Jones, and Daven K. Henze
Atmos. Chem. Phys., 16, 6537–6546, https://doi.org/10.5194/acp-16-6537-2016, https://doi.org/10.5194/acp-16-6537-2016, 2016
Short summary
Short summary
We quantify the impacts of anthropogenic and natural sources on free tropospheric ozone over the Middle East, using the adjoint of the GEOS-Chem model with updated NOx emissions estimates from an ensemble Kalman filter. We show that the global total contribution of lightning NOx on free tropospheric O3 over the Middle East is about 2 times larger than that from global anthropogenic sources. The summertime free tropospheric O3 enhancement is primarily due to Asian NOx emissions.
Nicolas Bousserez, Daven K. Henze, Brigitte Rooney, Andre Perkins, Kevin J. Wecht, Alexander J. Turner, Vijay Natraj, and John R. Worden
Atmos. Chem. Phys., 16, 6175–6190, https://doi.org/10.5194/acp-16-6175-2016, https://doi.org/10.5194/acp-16-6175-2016, 2016
Short summary
Short summary
This work provides new insight into the observational constraints provided by current low-Earth orbit (LEO) and future potential geostationary (GEO) satellite missions on methane emissions in North America. Using efficient numerical tools, the information content (error reductions, spatial resolution of the constraints) of methane inversions using different instrument configurations (TIR, SWIR and multi-spectral) was estimated at model grid-scale resolution (0.5° × 0.7°).
Zhen Zhang, Niklaus E. Zimmermann, Jed O. Kaplan, and Benjamin Poulter
Biogeosciences, 13, 1387–1408, https://doi.org/10.5194/bg-13-1387-2016, https://doi.org/10.5194/bg-13-1387-2016, 2016
Short summary
Short summary
This study investigates improvements and uncertainties associated with estimating global inundated area and wetland CH4 emissions using TOPMODEL. Different topographic information and catchment aggregation schemes are evaluated against seasonal and permanently inundated wetland observations. Reducing uncertainty in prognostic wetland dynamics modeling must take into account forcing data as well as topographic scaling schemes.
Xia Zhang, Kevin R. Gurney, Peter Rayner, David Baker, and Yu-ping Liu
Atmos. Chem. Phys., 16, 1907–1918, https://doi.org/10.5194/acp-16-1907-2016, https://doi.org/10.5194/acp-16-1907-2016, 2016
Short summary
Short summary
This study presents a complete exploration of the space/time effect of time variations (diurnal, weekly, monthly) in fossil fuel emission on CO2 concentration. The paper identified rectifier effect at local to regional scale that is expected from fossil fuel emission and compared to biospheric rectification, and then extends the subject to column measurement. This study demonstrates the importance of considering sub-annual fossil fuel emissions on model simulation and related studies.
H.-M. Lee, F. Paulot, D. K. Henze, K. Travis, D. J. Jacob, L. H. Pardo, and B. A. Schichtel
Atmos. Chem. Phys., 16, 525–540, https://doi.org/10.5194/acp-16-525-2016, https://doi.org/10.5194/acp-16-525-2016, 2016
Short summary
Short summary
Sources of nitrogen deposition (Ndep) in Federal Class I areas in the US are investigated, identifying unique features in contributions from different species, sectors and locations. Ndep in many parks is impacted by emissions several hundred km away; the role of oxidized vs reduced sources varies regionally. Emissions reductions in the western US most effectively reduce the extent of areas in critical load exceedance, while reductions in the east most effectively reduce exceedance magnitudes.
G. Murray-Tortarolo, P. Friedlingstein, S. Sitch, V. J. Jaramillo, F. Murguía-Flores, A. Anav, Y. Liu, A. Arneth, A. Arvanitis, A. Harper, A. Jain, E. Kato, C. Koven, B. Poulter, B. D. Stocker, A. Wiltshire, S. Zaehle, and N. Zeng
Biogeosciences, 13, 223–238, https://doi.org/10.5194/bg-13-223-2016, https://doi.org/10.5194/bg-13-223-2016, 2016
Short summary
Short summary
We modelled the carbon (C) cycle in Mexico for three different time periods: past (20th century), present (2000-2005) and future (2006-2100). We used different available products to estimate C stocks and fluxes in the country. Contrary to other current estimates, our results showed that Mexico was a C sink and this is likely to continue in the next century (unless the most extreme climate-change scenarios are reached).
M. W. Shephard, C. A. McLinden, K. E. Cady-Pereira, M. Luo, S. G. Moussa, A. Leithead, J. Liggio, R. M. Staebler, A. Akingunola, P. Makar, P. Lehr, J. Zhang, D. K. Henze, D. B. Millet, J. O. Bash, L. Zhu, K. C. Wells, S. L. Capps, S. Chaliyakunnel, M. Gordon, K. Hayden, J. R. Brook, M. Wolde, and S.-M. Li
Atmos. Meas. Tech., 8, 5189–5211, https://doi.org/10.5194/amt-8-5189-2015, https://doi.org/10.5194/amt-8-5189-2015, 2015
Short summary
Short summary
This study provides direct validations of Tropospheric Emission Spectrometer (TES) satellite retrieved profiles against coincident aircraft profiles of carbon monoxide, ammonia, methanol, and formic acid, all of which are of interest for air quality. The comparisons are performed over the Canadian oil sands region during an intensive field campaign in support of the Joint Canada-Alberta Implementation Plan for the Oil Sands Monitoring (JOSM). Initial model evaluations are also provided.
C. Le Quéré, R. Moriarty, R. M. Andrew, J. G. Canadell, S. Sitch, J. I. Korsbakken, P. Friedlingstein, G. P. Peters, R. J. Andres, T. A. Boden, R. A. Houghton, J. I. House, R. F. Keeling, P. Tans, A. Arneth, D. C. E. Bakker, L. Barbero, L. Bopp, J. Chang, F. Chevallier, L. P. Chini, P. Ciais, M. Fader, R. A. Feely, T. Gkritzalis, I. Harris, J. Hauck, T. Ilyina, A. K. Jain, E. Kato, V. Kitidis, K. Klein Goldewijk, C. Koven, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, I. D. Lima, N. Metzl, F. Millero, D. R. Munro, A. Murata, J. E. M. S. Nabel, S. Nakaoka, Y. Nojiri, K. O'Brien, A. Olsen, T. Ono, F. F. Pérez, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, C. Rödenbeck, S. Saito, U. Schuster, J. Schwinger, R. Séférian, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, I. T. van der Laan-Luijkx, G. R. van der Werf, S. van Heuven, D. Vandemark, N. Viovy, A. Wiltshire, S. Zaehle, and N. Zeng
Earth Syst. Sci. Data, 7, 349–396, https://doi.org/10.5194/essd-7-349-2015, https://doi.org/10.5194/essd-7-349-2015, 2015
Short summary
Short summary
Accurate assessment of anthropogenic carbon dioxide emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to understand the global carbon cycle, support the development of climate policies, and project future climate change. We describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on a range of data and models and their interpretation by a broad scientific community.
L. Zhu, D. Henze, J. Bash, G.-R. Jeong, K. Cady-Pereira, M. Shephard, M. Luo, F. Paulot, and S. Capps
Atmos. Chem. Phys., 15, 12823–12843, https://doi.org/10.5194/acp-15-12823-2015, https://doi.org/10.5194/acp-15-12823-2015, 2015
Short summary
Short summary
We implement new diurnal variation scheme for ammonia livestock emissions and bidirectional exchange scheme and its adjoint in the GEOS-Chem global chemical transport model. Updated diurnal variability improves modeled-to-hourly in situ measurements comparison. The ammonium soil pool in the bidirectional exchange model largely extends the ammonia lifetime in the atmosphere. Large model biases remain as livestock emissions are still underestimated.
F. Deng, D. B. A. Jones, T. W. Walker, M. Keller, K. W. Bowman, D. K. Henze, R. Nassar, E. A. Kort, S. C. Wofsy, K. A. Walker, A. E. Bourassa, and D. A. Degenstein
Atmos. Chem. Phys., 15, 11773–11788, https://doi.org/10.5194/acp-15-11773-2015, https://doi.org/10.5194/acp-15-11773-2015, 2015
Short summary
Short summary
The upper troposphere and lower stratosphere (UTLS) is characterized by strong gradients in the distribution of long-lived tracers, which are sensitive to discrepancies in transport in models. We found that our model overestimates CO2 in the polar UTLS through comparison of modeled CO2 with aircraft observations. We then corrected the modeled CO2 and quantified the impact of the correction on the flux estimates using an atmospheric model together with atmospheric CO2 measured from a satellite.
K. C. Wells, D. B. Millet, N. Bousserez, D. K. Henze, S. Chaliyakunnel, T. J. Griffis, Y. Luan, E. J. Dlugokencky, R. G. Prinn, S. O'Doherty, R. F. Weiss, G. S. Dutton, J. W. Elkins, P. B. Krummel, R. Langenfelds, L. P. Steele, E. A. Kort, S. C. Wofsy, and T. Umezawa
Geosci. Model Dev., 8, 3179–3198, https://doi.org/10.5194/gmd-8-3179-2015, https://doi.org/10.5194/gmd-8-3179-2015, 2015
Short summary
Short summary
This paper introduces a new inversion framework for N2O using GEOS-Chem and its adjoint, which we employed in a series of observing system simulation experiments to evaluate the source and sink constraints provided by surface and aircraft-based N2O measurements. We also applied a new approach for estimating a posteriori uncertainty for high-dimensional inversions, and used it to quantify the spatial and temporal resolution of N2O emission constraints achieved with the current observing network.
Y. Zhao, L. Zhang, Y. Pan, Y. Wang, F. Paulot, and D. K. Henze
Atmos. Chem. Phys., 15, 10905–10924, https://doi.org/10.5194/acp-15-10905-2015, https://doi.org/10.5194/acp-15-10905-2015, 2015
Short summary
Short summary
Rapid Asian industrialization has led to increased atmospheric nitrogen deposition downwind. This work analyzes the sources and processes controlling atmospheric nitrogen deposition to the northwestern Pacific. Both nitrogen emissions and meteorology, largely controlled by the East Asian Monsoon, determine the seasonality of nitrogen deposition. Ascribing deposition over the marginal seas to nitrogen sources from different regions and sectors shows important contribution from fertilizer use.
P. D. Hamer, K. W. Bowman, D. K. Henze, J.-L. Attié, and V. Marécal
Atmos. Chem. Phys., 15, 10645–10667, https://doi.org/10.5194/acp-15-10645-2015, https://doi.org/10.5194/acp-15-10645-2015, 2015
Short summary
Short summary
Using a simplified air quality forecasting model, we explore how characteristics of air quality observations affect our ability to understand and predict ozone air pollution. We show that the photochemical conditions can strongly influence the observing priorities for ozone prediction, such as which species are observed and how well, when, and how frequently. High-freqency observations of ozone, NOx and HCHO in combination during the morning and afternoon are particularly advantageous.
L. Zhang, D. K. Henze, G. A. Grell, G. R. Carmichael, N. Bousserez, Q. Zhang, O. Torres, C. Ahn, Z. Lu, J. Cao, and Y. Mao
Atmos. Chem. Phys., 15, 10281–10308, https://doi.org/10.5194/acp-15-10281-2015, https://doi.org/10.5194/acp-15-10281-2015, 2015
Short summary
Short summary
We attempt to reduce uncertainties in BC emissions and improve BC model simulations by developing top-down, spatially resolved, estimates of BC emissions through assimilation of OMI observations of aerosol absorption optical depth (AAOD) with the GEOS-Chem model and its adjoint for April and October of 2006. Despite the limitations and uncertainties, using OMI AAOD to constrain BC sources we are able to improve model representation of BC distributions, particularly over China.
N. Meskhidze, M. S. Johnson, D. Hurley, and K. Dawson
Biogeosciences Discuss., https://doi.org/10.5194/bgd-12-14377-2015, https://doi.org/10.5194/bgd-12-14377-2015, 2015
Revised manuscript not accepted
J. R. Worden, A. J. Turner, A. Bloom, S. S. Kulawik, J. Liu, M. Lee, R. Weidner, K. Bowman, C. Frankenberg, R. Parker, and V. H. Payne
Atmos. Meas. Tech., 8, 3433–3445, https://doi.org/10.5194/amt-8-3433-2015, https://doi.org/10.5194/amt-8-3433-2015, 2015
Short summary
Short summary
Here we demonstrate the potential for estimating lower tropospheric CH4 concentrations through the combination of free-tropospheric methane measurements from the Aura Tropospheric Emission Spectrometer (TES) and XCH4 (dry-mole air fraction of methane) from the Greenhouse Gases Observing Satellite - Thermal And Near-infrared for carbon Observation (GOSAT TANSO).
T. Launois, P. Peylin, S. Belviso, and B. Poulter
Atmos. Chem. Phys., 15, 9285–9312, https://doi.org/10.5194/acp-15-9285-2015, https://doi.org/10.5194/acp-15-9285-2015, 2015
B. Poulter, N. MacBean, A. Hartley, I. Khlystova, O. Arino, R. Betts, S. Bontemps, M. Boettcher, C. Brockmann, P. Defourny, S. Hagemann, M. Herold, G. Kirches, C. Lamarche, D. Lederer, C. Ottlé, M. Peters, and P. Peylin
Geosci. Model Dev., 8, 2315–2328, https://doi.org/10.5194/gmd-8-2315-2015, https://doi.org/10.5194/gmd-8-2315-2015, 2015
Short summary
Short summary
Land cover is an essential variable in earth system models and determines conditions driving biogeochemical, energy and water exchange between ecosystems and the atmosphere. A methodology is presented for mapping plant functional types used in global vegetation models from a updated land cover classification system and open-source conversion tool, resulting from a consultative process among map producers and modelers engaged in the European Space Agency’s Land Cover Climate Change Initiative.
L. Molina, G. Broquet, P. Imbach, F. Chevallier, B. Poulter, D. Bonal, B. Burban, M. Ramonet, L. V. Gatti, S. C. Wofsy, J. W. Munger, E. Dlugokencky, and P. Ciais
Atmos. Chem. Phys., 15, 8423–8438, https://doi.org/10.5194/acp-15-8423-2015, https://doi.org/10.5194/acp-15-8423-2015, 2015
D. Zhu, S. S. Peng, P. Ciais, N. Viovy, A. Druel, M. Kageyama, G. Krinner, P. Peylin, C. Ottlé, S. L. Piao, B. Poulter, D. Schepaschenko, and A. Shvidenko
Geosci. Model Dev., 8, 2263–2283, https://doi.org/10.5194/gmd-8-2263-2015, https://doi.org/10.5194/gmd-8-2263-2015, 2015
Short summary
Short summary
This study presents a new parameterization of the vegetation dynamics module in the process-based ecosystem model ORCHIDEE for mid- to high-latitude regions, showing significant improvements in the modeled distribution of tree functional types north of 40°N. A new set of metrics is proposed to quantify the performance of ORCHIDEE, which integrates uncertainties in the observational data sets.
Y. H. Mao, Q. B. Li, D. K. Henze, Z. Jiang, D. B. A. Jones, M. Kopacz, C. He, L. Qi, M. Gao, W.-M. Hao, and K.-N. Liou
Atmos. Chem. Phys., 15, 7685–7702, https://doi.org/10.5194/acp-15-7685-2015, https://doi.org/10.5194/acp-15-7685-2015, 2015
J. J. Guerrette and D. K. Henze
Geosci. Model Dev., 8, 1857–1876, https://doi.org/10.5194/gmd-8-1857-2015, https://doi.org/10.5194/gmd-8-1857-2015, 2015
Short summary
Short summary
WRFPLUS-Chem is a coupled meteorology-chemistry adjoint and tangent linear model, with applications in sensitivity analysis and four-dimensional variational data assimilation. The linearized models are verified against finite difference approximations from the nonlinear forward model, WRF-Chem. A new checkpointing scheme enables data assimilation beyond 6h. New capabilities are demonstrated in an emission sensitivity study.
Z. Jiang, D. B. A. Jones, J. Worden, H. M. Worden, D. K. Henze, and Y. X. Wang
Atmos. Chem. Phys., 15, 6801–6814, https://doi.org/10.5194/acp-15-6801-2015, https://doi.org/10.5194/acp-15-6801-2015, 2015
Short summary
Short summary
We present a high-resolution (0.5 x 0.667) regional CO inversion over North America in the period of June 2004–May 2005, using a combination of GEOS-Chem model and MOPITT CO observations. With optimized lateral boundary conditions, we show that regional inversion analyses can reduce the sensitivity of the CO source estimates to errors in long-range transport and in the distributions of the hydroxyl radical (OH), and consequently, provide better quantification on regional CO source estimates.
C. Le Quéré, R. Moriarty, R. M. Andrew, G. P. Peters, P. Ciais, P. Friedlingstein, S. D. Jones, S. Sitch, P. Tans, A. Arneth, T. A. Boden, L. Bopp, Y. Bozec, J. G. Canadell, L. P. Chini, F. Chevallier, C. E. Cosca, I. Harris, M. Hoppema, R. A. Houghton, J. I. House, A. K. Jain, T. Johannessen, E. Kato, R. F. Keeling, V. Kitidis, K. Klein Goldewijk, C. Koven, C. S. Landa, P. Landschützer, A. Lenton, I. D. Lima, G. Marland, J. T. Mathis, N. Metzl, Y. Nojiri, A. Olsen, T. Ono, S. Peng, W. Peters, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. E. Salisbury, U. Schuster, J. Schwinger, R. Séférian, J. Segschneider, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, G. R. van der Werf, N. Viovy, Y.-P. Wang, R. Wanninkhof, A. Wiltshire, and N. Zeng
Earth Syst. Sci. Data, 7, 47–85, https://doi.org/10.5194/essd-7-47-2015, https://doi.org/10.5194/essd-7-47-2015, 2015
Short summary
Short summary
Carbon dioxide (CO2) emissions from human activities (burning fossil fuels and cement production, deforestation and other land-use change) are set to rise again in 2014.
This study (updated yearly) makes an accurate assessment of anthropogenic CO2 emissions and their redistribution between the atmosphere, ocean, and terrestrial biosphere in order to better understand the global carbon cycle, support the development of climate policies, and project future climate change.
B. Gantt, M. S. Johnson, M. Crippa, A. S. H. Prévôt, and N. Meskhidze
Geosci. Model Dev., 8, 619–629, https://doi.org/10.5194/gmd-8-619-2015, https://doi.org/10.5194/gmd-8-619-2015, 2015
S. M. Miller, M. N. Hayek, A. E. Andrews, I. Fung, and J. Liu
Atmos. Chem. Phys., 15, 2903–2914, https://doi.org/10.5194/acp-15-2903-2015, https://doi.org/10.5194/acp-15-2903-2015, 2015
Z. Jiang, D. B. A. Jones, H. M. Worden, and D. K. Henze
Atmos. Chem. Phys., 15, 1521–1537, https://doi.org/10.5194/acp-15-1521-2015, https://doi.org/10.5194/acp-15-1521-2015, 2015
Short summary
Short summary
Using MOPITT (version 5) tropospheric profile and surface layer retrievals, we constrain global CO emissions in the period of June 2004 – May 2005. The inversions suggest a reduction in CO emission in the tropics and an increase in emissions at middle and high latitudes. The results demonstrate that the use of the surface layer retrievals from MOPITT can significantly mitigate the potential impacts of model bias in OH and long-range transport on CO emission estimates.
S. Sitch, P. Friedlingstein, N. Gruber, S. D. Jones, G. Murray-Tortarolo, A. Ahlström, S. C. Doney, H. Graven, C. Heinze, C. Huntingford, S. Levis, P. E. Levy, M. Lomas, B. Poulter, N. Viovy, S. Zaehle, N. Zeng, A. Arneth, G. Bonan, L. Bopp, J. G. Canadell, F. Chevallier, P. Ciais, R. Ellis, M. Gloor, P. Peylin, S. L. Piao, C. Le Quéré, B. Smith, Z. Zhu, and R. Myneni
Biogeosciences, 12, 653–679, https://doi.org/10.5194/bg-12-653-2015, https://doi.org/10.5194/bg-12-653-2015, 2015
Z. M. Loh, R. M. Law, K. D. Haynes, P. B. Krummel, L. P. Steele, P. J. Fraser, S. D. Chambers, and A. G. Williams
Atmos. Chem. Phys., 15, 305–317, https://doi.org/10.5194/acp-15-305-2015, https://doi.org/10.5194/acp-15-305-2015, 2015
Short summary
Short summary
The paper compares methane observations at Cape Grim, Tasmania, with model-simulated methane to better constrain methane fluxes from southeastern Australia. Inventory estimates of anthropogenic methane emissions appear to be supported by observed atmospheric methane. A missing methane source in springtime (October to November) is tentatively attributed to wetland emissions.
Z. Jiang, J. R. Worden, D. B. A. Jones, J.-T. Lin, W. W. Verstraeten, and D. K. Henze
Atmos. Chem. Phys., 15, 99–112, https://doi.org/10.5194/acp-15-99-2015, https://doi.org/10.5194/acp-15-99-2015, 2015
Short summary
Short summary
We use satellite measurements of O3, CO and NO2 from TES, MOPITT and OMI to quantify O3 precursor emissions for 2006 and their impact on free tropospheric O3 over northeastern Asia. Using the adjoint of GEOS-Chem, we found that Chinese emissions have the largest influence on the free tropospheric O3. The contributions from lightning NOx in summer and India and southeastern Asia emissions in winter are sizable, comparable with Chinese emissions.
J. S. Wang, S. R. Kawa, J. Eluszkiewicz, D. F. Baker, M. Mountain, J. Henderson, T. Nehrkorn, and T. S. Zaccheo
Atmos. Chem. Phys., 14, 12897–12914, https://doi.org/10.5194/acp-14-12897-2014, https://doi.org/10.5194/acp-14-12897-2014, 2014
Short summary
Short summary
Our simulations suggest that CO2 measurements by the planned ASCENDS satellite could improve estimates of emissions and uptake by up to 50% at the weekly 1° by 1° scale, 40-75% at the annual biome scale, and 65-85% for the whole of North America. The results depend on the laser wavelength used and the assumed precision of the measurements. The resulting biome flux uncertainties, 0.01-0.06 billion tons of C per year, would satisfy one definition of mission success.
C. Yue, P. Ciais, P. Cadule, K. Thonicke, S. Archibald, B. Poulter, W. M. Hao, S. Hantson, F. Mouillot, P. Friedlingstein, F. Maignan, and N. Viovy
Geosci. Model Dev., 7, 2747–2767, https://doi.org/10.5194/gmd-7-2747-2014, https://doi.org/10.5194/gmd-7-2747-2014, 2014
Short summary
Short summary
ORCHIDEE-SPITFIRE model could moderately capture the decadal trend and variation of burned area during the 20th century, and the spatial and temporal patterns of contemporary vegetation fires. The model has a better performance in simulating fires for regions dominated by climate-driven fires, such as boreal forests. However, it has limited capability to reproduce the infrequent but important large fires in different ecosystems, where urgent model improvement is needed in the future.
Q. Zhu, Q. Zhuang, D. Henze, K. Bowman, M. Chen, Y. Liu, Y. He, H. Matsueda, T. Machida, Y. Sawa, and W. Oechel
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-22587-2014, https://doi.org/10.5194/acpd-14-22587-2014, 2014
Revised manuscript not accepted
J. B. Fisher, M. Sikka, W. C. Oechel, D. N. Huntzinger, J. R. Melton, C. D. Koven, A. Ahlström, M. A. Arain, I. Baker, J. M. Chen, P. Ciais, C. Davidson, M. Dietze, B. El-Masri, D. Hayes, C. Huntingford, A. K. Jain, P. E. Levy, M. R. Lomas, B. Poulter, D. Price, A. K. Sahoo, K. Schaefer, H. Tian, E. Tomelleri, H. Verbeeck, N. Viovy, R. Wania, N. Zeng, and C. E. Miller
Biogeosciences, 11, 4271–4288, https://doi.org/10.5194/bg-11-4271-2014, https://doi.org/10.5194/bg-11-4271-2014, 2014
P. Ciais, A. J. Dolman, A. Bombelli, R. Duren, A. Peregon, P. J. Rayner, C. Miller, N. Gobron, G. Kinderman, G. Marland, N. Gruber, F. Chevallier, R. J. Andres, G. Balsamo, L. Bopp, F.-M. Bréon, G. Broquet, R. Dargaville, T. J. Battin, A. Borges, H. Bovensmann, M. Buchwitz, J. Butler, J. G. Canadell, R. B. Cook, R. DeFries, R. Engelen, K. R. Gurney, C. Heinze, M. Heimann, A. Held, M. Henry, B. Law, S. Luyssaert, J. Miller, T. Moriyama, C. Moulin, R. B. Myneni, C. Nussli, M. Obersteiner, D. Ojima, Y. Pan, J.-D. Paris, S. L. Piao, B. Poulter, S. Plummer, S. Quegan, P. Raymond, M. Reichstein, L. Rivier, C. Sabine, D. Schimel, O. Tarasova, R. Valentini, R. Wang, G. van der Werf, D. Wickland, M. Williams, and C. Zehner
Biogeosciences, 11, 3547–3602, https://doi.org/10.5194/bg-11-3547-2014, https://doi.org/10.5194/bg-11-3547-2014, 2014
Z. Shen, J. Liu, L. W. Horowitz, D. K. Henze, S. Fan, Levy II H., D. L. Mauzerall, J.-T. Lin, and S. Tao
Atmos. Chem. Phys., 14, 6315–6327, https://doi.org/10.5194/acp-14-6315-2014, https://doi.org/10.5194/acp-14-6315-2014, 2014
C. Le Quéré, G. P. Peters, R. J. Andres, R. M. Andrew, T. A. Boden, P. Ciais, P. Friedlingstein, R. A. Houghton, G. Marland, R. Moriarty, S. Sitch, P. Tans, A. Arneth, A. Arvanitis, D. C. E. Bakker, L. Bopp, J. G. Canadell, L. P. Chini, S. C. Doney, A. Harper, I. Harris, J. I. House, A. K. Jain, S. D. Jones, E. Kato, R. F. Keeling, K. Klein Goldewijk, A. Körtzinger, C. Koven, N. Lefèvre, F. Maignan, A. Omar, T. Ono, G.-H. Park, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. Schwinger, J. Segschneider, B. D. Stocker, T. Takahashi, B. Tilbrook, S. van Heuven, N. Viovy, R. Wanninkhof, A. Wiltshire, and S. Zaehle
Earth Syst. Sci. Data, 6, 235–263, https://doi.org/10.5194/essd-6-235-2014, https://doi.org/10.5194/essd-6-235-2014, 2014
M. Balzarolo, S. Boussetta, G. Balsamo, A. Beljaars, F. Maignan, J.-C. Calvet, S. Lafont, A. Barbu, B. Poulter, F. Chevallier, C. Szczypta, and D. Papale
Biogeosciences, 11, 2661–2678, https://doi.org/10.5194/bg-11-2661-2014, https://doi.org/10.5194/bg-11-2661-2014, 2014
F. Deng, D. B. A. Jones, D. K. Henze, N. Bousserez, K. W. Bowman, J. B. Fisher, R. Nassar, C. O'Dell, D. Wunch, P. O. Wennberg, E. A. Kort, S. C. Wofsy, T. Blumenstock, N. M. Deutscher, D. W. T. Griffith, F. Hase, P. Heikkinen, V. Sherlock, K. Strong, R. Sussmann, and T. Warneke
Atmos. Chem. Phys., 14, 3703–3727, https://doi.org/10.5194/acp-14-3703-2014, https://doi.org/10.5194/acp-14-3703-2014, 2014
K. C. Wells, D. B. Millet, K. E. Cady-Pereira, M. W. Shephard, D. K. Henze, N. Bousserez, E. C. Apel, J. de Gouw, C. Warneke, and H. B. Singh
Atmos. Chem. Phys., 14, 2555–2570, https://doi.org/10.5194/acp-14-2555-2014, https://doi.org/10.5194/acp-14-2555-2014, 2014
C. R. Schwalm, D. N. Huntinzger, R. B. Cook, Y. Wei, I. T. Baker, R. P. Neilson, B. Poulter, P. Caldwell, G. Sun, H. Q. Tian, and N. Zeng
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-1801-2014, https://doi.org/10.5194/bgd-11-1801-2014, 2014
Revised manuscript not accepted
E. L. Yates, L. T. Iraci, M. C. Roby, R. B. Pierce, M. S. Johnson, P. J. Reddy, J. M. Tadić, M. Loewenstein, and W. Gore
Atmos. Chem. Phys., 13, 12481–12494, https://doi.org/10.5194/acp-13-12481-2013, https://doi.org/10.5194/acp-13-12481-2013, 2013
D. N. Huntzinger, C. Schwalm, A. M. Michalak, K. Schaefer, A. W. King, Y. Wei, A. Jacobson, S. Liu, R. B. Cook, W. M. Post, G. Berthier, D. Hayes, M. Huang, A. Ito, H. Lei, C. Lu, J. Mao, C. H. Peng, S. Peng, B. Poulter, D. Riccuito, X. Shi, H. Tian, W. Wang, N. Zeng, F. Zhao, and Q. Zhu
Geosci. Model Dev., 6, 2121–2133, https://doi.org/10.5194/gmd-6-2121-2013, https://doi.org/10.5194/gmd-6-2121-2013, 2013
C. Yue, P. Ciais, S. Luyssaert, P. Cadule, J. Harden, J. Randerson, V. Bellassen, T. Wang, S. L. Piao, B. Poulter, and N. Viovy
Biogeosciences, 10, 8233–8252, https://doi.org/10.5194/bg-10-8233-2013, https://doi.org/10.5194/bg-10-8233-2013, 2013
B. S. Meland, X. Xu, D. K. Henze, and J. Wang
Atmos. Meas. Tech., 6, 3441–3457, https://doi.org/10.5194/amt-6-3441-2013, https://doi.org/10.5194/amt-6-3441-2013, 2013
C. Ottlé, J. Lescure, F. Maignan, B. Poulter, T. Wang, and N. Delbart
Earth Syst. Sci. Data, 5, 331–348, https://doi.org/10.5194/essd-5-331-2013, https://doi.org/10.5194/essd-5-331-2013, 2013
P. C. Stoy, M. C. Dietze, A. D. Richardson, R. Vargas, A. G. Barr, R. S. Anderson, M. A. Arain, I. T. Baker, T. A. Black, J. M. Chen, R. B. Cook, C. M. Gough, R. F. Grant, D. Y. Hollinger, R. C. Izaurralde, C. J. Kucharik, P. Lafleur, B. E. Law, S. Liu, E. Lokupitiya, Y. Luo, J. W. Munger, C. Peng, B. Poulter, D. T. Price, D. M. Ricciuto, W. J. Riley, A. K. Sahoo, K. Schaefer, C. R. Schwalm, H. Tian, H. Verbeeck, and E. Weng
Biogeosciences, 10, 6893–6909, https://doi.org/10.5194/bg-10-6893-2013, https://doi.org/10.5194/bg-10-6893-2013, 2013
M. S. Johnson and N. Meskhidze
Geosci. Model Dev., 6, 1137–1155, https://doi.org/10.5194/gmd-6-1137-2013, https://doi.org/10.5194/gmd-6-1137-2013, 2013
R. Wania, J. R. Melton, E. L. Hodson, B. Poulter, B. Ringeval, R. Spahni, T. Bohn, C. A. Avis, G. Chen, A. V. Eliseev, P. O. Hopcroft, W. J. Riley, Z. M. Subin, H. Tian, P. M. van Bodegom, T. Kleinen, Z. C. Yu, J. S. Singarayer, S. Zürcher, D. P. Lettenmaier, D. J. Beerling, S. N. Denisov, C. Prigent, F. Papa, and J. O. Kaplan
Geosci. Model Dev., 6, 617–641, https://doi.org/10.5194/gmd-6-617-2013, https://doi.org/10.5194/gmd-6-617-2013, 2013
C. Le Quéré, R. J. Andres, T. Boden, T. Conway, R. A. Houghton, J. I. House, G. Marland, G. P. Peters, G. R. van der Werf, A. Ahlström, R. M. Andrew, L. Bopp, J. G. Canadell, P. Ciais, S. C. Doney, C. Enright, P. Friedlingstein, C. Huntingford, A. K. Jain, C. Jourdain, E. Kato, R. F. Keeling, K. Klein Goldewijk, S. Levis, P. Levy, M. Lomas, B. Poulter, M. R. Raupach, J. Schwinger, S. Sitch, B. D. Stocker, N. Viovy, S. Zaehle, and N. Zeng
Earth Syst. Sci. Data, 5, 165–185, https://doi.org/10.5194/essd-5-165-2013, https://doi.org/10.5194/essd-5-165-2013, 2013
J. R. Melton, R. Wania, E. L. Hodson, B. Poulter, B. Ringeval, R. Spahni, T. Bohn, C. A. Avis, D. J. Beerling, G. Chen, A. V. Eliseev, S. N. Denisov, P. O. Hopcroft, D. P. Lettenmaier, W. J. Riley, J. S. Singarayer, Z. M. Subin, H. Tian, S. Zürcher, V. Brovkin, P. M. van Bodegom, T. Kleinen, Z. C. Yu, and J. O. Kaplan
Biogeosciences, 10, 753–788, https://doi.org/10.5194/bg-10-753-2013, https://doi.org/10.5194/bg-10-753-2013, 2013
Related subject area
Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
A CO2–Δ14CO2 inversion setup for estimating European fossil CO2 emissions
Maximum ozone concentrations in the southwestern US and Texas: implications of the growing predominance of the background contribution
Derivation of atmospheric reaction mechanisms for volatile organic compounds by the SAPRC mechanism generation system (MechGen)
Seasonal, regional, and vertical characteristics of high-carbon-monoxide plumes along with their associated ozone anomalies, as seen by IAGOS between 2002 and 2019
The potential of drone observations to improve air quality predictions by 4D-Var
Process analysis of elevated concentrations of organic acids at Whiteface Mountain, New York
Ozone source attribution in polluted European areas during summer 2017 as simulated with MECO(n)
Opinion: Challenges and needs of tropospheric chemical mechanism development
The atmospheric oxidizing capacity in China – Part 2: Sensitivity to emissions of primary pollutants
Role of chemical production and depositional losses on formaldehyde in the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM)
Review of source analyses of ambient volatile organic compounds considering reactive losses: methods of reducing loss effects, impacts of losses, and sources
Interpreting summertime hourly variation of NO2 columns with implications for geostationary satellite applications
An investigation into atmospheric nitrous acid (HONO) processes in South Korea
Performance evaluation of UKESM1 for surface ozone across the pan-tropics
Constraining light dependency in modeled emissions through comparison to observed biogenic volatile organic compound (BVOC) concentrations in a southeastern US forest
A global re-analysis of regionally resolved emissions and atmospheric mole fractions of SF6 for the period 2005–2021
Tropospheric ozone precursors: global and regional distributions, trends, and variability
The contribution of transport emissions to ozone mixing ratios and methane lifetime in 2015 and 2050 in the Shared Socioeconomic Pathways (SSPs)
Ether and ester formation from peroxy radical recombination: a qualitative reaction channel analysis
ACEIC: a comprehensive anthropogenic chlorine emission inventory for China
Impact of methane and other precursor emission reductions on surface ozone in Europe: scenario analysis using the European Monitoring and Evaluation Programme (EMEP) Meteorological Synthesizing Centre – West (MSC-W) model
Investigating the response of China’s surface ozone concentration to the future changes of multiple factors
Natural emissions of VOC and NOx over Africa constrained by TROPOMI HCHO and NO2 data using the MAGRITTEv1.1 model
Verifying national inventory-based combustion emissions of CO2 across the UK and mainland Europe using satellite observations of atmospheric CO and CO2
An improved estimate of inorganic iodine emissions from the ocean using a coupled surface microlayer box model
Impact of improved representation of volatile organic compound emissions and production of NOx reservoirs on modeled urban ozone production
The effect of different climate and air quality policies in China on in situ ozone production in Beijing
Assessing the relative impacts of satellite ozone and its precursor observations to improve global tropospheric ozone analysis using multiple chemical reanalysis systems
Evaluating present-day and future impacts of agricultural ammonia emissions on atmospheric chemistry and climate
Enhancing long-term trend simulation of the global tropospheric hydroxyl (TOH) and its drivers from 2005 to 2019: a synergistic integration of model simulations and satellite observations
Intercomparison of GEOS-Chem and CAM-chem tropospheric oxidant chemistry within the Community Earth System Model version 2 (CESM2)
Development of a detailed gaseous oxidation scheme of naphthalene for secondary organic aerosol (SOA) formation and speciation
Air pollution satellite-based CO2 emission inversion: system evaluation, sensitivity analysis, and future perspective
Anthropogenic emission controls reduce summertime ozone-temperature sensitivity in the United States
Large contributions of soil emissions to the atmospheric nitrogen budget and their impacts on air quality and temperature rise in North China
Why did ozone concentrations remain high during Shanghai's static management? A statistical and radical-chemistry perspective
Impact of introducing electric vehicles on ground-level O3 and PM2.5 in the Greater Tokyo Area: Yearly trends and the importance of changes in the Urban Heat Island effect
Revising VOC emissions speciation improves the simulation of global background ethane and propane
Changes in South American surface ozone trends: exploring the influences of precursors and extreme events
Evaluating NOx stack plume emissions using a high-resolution atmospheric chemistry model and satellite-derived NO2 columns
NOx emissions in France in 2019–2021 as estimated by the high-spatial-resolution assimilation of TROPOMI NO2 observations
Urban ozone formation and sensitivities to volatile chemical products, cooking emissions, and NOx across the Los Angeles Basin
Aggravated surface O3 pollution primarily driven by meteorological variations in China during the 2020 COVID-19 pandemic lockdown period
Identifying decadal trends in deweathered concentrations of criteria air pollutants in Canadian urban atmospheres with machine learning approaches
Evaluation of modelled versus observed non-methane volatile organic compounds at European Monitoring and Evaluation Programme sites in Europe
Constraining non-methane VOC emissions with TROPOMI HCHO observations: impact on summertime ozone simulation in August 2022 in China
Insights on ozone pollution control in urban areas by decoupling meteorological factors based on machine learning
Revealing the significant acceleration of hydrofluorocarbon (HFC) emissions in eastern Asia through long-term atmospheric observations
Interpreting Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite observations of the diurnal variation in nitrogen dioxide (NO2) over East Asia
An intercomparison of satellite, airborne, and ground-level observations with WRF–CAMx simulations of NO2 columns over Houston, Texas, during the September 2021 TRACER-AQ campaign
Carlos Gómez-Ortiz, Guillaume Monteil, Sourish Basu, and Marko Scholze
Atmos. Chem. Phys., 25, 397–424, https://doi.org/10.5194/acp-25-397-2025, https://doi.org/10.5194/acp-25-397-2025, 2025
Short summary
Short summary
In this paper, we test new implementations of our inverse modeling tool to estimate the weekly and regional CO2 emissions from fossil fuels in Europe. We use synthetic atmospheric observations of CO2 and radiocarbon (14CO2) to trace emissions to their sources, while separating the natural and fossil CO2. Our tool accurately estimates fossil CO2 emissions in densely monitored regions like western/central Europe. This approach aids in developing strategies for reducing CO2 emissions.
David D. Parrish, Ian C. Faloona, and Richard G. Derwent
Atmos. Chem. Phys., 25, 263–289, https://doi.org/10.5194/acp-25-263-2025, https://doi.org/10.5194/acp-25-263-2025, 2025
Short summary
Short summary
Observation-based estimates of contributions to maximum ozone (O3) concentrations show that background O3 can exceed the air quality standard of 70 ppb in the southwestern US, precluding standard attainment. Over the past 4 decades, US anthropogenic O3 has decreased by a factor of ~ 6.3, while wildfire contributions have increased, so that the background now dominates maximum concentrations, even in Los Angeles, and the occurrence of maximum O3 has shifted from the eastern to the western US.
William P. L. Carter, Jia Jiang, John J. Orlando, and Kelley C. Barsanti
Atmos. Chem. Phys., 25, 199–242, https://doi.org/10.5194/acp-25-199-2025, https://doi.org/10.5194/acp-25-199-2025, 2025
Short summary
Short summary
This paper describes the scientific basis for gas-phase atmospheric chemical mechanisms derived using the SAPRC mechanism generation system, MechGen. It can derive mechanisms for most organic compounds with C, H, O, or N atoms, including initial reactions of organics with OH, O3, NO3, and O3P or by photolysis, as well as the reactions of the various types of intermediates that are formed. The paper includes a description of areas of uncertainty where additional research and updates are needed.
Thibaut Lebourgeois, Bastien Sauvage, Pawel Wolff, Béatrice Josse, Virginie Marécal, Yasmine Bennouna, Romain Blot, Damien Boulanger, Hannah Clark, Jean-Marc Cousin, Philippe Nedelec, and Valérie Thouret
Atmos. Chem. Phys., 24, 13975–14004, https://doi.org/10.5194/acp-24-13975-2024, https://doi.org/10.5194/acp-24-13975-2024, 2024
Short summary
Short summary
Our study examines intense-carbon-monoxide (CO) pollution events measured by commercial aircraft from the In-service Aircraft for a Global Observing System (IAGOS) research infrastructure. We combine these measurements with the SOFT-IO model to trace the origin of the observed CO. A comprehensive analysis of the geographical origin, source type, seasonal variation, and ozone levels of these pollution events is provided.
Hassnae Erraji, Philipp Franke, Astrid Lampert, Tobias Schuldt, Ralf Tillmann, Andreas Wahner, and Anne Caroline Lange
Atmos. Chem. Phys., 24, 13913–13934, https://doi.org/10.5194/acp-24-13913-2024, https://doi.org/10.5194/acp-24-13913-2024, 2024
Short summary
Short summary
Four-dimensional variational data assimilation allows for the simultaneous optimisation of initial values and emission rates by using trace-gas profiles from drone observations in a regional air quality model. Assimilated profiles positively impact the representation of air pollutants in the model by improving their vertical distribution and ground-level concentrations. This case study highlights the potential of drone data to enhance air quality analyses including local emission evaluation.
Christopher Lawrence, Mary Barth, John Orlando, Paul Casson, Richard Brandt, Daniel Kelting, Elizabeth Yerger, and Sara Lance
Atmos. Chem. Phys., 24, 13693–13713, https://doi.org/10.5194/acp-24-13693-2024, https://doi.org/10.5194/acp-24-13693-2024, 2024
Short summary
Short summary
This work uses chemical transport and box modeling to study the gas- and aqueous-phase production of organic acid concentrations measured in cloud water at the summit of Whiteface Mountain on 1 July 2018. Isoprene was the major source of formic, acetic, and oxalic acid. Gas-phase chemistry greatly underestimated formic and acetic acid, indicating missing sources, while cloud chemistry was a key source of oxalic acid. More studies of organic acids are required to better constrain their sources.
Markus Kilian, Volker Grewe, Patrick Jöckel, Astrid Kerkweg, Mariano Mertens, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 24, 13503–13523, https://doi.org/10.5194/acp-24-13503-2024, https://doi.org/10.5194/acp-24-13503-2024, 2024
Short summary
Short summary
Anthropogenic emissions are a major source of precursors of tropospheric ozone. As ozone formation is highly non-linear, we apply a global–regional chemistry–climate model with a source attribution method (tagging) to quantify the contribution of anthropogenic emissions to ozone. Our analysis shows that the contribution of European anthropogenic emissions largely increases during large ozone periods, indicating that emissions from these sectors drive ozone values.
Barbara Ervens, Andrew Rickard, Bernard Aumont, William P. L. Carter, Max McGillen, Abdelwahid Mellouki, John Orlando, Bénédicte Picquet-Varrault, Paul Seakins, William R. Stockwell, Luc Vereecken, and Timothy J. Wallington
Atmos. Chem. Phys., 24, 13317–13339, https://doi.org/10.5194/acp-24-13317-2024, https://doi.org/10.5194/acp-24-13317-2024, 2024
Short summary
Short summary
Chemical mechanisms describe the chemical processes in atmospheric models that are used to describe the changes in the atmospheric composition. Therefore, accurate chemical mechanisms are necessary to predict the evolution of air pollution and climate change. The article describes all steps that are needed to build chemical mechanisms and discusses the advances and needs of experimental and theoretical research activities needed to build reliable chemical mechanisms.
Jianing Dai, Guy P. Brasseur, Mihalis Vrekoussis, Maria Kanakidou, Kun Qu, Yijuan Zhang, Hongliang Zhang, and Tao Wang
Atmos. Chem. Phys., 24, 12943–12962, https://doi.org/10.5194/acp-24-12943-2024, https://doi.org/10.5194/acp-24-12943-2024, 2024
Short summary
Short summary
This paper employs a regional chemical transport model to quantify the sensitivity of air pollutants and photochemical parameters to specified emission reductions in China for representative winter and summer conditions. The study provides insights into further air quality control in China with reduced primary emissions.
T. Nash Skipper, Emma L. D'Ambro, Forwood C. Wiser, V. Faye McNeill, Rebecca H. Schwantes, Barron H. Henderson, Ivan R. Piletic, Colleen B. Baublitz, Jesse O. Bash, Andrew R. Whitehill, Lukas C. Valin, Asher P. Mouat, Jennifer Kaiser, Glenn M. Wolfe, Jason M. St. Clair, Thomas F. Hanisco, Alan Fried, Bryan K. Place, and Havala O.T. Pye
Atmos. Chem. Phys., 24, 12903–12924, https://doi.org/10.5194/acp-24-12903-2024, https://doi.org/10.5194/acp-24-12903-2024, 2024
Short summary
Short summary
We develop the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM) version 2 to improve predictions of formaldehyde in ambient air compared to satellite-, aircraft-, and ground-based observations. With the updated chemistry, we estimate the cancer risk from inhalation exposure to ambient formaldehyde across the contiguous USA and predict that 40 % of this risk is controllable through reductions in anthropogenic emissions of nitrogen oxides and reactive organic carbon.
Baoshuang Liu, Yao Gu, Yutong Wu, Qili Dai, Shaojie Song, Yinchang Feng, and Philip K. Hopke
Atmos. Chem. Phys., 24, 12861–12879, https://doi.org/10.5194/acp-24-12861-2024, https://doi.org/10.5194/acp-24-12861-2024, 2024
Short summary
Short summary
Reactive loss of volatile organic compounds (VOCs) is a long-term issue yet to be resolved in VOC source analyses. We assess common methods of, and existing issues in, reducing losses, impacts of losses, and sources in current source analyses. We offer a potential supporting role for solving issues of VOC conversion. Source analyses of consumed VOCs that reacted to produce ozone and secondary organic aerosols can play an important role in the effective control of secondary pollution in air.
Deepangsu Chatterjee, Randall V. Martin, Chi Li, Dandan Zhang, Haihui Zhu, Daven K. Henze, James H. Crawford, Ronald C. Cohen, Lok N. Lamsal, and Alexander M. Cede
Atmos. Chem. Phys., 24, 12687–12706, https://doi.org/10.5194/acp-24-12687-2024, https://doi.org/10.5194/acp-24-12687-2024, 2024
Short summary
Short summary
We investigate the hourly variation of NO2 columns and surface concentrations by applying the GEOS-Chem model to interpret aircraft and ground-based measurements over the US and Pandora sun photometer measurements over the US, Europe, and Asia. Corrections to the Pandora columns and finer model resolution improve the modeled representation of the summertime hourly variation of total NO2 columns to explain the weaker hourly variation in NO2 columns than at the surface.
Kiyeon Kim, Kyung Man Han, Chul Han Song, Hyojun Lee, Ross Beardsley, Jinhyeok Yu, Greg Yarwood, Bonyoung Koo, Jasper Madalipay, Jung-Hun Woo, and Seogju Cho
Atmos. Chem. Phys., 24, 12575–12593, https://doi.org/10.5194/acp-24-12575-2024, https://doi.org/10.5194/acp-24-12575-2024, 2024
Short summary
Short summary
We incorporated each HONO process into the current CMAQ modeling framework to enhance the accuracy of HONO mixing ratio predictions. These results expand our understanding of HONO photochemistry and identify crucial sources of HONO that impact the total HONO budget in Seoul, South Korea. Through this investigation, we contribute to resolving discrepancies in understanding chemical transport models, with implications for better air quality management and environmental protection in the region.
Flossie Brown, Gerd Folberth, Stephen Sitch, Paulo Artaxo, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Matteo Detto, Ninong Komala, Luciana Rizzo, Nestor Rojas, Ines dos Santos Vieira, Steven Turnock, Hans Verbeeck, and Alfonso Zambrano
Atmos. Chem. Phys., 24, 12537–12555, https://doi.org/10.5194/acp-24-12537-2024, https://doi.org/10.5194/acp-24-12537-2024, 2024
Short summary
Short summary
Ozone is a pollutant that is detrimental to human and plant health. Ozone monitoring sites in the tropics are limited, so models are often used to understand ozone exposure. We use measurements from the tropics to evaluate ozone from the UK Earth system model, UKESM1. UKESM1 is able to capture the pattern of ozone in the tropics, except in southeast Asia, although it systematically overestimates it at all sites. This work highlights that UKESM1 can capture seasonal and hourly variability.
Namrata Shanmukh Panji, Deborah F. McGlynn, Laura E. R. Barry, Todd M. Scanlon, Manuel T. Lerdau, Sally E. Pusede, and Gabriel Isaacman-VanWertz
Atmos. Chem. Phys., 24, 12495–12507, https://doi.org/10.5194/acp-24-12495-2024, https://doi.org/10.5194/acp-24-12495-2024, 2024
Short summary
Short summary
Climate change will bring about changes in parameters that are currently used in global-scale models to calculate biogenic emissions. This study seeks to understand the factors driving these models by comparing long-term datasets of biogenic compounds to modeled emissions. We note that the light-dependent fractions currently used in models do not accurately represent regional observations. We provide evidence for the time-dependent variation in this parameter for future modifications to models.
Martin Vojta, Andreas Plach, Saurabh Annadate, Sunyoung Park, Gawon Lee, Pallav Purohit, Florian Lindl, Xin Lan, Jens Mühle, Rona L. Thompson, and Andreas Stohl
Atmos. Chem. Phys., 24, 12465–12493, https://doi.org/10.5194/acp-24-12465-2024, https://doi.org/10.5194/acp-24-12465-2024, 2024
Short summary
Short summary
We constrain the global emissions of the very potent greenhouse gas sulfur hexafluoride (SF6) between 2005 and 2021. We show that SF6 emissions are decreasing in the USA and in the EU, while they are substantially growing in China, leading overall to an increasing global emission trend. The national reports for the USA, EU, and China all underestimated their SF6 emissions. However, stringent mitigation measures can successfully reduce SF6 emissions, as can be seen in the EU emission trend.
Yasin Elshorbany, Jerald R. Ziemke, Sarah Strode, Hervé Petetin, Kazuyuki Miyazaki, Isabelle De Smedt, Kenneth Pickering, Rodrigo J. Seguel, Helen Worden, Tamara Emmerichs, Domenico Taraborrelli, Maria Cazorla, Suvarna Fadnavis, Rebecca R. Buchholz, Benjamin Gaubert, Néstor Y. Rojas, Thiago Nogueira, Thérèse Salameh, and Min Huang
Atmos. Chem. Phys., 24, 12225–12257, https://doi.org/10.5194/acp-24-12225-2024, https://doi.org/10.5194/acp-24-12225-2024, 2024
Short summary
Short summary
We investigated tropospheric ozone spatial variability and trends from 2005 to 2019 and related those to ozone precursors on global and regional scales. We also investigate the spatiotemporal characteristics of the ozone formation regime in relation to ozone chemical sources and sinks. Our analysis is based on remote sensing products of the tropospheric column of ozone and its precursors, nitrogen dioxide, formaldehyde, and total column CO, as well as ozonesonde data and model simulations.
Mariano Mertens, Sabine Brinkop, Phoebe Graf, Volker Grewe, Johannes Hendricks, Patrick Jöckel, Anna Lanteri, Sigrun Matthes, Vanessa S. Rieger, Mattia Righi, and Robin N. Thor
Atmos. Chem. Phys., 24, 12079–12106, https://doi.org/10.5194/acp-24-12079-2024, https://doi.org/10.5194/acp-24-12079-2024, 2024
Short summary
Short summary
We quantified the contributions of land transport, shipping, and aviation emissions to tropospheric ozone; its radiative forcing; and the reductions of the methane lifetime using chemistry-climate model simulations. The contributions were analysed for the conditions of 2015 and for three projections for the year 2050. The results highlight the challenges of mitigating ozone formed by emissions of the transport sector, caused by the non-linearitiy of the ozone chemistry and the long lifetime.
Lauri Franzon, Marie Camredon, Richard Valorso, Bernard Aumont, and Theo Kurtén
Atmos. Chem. Phys., 24, 11679–11699, https://doi.org/10.5194/acp-24-11679-2024, https://doi.org/10.5194/acp-24-11679-2024, 2024
Short summary
Short summary
In this article we investigate the formation of large, sticky molecules from various organic compounds entering the atmosphere as primary emissions and the degree to which these processes may contribute to organic aerosol particle mass. More specifically, we qualitatively investigate a recently discovered chemical reaction channel for one of the most important short-lived radical compounds, peroxy radicals, and discover which of these reactions are most atmospherically important.
Siting Li, Yiming Liu, Yuqi Zhu, Yinbao Jin, Yingying Hong, Ao Shen, Yifei Xu, Haofan Wang, Haichao Wang, Xiao Lu, Shaojia Fan, and Qi Fan
Atmos. Chem. Phys., 24, 11521–11544, https://doi.org/10.5194/acp-24-11521-2024, https://doi.org/10.5194/acp-24-11521-2024, 2024
Short summary
Short summary
This study establishes an inventory of anthropogenic chlorine emissions in China in 2019 with expanded species (HCl, Cl-, Cl2, HOCl) and sources (41 specific sources). The inventory is validated by a modeling study against the observations. This study enhances the understanding of anthropogenic chlorine emissions in the atmosphere, identifies key sources, and provides scientific support for pollution control and climate change.
Willem E. van Caspel, Zbigniew Klimont, Chris Heyes, and Hilde Fagerli
Atmos. Chem. Phys., 24, 11545–11563, https://doi.org/10.5194/acp-24-11545-2024, https://doi.org/10.5194/acp-24-11545-2024, 2024
Short summary
Short summary
Methane in the atmosphere contributes to the production of ozone gas – an air pollutant and greenhouse gas. Our results highlight that simultaneous reductions in methane emissions help avoid offsetting the air pollution benefits already achieved by the already-approved precursor emission reductions by 2050 in the European Monitoring and Evaluation Programme region, while also playing an important role in bringing air pollution further down towards World Health Organization guideline limits.
Jinya Yang, Yutong Wang, Lei Zhang, and Yu Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2713, https://doi.org/10.5194/egusphere-2024-2713, 2024
Short summary
Short summary
We develop a modeling framework to predict future ozone concentrations (till 2060s) in China following an IPCC scenario. We further evaluate and separate the contributions of climatic, anthropogenic, and biogenic factors by season and region. We find persistent emission controls will alter the nonlinear response of ozone to its precursors, and dominate the declining ozone level. The outcomes highlight the importance of human actions even with a climate penalty on air quality in the future.
Beata Opacka, Trissevgeni Stavrakou, Jean-François Müller, Isabelle De Smedt, Jos van Geffen, Eloise A. Marais, Rebekah P. Horner, Dylan B. Millet, Kelly C. Wells, and Alex B. Guenther
EGUsphere, https://doi.org/10.5194/egusphere-2024-2912, https://doi.org/10.5194/egusphere-2024-2912, 2024
Short summary
Short summary
Vegetation releases biogenic volatile organic compounds, while soils and lightning contribute to the natural emissions of nitrogen oxides into the atmosphere. These gases interact in complex ways. Using satellite data and models, we developed a new method to simultaneously optimise these natural emissions over Africa in 2019. Our approach led to an increase in natural emissions that is supported by independent data showing that current estimates are underestimated.
Tia R. Scarpelli, Paul I. Palmer, Mark Lunt, Ingrid Super, and Arjan Droste
Atmos. Chem. Phys., 24, 10773–10791, https://doi.org/10.5194/acp-24-10773-2024, https://doi.org/10.5194/acp-24-10773-2024, 2024
Short summary
Short summary
Under the Paris Agreement, countries must track their anthropogenic greenhouse gas emissions. This study describes a method to determine self-consistent estimates for combustion emissions and natural fluxes of CO2 from atmospheric data. We report consistent estimates inferred using this approach from satellite data and ground-based data over Europe, suggesting that satellite data can be used to determine national anthropogenic CO2 emissions for countries where ground-based CO2 data are absent.
Ryan J. Pound, Lucy V. Brown, Mat J. Evans, and Lucy J. Carpenter
Atmos. Chem. Phys., 24, 9899–9921, https://doi.org/10.5194/acp-24-9899-2024, https://doi.org/10.5194/acp-24-9899-2024, 2024
Short summary
Short summary
Iodine-mediated loss of ozone to the ocean surface and the subsequent emission of iodine species has a large effect on the troposphere. Here we combine recent experimental insights to develop a box model of the process, which we then parameterize and incorporate into the GEOS-Chem transport model. We find that these new insights have a small impact on the total emission of iodine but significantly change its distribution.
Katherine R. Travis, Benjamin A. Nault, James H. Crawford, Kelvin H. Bates, Donald R. Blake, Ronald C. Cohen, Alan Fried, Samuel R. Hall, L. Gregory Huey, Young Ro Lee, Simone Meinardi, Kyung-Eun Min, Isobel J. Simpson, and Kirk Ullman
Atmos. Chem. Phys., 24, 9555–9572, https://doi.org/10.5194/acp-24-9555-2024, https://doi.org/10.5194/acp-24-9555-2024, 2024
Short summary
Short summary
Human activities result in the emission of volatile organic compounds (VOCs) that contribute to air pollution. Detailed VOC measurements were taken during a field study in South Korea. When compared to VOC inventories, large discrepancies showed underestimates from chemical products, liquefied petroleum gas, and long-range transport. Improved emissions and chemistry of these VOCs better described urban pollution. The new chemical scheme is relevant to urban areas and other VOC sources.
Beth S. Nelson, Zhenze Liu, Freya A. Squires, Marvin Shaw, James R. Hopkins, Jacqueline F. Hamilton, Andrew R. Rickard, Alastair C. Lewis, Zongbo Shi, and James D. Lee
Atmos. Chem. Phys., 24, 9031–9044, https://doi.org/10.5194/acp-24-9031-2024, https://doi.org/10.5194/acp-24-9031-2024, 2024
Short summary
Short summary
The impact of combined air quality and carbon neutrality policies on O3 formation in Beijing was investigated. Emissions inventory data were used to estimate future pollutant mixing ratios relative to ground-level observations. O3 production was found to be most sensitive to changes in alkenes, but large reductions in less reactive compounds led to larger reductions in future O3 production. This study highlights the importance of understanding the emissions of organic pollutants.
Takashi Sekiya, Emanuele Emili, Kazuyuki Miyazaki, Antje Inness, Zhen Qu, R. Bradley Pierce, Dylan Jones, Helen Worden, William Y. Y. Cheng, Vincent Huijnen, and Gerbrand Koren
EGUsphere, https://doi.org/10.5194/egusphere-2024-2426, https://doi.org/10.5194/egusphere-2024-2426, 2024
Short summary
Short summary
Five global chemical reanalysis datasets were used to assess the relative impacts of assimilating satellite ozone and its precursors measurements on tropospheric ozone analyses for 2010. The multiple reanalysis system comparison allows for evaluating dependency of the impacts on different reanalysis systems. The results suggested the importance of satellite ozone and its precursor measurements for improving ozone analysis in the whole troposphere, with varying the magnitudes among the systems.
Maureen Beaudor, Didier Hauglustaine, Juliette Lathière, Martin Van Damme, Lieven Clarisse, and Nicolas Vuichard
EGUsphere, https://doi.org/10.5194/egusphere-2024-2022, https://doi.org/10.5194/egusphere-2024-2022, 2024
Short summary
Short summary
Agriculture is the biggest ammonia (NH3) source, impacting air quality, climate, and ecosystems. Because of food demand, NH3 emissions are projected to rise by 2100. Using a global model, we analyzed the impact of present and future NH3 emissions generated from a land model. Our results show improved ammonia patterns compared to a reference inventory. Future scenarios predict up to 70 % increase in global NH3 burden, significant changes in radiative forcing, and could significantly elevate N2O.
Amir H. Souri, Bryan N. Duncan, Sarah A. Strode, Daniel C. Anderson, Michael E. Manyin, Junhua Liu, Luke D. Oman, Zhen Zhang, and Brad Weir
Atmos. Chem. Phys., 24, 8677–8701, https://doi.org/10.5194/acp-24-8677-2024, https://doi.org/10.5194/acp-24-8677-2024, 2024
Short summary
Short summary
We explore a new method of using the wealth of information obtained from satellite observations of Aura OMI NO2, HCHO, and MERRA-2 reanalysis in NASA’s GEOS model equipped with an efficient tropospheric OH (TOH) estimator to enhance the representation of TOH spatial distribution and its long-term trends. This new framework helps us pinpoint regional inaccuracies in TOH and differentiate between established prior knowledge and newly acquired information from satellites on TOH trends.
Haipeng Lin, Louisa K. Emmons, Elizabeth W. Lundgren, Laura Hyesung Yang, Xu Feng, Ruijun Dang, Shixian Zhai, Yunxiao Tang, Makoto M. Kelp, Nadia K. Colombi, Sebastian D. Eastham, Thibaud M. Fritz, and Daniel J. Jacob
Atmos. Chem. Phys., 24, 8607–8624, https://doi.org/10.5194/acp-24-8607-2024, https://doi.org/10.5194/acp-24-8607-2024, 2024
Short summary
Short summary
Tropospheric ozone is a major air pollutant, a greenhouse gas, and a major indicator of model skill. Global atmospheric chemistry models show large differences in simulations of tropospheric ozone, but isolating sources of differences is complicated by different model environments. By implementing the GEOS-Chem model side by side to CAM-chem within a common Earth system model, we identify and evaluate specific differences between the two models and their impacts on key chemical species.
Victor Lannuque and Karine Sartelet
Atmos. Chem. Phys., 24, 8589–8606, https://doi.org/10.5194/acp-24-8589-2024, https://doi.org/10.5194/acp-24-8589-2024, 2024
Short summary
Short summary
Large uncertainties remain in understanding secondary organic aerosol (SOA) formation and speciation from naphthalene oxidation. This study details the development of the first near-explicit chemical scheme for naphthalene oxidation by OH, which includes kinetic and mechanistic data, and is able to reproduce most of the experimentally identified products in both gas and particle phases.
Hui Li, Jiaxin Qiu, and Bo Zheng
EGUsphere, https://doi.org/10.5194/egusphere-2024-1986, https://doi.org/10.5194/egusphere-2024-1986, 2024
Short summary
Short summary
We conduct a sensitivity analysis on various factors including prior, model resolution, satellite constraint, and inversion system configuration to assess the vulnerability of emission estimates across temporal, sectoral, and regional dimensions. Our analysis first reveals the robustness of emissions estimated by this air pollution satellite sensor-based CO2 emission inversion system, with relative change between tests and Base inversion below 4.0 % for national annual NOx and CO2 emissions.
Shuai Li, Xiao Lu, and Haolin Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1889, https://doi.org/10.5194/egusphere-2024-1889, 2024
Short summary
Short summary
We report that the summertime ozone-temperature sensitivity decreased by 50 % from 3.0 ppbv/K in 1990 to 1.5 ppb/K in 2021 in the US. GEOS-Chem simulations show that anthropogenic NOx emission reduction is the dominant driver of the ozone-temperature sensitivity decline, through influencing both the temperature-direct and temperature-indirect processes. Reduced ozone-temperature sensitivity has decreased the ozone enhancement from low to high temperatures by an average of 6.8 ppbv across the US.
Tong Sha, Siyu Yang, Qingcai Chen, Liangqing Li, Xiaoyan Ma, Yan-Lin Zhang, Zhaozhong Feng, K. Folkert Boersma, and Jun Wang
Atmos. Chem. Phys., 24, 8441–8455, https://doi.org/10.5194/acp-24-8441-2024, https://doi.org/10.5194/acp-24-8441-2024, 2024
Short summary
Short summary
Using an updated soil reactive nitrogen emission scheme in the Unified Inputs for Weather Research and Forecasting coupled with Chemistry (UI-WRF-Chem) model, we investigate the role of soil NO and HONO (Nr) emissions in air quality and temperature in North China. Contributions of soil Nr emissions to O3 and secondary pollutants are revealed, exceeding effects of soil NOx or HONO emission. Soil Nr emissions play an important role in mitigating O3 pollution and addressing climate change.
Jian Zhu, Shanshan Wang, Chuanqi Gu, Zhiwen Jiang, Sanbao Zhang, Ruibin Xue, Yuhao Yan, and Bin Zhou
Atmos. Chem. Phys., 24, 8383–8395, https://doi.org/10.5194/acp-24-8383-2024, https://doi.org/10.5194/acp-24-8383-2024, 2024
Short summary
Short summary
In 2022, Shanghai implemented city-wide static management measures during the high-ozone season in April and May, providing a chance to study ozone pollution control. Despite significant emissions reductions, ozone levels increased by 23 %. Statistically, the number of days with higher ozone diurnal variation types increased during the lockdown period. The uneven decline in VOC and NO2 emissions led to heightened photochemical processes, resulting in the observed ozone level rise.
Hiroo Hata, Norifumi Mizushima, and Tomohiko Ihara
EGUsphere, https://doi.org/10.5194/egusphere-2024-1961, https://doi.org/10.5194/egusphere-2024-1961, 2024
Short summary
Short summary
The introduction of battery electric vehicles (BEV) is expected to reduce the primary air pollutants from vehicular exhaust and evaporative emissions while reducing the anthropogenic heat produced by vehicles, ultimately decreasing the urban heat island effect (UHI). This study revealed the impact of introducing BEVs on the decrease in UHI and the effects of BEVs on the formation of tropospheric ozone and fine particulate matter in the Greater Tokyo Area of Japan.
Matthew J. Rowlinson, Mat J. Evans, Lucy J. Carpenter, Katie A. Read, Shalini Punjabi, Adedayo Adedeji, Luke Fakes, Ally Lewis, Ben Richmond, Neil Passant, Tim Murrells, Barron Henderson, Kelvin H. Bates, and Detlev Helmig
Atmos. Chem. Phys., 24, 8317–8342, https://doi.org/10.5194/acp-24-8317-2024, https://doi.org/10.5194/acp-24-8317-2024, 2024
Short summary
Short summary
Ethane and propane are volatile organic compounds emitted from human activities which help to form ozone, a pollutant and greenhouse gas, and also affect the chemistry of the lower atmosphere. Atmospheric models tend to do a poor job of reproducing the abundance of these compounds in the atmosphere. By using regional estimates of their emissions, rather than globally consistent estimates, we can significantly improve the simulation of ethane in the model and make some improvement for propane.
Rodrigo J. Seguel, Lucas Castillo, Charlie Opazo, Néstor Y. Rojas, Thiago Nogueira, María Cazorla, Mario Gavidia-Calderón, Laura Gallardo, René Garreaud, Tomás Carrasco-Escaff, and Yasin Elshorbany
Atmos. Chem. Phys., 24, 8225–8242, https://doi.org/10.5194/acp-24-8225-2024, https://doi.org/10.5194/acp-24-8225-2024, 2024
Short summary
Short summary
Trends of surface ozone were examined across South America. Our findings indicate that ozone trends in major South American cities either increase or remain steady, with no signs of decline. The upward trends can be attributed to chemical regimes that efficiently convert nitric oxide into nitrogen dioxide. Additionally, our results suggest a climate penalty for ozone driven by meteorological conditions that favor wildfire propagation in Chile and extensive heat waves in southern Brazil.
Maarten Krol, Bart van Stratum, Isidora Anglou, and Klaas Folkert Boersma
Atmos. Chem. Phys., 24, 8243–8262, https://doi.org/10.5194/acp-24-8243-2024, https://doi.org/10.5194/acp-24-8243-2024, 2024
Short summary
Short summary
This paper presents detailed plume simulations of nitrogen oxides and carbon dioxide that are emitted from four large industrial facilities world-wide. Results from the high-resolution simulations that include atmospheric chemistry are compared to nitrogen dioxide observations from satellites. We find good performance of the model and show that common assumptions that are used in simplified models need revision. This work is important for the monitoring of emissions using satellite data.
Robin Plauchu, Audrey Fortems-Cheiney, Grégoire Broquet, Isabelle Pison, Antoine Berchet, Elise Potier, Gaëlle Dufour, Adriana Coman, Dilek Savas, Guillaume Siour, and Henk Eskes
Atmos. Chem. Phys., 24, 8139–8163, https://doi.org/10.5194/acp-24-8139-2024, https://doi.org/10.5194/acp-24-8139-2024, 2024
Short summary
Short summary
This study uses the Community Inversion Framework and CHIMERE model to assess the potential of TROPOMI-S5P PAL NO2 tropospheric column data to estimate NOx emissions in France (2019–2021). Results show a 3 % decrease in average emissions compared to the 2016 CAMS-REG/INS, lower than the 14 % decrease from CITEPA. The study highlights challenges in capturing emission anomalies due to limited data coverage and error levels but shows promise for local inventory improvements.
Chelsea E. Stockwell, Matthew M. Coggon, Rebecca H. Schwantes, Colin Harkins, Bert Verreyken, Congmeng Lyu, Qindan Zhu, Lu Xu, Jessica B. Gilman, Aaron Lamplugh, Jeff Peischl, Michael A. Robinson, Patrick R. Veres, Meng Li, Andrew W. Rollins, Kristen Zuraski, Sunil Baidar, Shang Liu, Toshihiro Kuwayama, Steven S. Brown, Brian C. McDonald, and Carsten Warneke
EGUsphere, https://doi.org/10.5194/egusphere-2024-1899, https://doi.org/10.5194/egusphere-2024-1899, 2024
Short summary
Short summary
In urban areas, emissions from everyday products like paints, cleaners, and personal care products, along with non-traditional sources such as cooking are important sources that impact air quality. This study used a model to evaluate how these emissions impact ozone in the Los Angeles Basin, and quantifies the impact of gaseous cooking emissions for the first time. Accurate representation of these and other man-made sources in inventories is crucial to inform effective air quality policies.
Zhendong Lu, Jun Wang, Yi Wang, Daven K. Henze, Xi Chen, Tong Sha, and Kang Sun
Atmos. Chem. Phys., 24, 7793–7813, https://doi.org/10.5194/acp-24-7793-2024, https://doi.org/10.5194/acp-24-7793-2024, 2024
Short summary
Short summary
In contrast with past work showing that the reduction of emissions was the dominant factor for the nationwide increase of surface O3 during the lockdown in China, this study finds that the variation in meteorology (temperature and other parameters) plays a more important role. This result is obtained through sensitivity simulations using a chemical transport model constrained by satellite (TROPOMI) data and calibrated with surface observations.
Xiaohong Yao and Leiming Zhang
Atmos. Chem. Phys., 24, 7773–7791, https://doi.org/10.5194/acp-24-7773-2024, https://doi.org/10.5194/acp-24-7773-2024, 2024
Short summary
Short summary
This study investigates long-term trends of criteria air pollutants, including NO2, CO, SO2, O3 and PM2.5, and NO2+O3 measured in 10 Canadian cities during the last 2 to 3 decades. We also investigate associated driving forces in terms of emission reductions, perturbations from varying weather conditions and large-scale wildfires, as well as changes in O3 sources and sinks.
Yao Ge, Sverre Solberg, Mathew R. Heal, Stefan Reimann, Willem van Caspel, Bryan Hellack, Thérèse Salameh, and David Simpson
Atmos. Chem. Phys., 24, 7699–7729, https://doi.org/10.5194/acp-24-7699-2024, https://doi.org/10.5194/acp-24-7699-2024, 2024
Short summary
Short summary
Atmospheric volatile organic compounds (VOCs) constitute many species, acting as precursors to ozone and aerosol. Given the uncertainties in VOC emissions, lack of evaluation studies, and recent changes in emissions, this work adapts the EMEP MSC-W to evaluate emission inventories in Europe. We focus on the varying agreement between modelled and measured VOCs across different species and underscore potential inaccuracies in total and sector-specific emission estimates.
Shuzhuang Feng, Fei Jiang, Tianlu Qian, Nan Wang, Mengwei Jia, Songci Zheng, Jiansong Chen, Fang Ying, and Weimin Ju
Atmos. Chem. Phys., 24, 7481–7498, https://doi.org/10.5194/acp-24-7481-2024, https://doi.org/10.5194/acp-24-7481-2024, 2024
Short summary
Short summary
We developed a multi-air-pollutant inversion system to estimate non-methane volatile organic compound (NMVOC) emissions using TROPOMI formaldehyde retrievals. We found that the inversion significantly improved formaldehyde simulations and reduced NMVOC emission uncertainties. The optimized NMVOC emissions effectively corrected the overestimation of O3 levels, mainly by decreasing the rate of the RO2 + NO reaction and increasing the rate of the NO2 + OH reaction.
Yuqing Qiu, Xin Li, Wenxuan Chai, Yi Liu, Mengdi Song, Xudong Tian, Qiaoli Zou, Wenjun Lou, Wangyao Zhang, Juan Li, and Yuanhang Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1576, https://doi.org/10.5194/egusphere-2024-1576, 2024
Short summary
Short summary
The chemical reactions of ozone (O3) formation are related to meteorology and local emissions. Here, a random forest approach was used to eliminate the effects of meteorological factors (dispersion or transport) on O3 and its precursors. Variations in the sensitivity of O3 formation and the apportionment of emission sources were revealed after meteorological normalization. Our results suggest that meteorological variations should be considered when diagnosing O3 formation.
Haklim Choi, Alison L. Redington, Hyeri Park, Jooil Kim, Rona L. Thompson, Jens Mühle, Peter K. Salameh, Christina M. Harth, Ray F. Weiss, Alistair J. Manning, and Sunyoung Park
Atmos. Chem. Phys., 24, 7309–7330, https://doi.org/10.5194/acp-24-7309-2024, https://doi.org/10.5194/acp-24-7309-2024, 2024
Short summary
Short summary
We analyzed with an inversion model the atmospheric abundance of hydrofluorocarbons (HFCs), potent greenhouse gases, from 2008 to 2020 at Gosan station in South Korea and revealed a significant increase in emissions, especially from eastern China and Japan. This increase contradicts reported data, underscoring the need for accurate monitoring and reporting. Our findings are crucial for understanding and managing global HFCs emissions, highlighting the importance of efforts to reduce HFCs.
Laura Hyesung Yang, Daniel J. Jacob, Ruijun Dang, Yujin J. Oak, Haipeng Lin, Jhoon Kim, Shixian Zhai, Nadia K. Colombi, Drew C. Pendergrass, Ellie Beaudry, Viral Shah, Xu Feng, Robert M. Yantosca, Heesung Chong, Junsung Park, Hanlim Lee, Won-Jin Lee, Soontae Kim, Eunhye Kim, Katherine R. Travis, James H. Crawford, and Hong Liao
Atmos. Chem. Phys., 24, 7027–7039, https://doi.org/10.5194/acp-24-7027-2024, https://doi.org/10.5194/acp-24-7027-2024, 2024
Short summary
Short summary
The Geostationary Environment Monitoring Spectrometer (GEMS) provides hourly measurements of NO2. We use the chemical transport model to find how emissions, chemistry, and transport drive the changes in NO2 observed by GEMS at different times of the day. In winter, the chemistry plays a minor role, and high daytime emissions dominate the diurnal variation in NO2, balanced by transport. In summer, emissions, chemistry, and transport play an important role in shaping the diurnal variation in NO2.
M. Omar Nawaz, Jeremiah Johnson, Greg Yarwood, Benjamin de Foy, Laura Judd, and Daniel L. Goldberg
Atmos. Chem. Phys., 24, 6719–6741, https://doi.org/10.5194/acp-24-6719-2024, https://doi.org/10.5194/acp-24-6719-2024, 2024
Short summary
Short summary
NO2 is a gas with implications for air pollution. A campaign conducted in Houston provided an opportunity to compare NO2 from different instruments and a model. Aircraft and satellite observations agreed well with measurements on the ground; however, the latter estimated lower values. We find that model-simulated NO2 was lower than observations, especially downtown, suggesting that NO2 sources associated with the urban core of Houston, such as vehicle emissions, may be underestimated.
Cited articles
Baker, D. F., Doney, S. C., and Schimel, D. S.: Variational data
assimilation for atmospheric CO2, Tellus B, 58, 359–365,
https://doi.org/10.1111/j.1600-0889.2006.00218.x, 2006a.
Baker, D. F., Law, R. M., Gurney, K. R., Rayner, P., Peylin, P., Denning, A.
S., Bousquet, P., Bruhwiler, L., Chen, Y. H., Ciais, P., Fung, I. Y.,
Heimann, M., John, J., Maki, T., Maksyutov, S., Masarie, K., Prather, M.,
Pak, B., Taguchi, S., and Zhu, Z.: TransCom 3 inversion intercomparison:
Impact of transport model errors on the interannual variability of regional
CO2 fluxes, 1988–2003, Global Biogeochem. Cy., 20, GB1002,
https://doi.org/10.1029/2004gb002439, 2006b.
Baker, D. F., Bösch, H., Doney, S. C., O'Brien, D., and Schimel, D. S.: Carbon source/sink information provided by column CO2 measurements from the Orbiting Carbon Observatory, Atmos. Chem. Phys., 10, 4145–4165, https://doi.org/10.5194/acp-10-4145-2010, 2010.
Baker, I. T., Harper, A. B., da Rocha, H. R., Denning, A. S., Araújo, A.
C., Borma, L. S., Freitas, H. C., Goulden, M. L., Manzi, A. O., Miller, S.
D., Nobre, A. D., Restrepo-Coupe, N., Saleska, S. R., Stöckli, R., von
Randow, C., and Wofsy, S. C.: Surface ecophysiological behavior across
vegetation and moisture gradients in tropical South America, Agr. Forest
Meteorol., 182–183, 177–188,
https://doi.org/10.1016/j.agrformet.2012.11.015, 2013.
Basu, S., Guerlet, S., Butz, A., Houweling, S., Hasekamp, O., Aben, I., Krummel, P., Steele, P., Langenfelds, R., Torn, M., Biraud, S., Stephens, B., Andrews, A., and Worthy, D.: Global CO2 fluxes estimated from GOSAT retrievals of total column CO2, Atmos. Chem. Phys., 13, 8695–8717, https://doi.org/10.5194/acp-13-8695-2013, 2013.
Basu, S., Baker, D. F., Chevallier, F., Patra, P. K., Liu, J., and Miller, J. B.: The impact of transport model differences on CO2 surface flux estimates from OCO-2 retrievals of column average CO2, Atmos. Chem. Phys., 18, 7189–7215, https://doi.org/10.5194/acp-18-7189-2018, 2018.
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore,
A. M., Li, Q. B., Liu, H. G. Y., Mickley, L. J., and Schultz, M. G.: Global
modeling of tropospheric chemistry with assimilated meteorology: Model
description and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095,
https://doi.org/10.1029/2001JD000807, 2001.
Bowman, K. W.: Carbon Monitoring System Flux for Shipping, Aviation, and
Chemical Sources L4 V1, Greenbelt, MD, USA, Goddard Earth Sciences Data and
Information Services Center (GES DISC),
https://doi.org/10.5067/RLT7JTCRJ11M, 2017.
Bowman, K. W., Liu, J., Bloom, A. A., Parazoo, N. C., Lee, M., Jiang, Z.,
Menemenlis, D., Gierach, M. M., Collatz, G. J., Gurney, K. R., and Wunch D.:
Global and Brazilian carbon response to El Niño Modoki 2011–2010, Earth
Space Sci., 4, 637–660, https://doi.org/10.1002/2016EA000204, 2017.
Byrne, B., Jones, D. B. A., Strong, K., Zeng, Z.-C., Deng, F., and Liu, J.:
Sensitivity of CO2 surface flux constraints to observational coverage,
J. Geophys. Res.-Atmos., 122, 6672–6694,
https://doi.org/10.1002/2016JD026164, 2017.
Chevallier, F., Fisher, M., Peylin, P., Serrar, S., Bousquet, P., Bréon,
F.-M., Chédin, A., and Ciais, P.: Inferring CO2 sources and sinks
from satellite observations: Method and application to TOVS data, J.
Geophys. Res.-Atmos., 110, D24309, https://doi.org/10.1029/2005JD006390,
2005.
Chevallier, F., Viovy, N., Reichstein, M., and Ciais, P.: On the assignment
of prior errors in Bayesian inversions of CO2 surface fluxes, Geophys.
Res. Lett., 33, L13802, https://doi.org/10.1029/2006GL026496, 2006.
Chevallier, F., Feng, L., Bösch, H., Palmer, P. I., and Rayner, P. J.:
On the impact of transport model errors for the estimation of CO2
surface fluxes from GOSAT observations, Geophys. Res. Lett., 37, L21803,
https://doi.org/10.1029/2010GL044652, 2010.
Chevallier, F., Palmer, P. I., Feng, L., Bösch, H., O'Dell, C. W., and
Bousquet, P.: Toward robust and consistent regional CO2 flux estimates
from in situ and spaceborne measurements of atmospheric CO2, Geophys.
Res. Lett., 41, 1065–1070, https://doi.org/10.1002/2013GL058772, 2014.
Corbett, J. J. and Koehler, H. W.: Updated emissions from ocean shipping, J.
Geophys. Res.-Atmos., 108, 4650, https://doi.org/10.1029/2003JD003751,
2003.
Corbett, J. J. and Koehler, H. W.: Considering alternative input parameters
in an activity-based ship fuel consumption and emissions model: Reply to
comment by Øyvind Endresen et al. on “Updated emissions from ocean
shipping”, J. Geophys. Res.-Atmos., 109, D23303,
https://doi.org/10.1029/2004JD005030, 2004.
Crisp, D., Pollock, H. R., Rosenberg, R., Chapsky, L., Lee, R. A. M., Oyafuso, F. A., Frankenberg, C., O'Dell, C. W., Bruegge, C. J., Doran, G. B., Eldering, A., Fisher, B. M., Fu, D., Gunson, M. R., Mandrake, L., Osterman, G. B., Schwandner, F. M., Sun, K., Taylor, T. E., Wennberg, P. O., and Wunch, D.: The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products, Atmos. Meas. Tech., 10, 59–81, https://doi.org/10.5194/amt-10-59-2017, 2017.
Crowell, S., Baker, D., Schuh, A., Basu, S., Jacobson, A. R., Chevallier, F., Liu, J., Deng, F., Feng, L., McKain, K., Chatterjee, A., Miller, J. B., Stephens, B. B., Eldering, A., Crisp, D., Schimel, D., Nassar, R., O'Dell, C. W., Oda, T., Sweeney, C., Palmer, P. I., and Jones, D. B. A.: The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network, Atmos. Chem. Phys., 19, 9797–9831, https://doi.org/10.5194/acp-19-9797-2019, 2019.
Deng, F., Jones, D. B. A., Henze, D. K., Bousserez, N., Bowman, K. W., Fisher, J. B., Nassar, R., O'Dell, C., Wunch, D., Wennberg, P. O., Kort, E. A., Wofsy, S. C., Blumenstock, T., Deutscher, N. M., Griffith, D. W. T., Hase, F., Heikkinen, P., Sherlock, V., Strong, K., Sussmann, R., and Warneke, T.: Inferring regional sources and sinks of atmospheric CO2 from GOSAT XCO2 data, Atmos. Chem. Phys., 14, 3703–3727, https://doi.org/10.5194/acp-14-3703-2014, 2014.
Deng, F., Jones, D. B. A. O'Dell, C. W., Nassar, R., and Parazoo N. C.:
Combining GOSAT XCO2 observations over land and ocean to improve
regional CO2 flux estimates, J. Geophys. Res.-Atmos., 121, 1896–1913,
https://doi.org/10.1002/2015JD024157, 2016.
Denning, A. S., Collatz, G. J., Zhang, C., Randall, D. A., Berry, J. A.,
Sellers, P. J., Colello, G. D., and Dazlich, D. A.: Simulations of
terrestrial carbon metabolism and atmospheric CO2 in a general
circulation model, Tellus B, 48B, 521–542,
https://doi.org/10.1034/j.1600-0889.1996.t01-2-00009.x, 1996.
Eldering, A., O'Dell, C. W., Wennberg, P. O., Crisp, D., Gunson, M. R., Viatte, C., Avis, C., Braverman, A., Castano, R., Chang, A., Chapsky, L., Cheng, C., Connor, B., Dang, L., Doran, G., Fisher, B., Frankenberg, C., Fu, D., Granat, R., Hobbs, J., Lee, R. A. M., Mandrake, L., McDuffie, J., Miller, C. E., Myers, V., Natraj, V., O'Brien, D., Osterman, G. B., Oyafuso, F., Payne, V. H., Pollock, H. R., Polonsky, I., Roehl, C. M., Rosenberg, R., Schwandner, F., Smyth, M., Tang, V., Taylor, T. E., To, C., Wunch, D., and Yoshimizu, J.: The Orbiting Carbon Observatory-2: first 18 months of science data products, Atmos. Meas. Tech., 10, 549–563, https://doi.org/10.5194/amt-10-549-2017, 2017a (data available at: https://co2.jpl.nasa.gov/\#mission=OCO-2, last access: 24 January 2018).
Eldering, A., Wennberg, P. O., Crisp, D., Schimel, D. S., Gunson, M. R.,
Chatterjee, A., Liu, J., Schwandner, F. M., Sun, Y., O'Dell, C. W.,
Frankenberg, C., Taylor, T., Fisher, B., Osterman, G. B., Wunch, D.,
Hakkarainen, J., Tamminen, J., and Weir, B.: The Orbiting Carbon
Observatory-2 early science investigations of regional carbon dioxide
fluxes, Science, 358, eaam5745, https://doi.org/10.1126/science.aam5745,
2017b.
Fisher, J. B., Sikka, M., Huntzinger, D. N., Schwalm, C., and Liu, J.: Technical note: 3-hourly temporal downscaling of monthly global terrestrial biosphere model net ecosystem exchange, Biogeosciences, 13, 4271–4277, https://doi.org/10.5194/bg-13-4271-2016, 2016a.
Fisher, J. B., Sikka, M., Huntzinger, D. N., Schwalm, C. R., Liu, J., Wei,
Y., Cook, R. B., Michalak, A. M., Schaefer, K., Jacobson, A. R., Arain, M.
A., Ciais, P., El-masri, B., Hayes, D. J., Huang, M., Huang, S., Ito, A.,
Jain, A. K., Lei, H., Lu, C., Maignan, F., Mao, J., Parazoo, N. C., Peng,
C., Peng, S., Poulter, B., Ricciuto, D. M., Tian, H., Shi, X., Wang, W.,
Zeng, N., Zhao, F., and Zhu, Q.: CMS: Modeled Net Ecosystem Exchange at
3-hourly Time Steps, 2004–2010, ORNL DAAC, Oak Ridge, Tennessee, USA,
https://doi.org/10.3334/ORNLDAAC/1315, 2016b.
Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D.,
Bousquet, P., Bruhwiler, L., Chen, Y.-H., Ciais, P., Fan, S., Fung, I. Y.,
Gloor, M., Heimann, M., Higuchi, K., John, J., Kowalczyk, E., Maki, T.,
Maksyutov, S., Peylin, P., Prather, M., Pak, B. C., Sarmiento, J., Taguchi,
S., Takahashi, T., and Yuen, C.-W.: TransCom 3 CO2 inversion
intercomparison: 1. Annual mean control results and sensitivity to transport
and prior flux information, Tellus B, 55B, 555–579,
https://doi.org/10.1034/j.1600-0889.2003.00049.x, 2003.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711,
2013.
Haxeltine, A. and Prentice, I. C.: A general model for the light-use
efficiency of primary production, Funct. Ecol., 10, 551–561,
https://doi.org/10.2307/2390165, 1996.
Haynes, K. D., Baker, I. T., Denning, A. S., Stöckli, R., Schaefer, K.,
and Lokupitiya, E.: Global Self-Consistent Carbon Flux and Pool Estimates
Utilizing the Simple Biosphere Model (SiB4), Abstract B31F-01 presented at
2013 AGU Fall Meeting, AGU, San Fransisco, CA, 9–13 December, 2013.
Heimann, M., Esser, G., Haxeltine, A., Kaduk, J., Kicklighter, D. W., Knorr,
W., Kohlmaier, G. H., McGuire, A. D., Melillo, J., Moore III, B., Otto, R.
D., Prentice, I. C., Sauf, W., Schloss, A., Sitch, S., Wittenberg, U., and
Würth, G.: Evaluation of terrestrial Carbon Cycle models through
simulations of the seasonal cycle of atmospheric CO2: First results of
a model intercomparison study, Global Biogeochem. Cy., 12, 1–24,
https://doi.org/10.1029/97GB01936, 1998.
Henze, D. K., Hakami, A., and Seinfeld, J. H.: Development of the adjoint of GEOS-Chem, Atmos. Chem. Phys., 7, 2413–2433, https://doi.org/10.5194/acp-7-2413-2007, 2007.
Houweling, S., Aben, I., Breon, F.-M., Chevallier, F., Deutscher, N., Engelen, R., Gerbig, C., Griffith, D., Hungershoefer, K., Macatangay, R., Marshall, J., Notholt, J., Peters, W., and Serrar, S.: The importance of transport model uncertainties for the estimation of CO2 sources and sinks using satellite measurements, Atmos. Chem. Phys., 10, 9981–9992, https://doi.org/10.5194/acp-10-9981-2010, 2010.
Houweling, S., Baker, D., Basu, S., Boesch, H., Butz, A., Chevallier, F.,
Deng, F., Dlugokencky, E. J., Feng, L., Ganshin, A., Hasekamp, O., Jones,
D., Maksyutov, S., Marshall, J., Oda, T., O'Dell, C. W., Oshchepkov, S.,
Palmer, P. I., Peylin, P., Poussi, Z., Reum, F., Takagi, H., Yoshida, Y.,
and Zhuravlev, R.: An intercomparison of inverse models for estimating
sources and sinks of CO2 using GOSAT measurements, J. Geophys. Res.-Atmos., 120, 5253–5266, https://doi.org/10.1002/2014JD022962, 2015.
Huntzinger, D. N., Post, W. M., Wei, Y., Michalak, A. M., West T. O.,
Jacobson, A. R., Baker, I. T., Chen, J. M., Davis, K. J., Hayes, D. J.,
Hoffman, F. M., Jain, A. K., Liu, S., McGuire, A. D., Neilson, R. P.,
Potter, C., Poulter, B., Price, D., Raczka, B. M., Tian, H., Q., Thornton,
P., Tomelleri, E., Viovy, N., Xiao, J., Yuan, W., Zeng, N., Zhao, M., and
Cook, R.: North American Carbon Program (NACP) regional interim synthesis:
Terrestrial biospheric model intercomparison, Ecol. Model., 232, 144–157,
https://doi.org/10.1016/j.ecolmodel.2012.02.004, 2012.
Huntzinger, D. N., Schwalm, C., Michalak, A. M., Schaefer, K., King, A. W., Wei, Y., Jacobson, A., Liu, S., Cook, R. B., Post, W. M., Berthier, G., Hayes, D., Huang, M., Ito, A., Lei, H., Lu, C., Mao, J., Peng, C. H., Peng, S., Poulter, B., Riccuito, D., Shi, X., Tian, H., Wang, W., Zeng, N., Zhao, F., and Zhu, Q.: The North American Carbon Program Multi-Scale Synthesis and Terrestrial Model Intercomparison Project – Part 1: Overview and experimental design, Geosci. Model Dev., 6, 2121–2133, https://doi.org/10.5194/gmd-6-2121-2013, 2013.
Huntzinger, D. N., Schwalm, C. R., Wei, Y., Cook, R. B., Michalak, A. M.,
Schaefer, K., Jacobson, A. R., Arain, M. A., Ciais, P., Fisher, J. B.,
Hayes, D. J., Huang, M., Huang, S., Ito, A., Jain, A. K., Lei, H., Lu, C.,
Maignan, F., Mao, J., Parazoo, N. C., Peng, C., Peng, S., Poulter, B.,
Ricciuto, D. M., Tian, H., Shi, X., Wang, W., Zeng, N., Zhao, F., Zhu, Q.,
Yang, J., and Tao, B.: NACP MsTMIP: Global 0.5-degree Model Outputs in
Standard Format, Version 1.0. ORNL DAAC, Oak Ridge, Tennessee,
USA, https://doi.org/10.3334/ORNLDAAC/1225, 2018.
IPCC: Climate Change 2014: Synthesis Report. Contribution of Working
Groups I, II and III to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Pachauri, R. K. and Meyer, L. A.,
IPCC, Geneva, Switzerland, 151 pp., 2014.
Ito, A., Inatomi, M., Huntzinger, D. N., Schwalm, C., Michalak, A. M., Cook,
R., King, A. W., Mao, J., Wei, Y., Post, W. M., Wang, W., Arain, M. A.,
Huang, S., Hayes, D. J., Ricciuto, D. M., Shi, X., Huang, M., Lei, H., Tian,
H., Lu, C., Yang, J., Tao, B., Jain, A., Poulter, B., Peng, S., Ciais, P.,
Fisher, J. B., Parazoo, N. C., Schaefer, K., Peng, C., Zeng, N., and Zhao,
F.: Decadal trends in the seasonal-cycle amplitude of terrestrial CO2
exchange resulting from the ensemble of terrestrial biosphere models, Tellus
B, 68, 28968, https://doi.org/10.3402/tellusb.v68.28968, 2016.
Landschützer, P., Gruber, N., and Bakker, D. C. E.:
Decadal variations and trends of the global ocean carbon sink, Global
Biogeochem. Cy., 30, 1396–1417, https://doi.org/10.1002/2015GB005359, 2016.
Landschützer, P., Gruber, N., and Bakker, D. C. E.: An
updated observation-based global monthly gridded sea surface pCO2 and
air-sea CO2 flux product from 1982 through 2015 and its monthly
climatology (NCEI Accession 0160558), Version 2.2, NOAA National Centers for
Environmental Information, Dataset, [2017-07-11], 2017.
Law, R. M., Chen, Y-H., Gurney, K. R., and TransCom 3 modelers: TransCom 3
CO2 inversion intercomparison: 2. Sensitivity of annual mean results to
data choices, Tellus B, 55B, 580–595,
https://doi.org/10.1034/j.1600-0889.2003.00053.x, 2003.
Liu, D. C. and Nocedal J.: On the limited memory BFGS method for large
scale optimization, Math. Prog., 45, 503–528,
https://doi.org/10.1007/bf01589116, 1989.
Liu, J., Bowman, K. W., Lee, M., Henze, D. K., Bousserez, N., Brix, H.,
Collatz, G. J., Menemenlis, D., Ott, L., Pawson, S., Jones, D., and Ray
Nassar, R.: Carbon monitoring system flux estimation and attribution: impact
of ACOS-GOSAT XCO2 sampling on the inference of terrestrial
biospheric sources and sinks, Tellus B, 66, 22486,
https://doi.org/10.3402/tellusb.v66.22486, 2014.
Liu, J., Bowman, K. W., Schimel, D. S., Parazoo, N. C., Jiang, Z., Lee, M.,
Bloom, A. A., Wunch, D., Frankenberg, C., Sun, Y., O'Dell, C. W., Gurney, K.
R., Menemenlis, D., Gierach, M., Crisp, D., and Eldering A.: Contrasting
carbon cycle responses of the tropical continents to the 2015–2016 El
Niño, Science, 358, eaam5690, https://doi.org/10.1126/science.aam5690,
2017.
Lokupitiya, E., Denning, S., Paustian, K., Baker, I., Schaefer, K., Verma, S., Meyers, T., Bernacchi, C. J., Suyker, A., and Fischer, M.: Incorporation of crop phenology in Simple Biosphere Model (SiBcrop) to improve land-atmosphere carbon exchanges from croplands, Biogeosciences, 6, 969–986, https://doi.org/10.5194/bg-6-969-2009, 2009.
Nassar, R., Jones, D. B. A., Suntharalingam, P., Chen, J. M., Andres, R. J., Wecht, K. J., Yantosca, R. M., Kulawik, S. S., Bowman, K. W., Worden, J. R., Machida, T., and Matsueda, H.: Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species, Geosci. Model Dev., 3, 689–716, https://doi.org/10.5194/gmd-3-689-2010, 2010.
Nassar, R., Napier-Linton, L., Gurney, K. R., Andres, R. J., Oda, T., Vogel,
F. R., and Deng, F.: Improving the temporal and spatial distribution of
CO2 emissions from global fossil fuel emission data sets, J. Geophys.
Res.-Atmos., 118, 917–933, https://doi.org/10.1029/2012JD018196, 2013.
Oda, T., Maksyutov, S., and Andres, R. J.: The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016): a global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions, Earth Syst. Sci. Data, 10, 87–107, https://doi.org/10.5194/essd-10-87-2018, 2018.
O'Dell, C. W., Connor, B., Bösch, H., O'Brien, D., Frankenberg, C., Castano, R., Christi, M., Eldering, D., Fisher, B., Gunson, M., McDuffie, J., Miller, C. E., Natraj, V., Oyafuso, F., Polonsky, I., Smyth, M., Taylor, T., Toon, G. C., Wennberg, P. O., and Wunch, D.: The ACOS CO2 retrieval algorithm – Part 1: Description and validation against synthetic observations, Atmos. Meas. Tech., 5, 99–121, https://doi.org/10.5194/amt-5-99-2012, 2012.
Olsen, S. C. and Randerson, J. T.: Differences between surface and column
atmospheric CO2 and implications for carbon cycle research, J. Geophys.
Res.-Atmos., 109, D02301, https://doi.org/10.1029/2003JD003968, 2004.
Olsen, S. C., Wuebbles, D. J., and Owen, B.: Comparison of global 3-D aviation emissions datasets, Atmos. Chem. Phys., 13, 429–441, https://doi.org/10.5194/acp-13-429-2013, 2013.
Ott, L. E., Pawson, S., Collatz, G. J., Gregg, W. W., Menemenlis, D., Brix,
H., Rousseaux, C. S., Bowman, K. W., Liu, J., Eldering, A., Gunson, M. R.,
and Kawa, S. R.: Assessing the magnitude of CO2 flux uncertainty in
atmospheric CO2 records using products from NASA's Carbon Monitoring
Flux Pilot Project, J. Geophys. Res.-Atmos., 120,734–765,
https://doi.org/10.1002/2014JD022411, 2015.
Peng, S., Ciais, P., Chevallier, F., Peylin, P., Cadule, P., Sitch, S.,
Piao, S., Ahlström, A., Huntingford, C., Levy, P., Li, X., Liu, Y.,
Lomas, M., Poulter, B., Viovy, N., Wang, T., Wang, X., Zaehle, S., Zeng, N.,
Zhao, F., and Zhao, H.: Benchmarking the seasonal cycle of CO2 fluxes
simulated by terrestrial ecosystem models, Global Biogeochem. Cy., 29,
46–64, https://doi.org/10.1002/2014GB004931, 2015.
Peylin, P., Law, R. M., Gurney, K. R., Chevallier, F., Jacobson, A. R., Maki, T., Niwa, Y., Patra, P. K., Peters, W., Rayner, P. J., Rödenbeck, C., van der Laan-Luijkx, I. T., and Zhang, X.: Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions, Biogeosciences, 10, 6699–6720, https://doi.org/10.5194/bg-10-6699-2013, 2013.
Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J.,
Masarie, K., Miller, J. B., Bruhwiler, L. M. P., Pétron, G., Hirsch, A.
I., Worthy, D. E. J., van der Werf, G. R., Randerson, J. T., Wennberg, P.
O., Krol, M. C., and Tans, P. P.: An atmospheric perspective on North
American carbon dioxide exchange: CarbonTracker, P. Natl. Acad. Sci. USA,
104, 18925–18930, https://doi.org/10.1073/pnas.0708986104, 2007.
Potter, C., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M.,
Mooney, H. A., and Klooster, S A.: Terrestrial ecosystem production: A
process model based on global satellite and surface data, Global Biogeochem.
Cy., 7, 811–841, https://doi.org/10.1029/93GB02725, 1993.
Potter, C., Klooster, S., Myneni, R., Genovese, V., Tan, P.-N., and Kumar,
V.: Continental scale comparisons of terrestrial carbon sinks estimated from
satellite data and ecosystem modeling 1982–98, Global Planet. Change, 39,
201–213, https://doi.org/10.1016/j.gloplacha.2003.07.001, 2003.
Potter, C., Kumar, V., Klooster, S., and Nemani, R.: Recent history of
trends in vegetation greenness and large-scale ecosystem disturbances in
Eurasia, Tellus B, 59, 260–272,
https://doi.org/10.1111/j.1600-0889.2006.00245.x, 2007.
Potter, C., Klooster, S., Huete, A., Genovese, V., Bustamante, M., Guimaraes Ferreira, L., R. C. de Oliveira Jr., and Zepp, R.: Terrestrial carbon sinks in the Brazilian Amazon and Cerrado region predicted from MODIS satellite data and ecosystem modeling, Biogeosciences, 6, 937–945, https://doi.org/10.5194/bg-6-937-2009, 2009.
Potter, C., Klooster, S., and Genovese, V.: Net primary production of
terrestrial ecosystems from 2000 to 2009, Climatic Change, 115, 365–378,
https://doi.org/10.1007/s10584-012-0460-2, 2012a.
Potter, C., Klooster, S., Genovese, V., Hiatt, C., Boriah, S., Kumar, V.,
Mithal, V., and Garg, A.: Terrestrial ecosystem carbon fluxes predicted from
MODIS satellite data and large-scale disturbance modeling, Int. J. Geosci.,
3, 469–479, https://doi.org/10.4236/ijg.2012.33050, 2012b.
Poulter, B., Frank, D., Ciais, P., Myneni, R. B., Andela, N., Bi, J.,
Broquet, G., Canadell, J. G., Chevallier, F., Liu, Y. Y., Running, S. W.,
Sitch, S., and van der Werf, G. R.: Contribution of semi-arid ecosystems to
interannual variability of the global carbon cycle, Nature, 509, 600–603,
https://doi.org/10.1038/nature13376, 2014.
Randerson, J. T., Thompson, M. V., Malmstrom, C. M., Field, C. B., and Fung,
I. Y.: Substrate limitations for heterotrophs: Implications for models that
estimate the seasonal cycle of atmospheric CO2, Global Biogeochem. Cy.,
10, 585–602, https://doi.org/10.1029/96GB01981, 1996.
Rödenbeck, C., Houweling, S., Gloor, M., and Heimann, M.: CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport, Atmos. Chem. Phys., 3, 1919–1964, https://doi.org/10.5194/acp-3-1919-2003, 2003.
Rödenbeck, C., Conway, T. J., and Langenfelds, R. L.: The effect of systematic measurement errors on atmospheric CO2 inversions: a quantitative assessment, Atmos. Chem. Phys., 6, 149–161, https://doi.org/10.5194/acp-6-149-2006, 2006.
Schaefer, K., Collatz, G. J., Tans, P., Denning, A. S., Baker, I., Berry,
J., Prihodko, L., Suits, N., and Philpott, A.: Combined Simple
Biosphere/Carnegie-Ames-Stanford Approach terrestrial carbon cycle model, J.
Geophys. Res.-Biogeo., 113, G03034, https://doi.org/10.1029/2007JG000603,
2008.
Schimel, D., Stephens, B. B., and Fisher, J. B.: Effect of increasing
CO2 on the terrestrial carbon cycle, P. Natl. Acad. Sci. USA, 112,
436–441, https://doi.org/10.1073/pnas.1407302112, 2015.
Schimel, D. S., House, J. I., Hibbard, K. A., Bousquet, P., Ciais, P.,
Peylin, P., Braswell, B. H., Apps, M. J., Baker, D., Bondeau, A., Canadell,
J., Churkina, G., Cramer, W., Denning, A. S., Field, C. B., Friedlingstein,
P., Goodale, C., Heimann, M., Houghton, R. A., Melillo, J. M., Moore III,
B., Murdiyarso, D., Noble, I., Pacala, S. W., Prentice, I. C., Raupach, M.
R., Rayner, P. J., Scholes, R. J., Steffen, W. L., and Wirth, C.: Recent
patterns and mechanisms of carbon exchange by terrestrial ecosystems,
Nature, 414, 169–172, https://doi.org/10.1038/35102500, 2001.
Schwalm, C. R., Huntzinger, D. N., Fisher, J. B., Michalak, A. M., Bowman,
K., Ciais, P., Cook, R., El-Masri, B., Hayes, D., Huang, M., Ito, A., Jain,
A., King, A. W., Lei, H., Liu, J., Lu, C., Mao, J., Peng, S., Poulter, B.,
Ricciuto, D., Schaefer, K., Shi, X., Tao, B., Tian, H., Wang, W., Wei, Y.,
Yang, J., and Zeng, N.: Toward “optimal” integration of terrestrial
biosphere models, Geophys. Res. Lett., 42, 4418–4428,
https://doi.org/10.1002/2015GL064002, 2015.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: from
air pollution to climate change, 3rd Edn., Wiley, 2016.
Sellers, P. J., Mintz, Y., Sud, Y. C., and Dalcher, A.: A simple biosphere
model (SiB) for use within general circulation models, J. Atmos. Sci., 43,
505–531, https://doi.org/10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2, 1986.
Sellers, P. J., Randall, D. A., Collatz, G. J., Berry, J. A., Field, C. B.,
Dazlich, D. A., Zhang, C., Collelo, G. D., and Buonoua, L.: A revised Land
Surface Parameterization (SiB2) for atmospheric GCMs. Part I: Model
formulation, J. Climate, 9, 676–705,
https://doi.org/10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2, 1996.
Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W.,
Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and
Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and
terrestrial carbon cycling in the LPJ dynamic global vegetation model, Glob.
Change Biol., 9, 161–185, https://doi.org/10.1046/j.1365-2486.2003.00569.x,
2003.
Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan, G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis, R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B., Zhu, Z., and Myneni, R.: Recent trends and drivers of regional sources and sinks of carbon dioxide, Biogeosciences, 12, 653–679, https://doi.org/10.5194/bg-12-653-2015, 2015.
Suntharalingam, P., Jacob, D. J., Palmer, P. I., Logan, J. A., Yantosca, R.
M., Xiao, Y., Evans, M. J., Streets, D. G., Vay, S. L., and Sachse, G. W.:
Improved quantification of Chinese carbon fluxes using CO2/CO
correlations in Asian outflow, J. Geophys. Res.-Atmos., 109, D18S18,
https://doi.org/10.1029/2003JD004362, 2004.
Takagi H., Houweling, S., Andres, R. J., Belikov, D., Bril, A., Boesch H.,
Butz, A., Guerlet, S., Hasekamp, O., Maksyutov, S., Morino, I., Oda T.,
O'Dell, C. W., Oshchepkov, S., Parker, R., Saito, M., Uchino, O., Yokota,
T., Yoshida, Y., and Valsala, V.: Influence of differences in current GOSAT
XCO2 retrievals on surface flux estimation, Geophys. Res. Lett., 41,
2598–2605, https://doi.org/10.1002/2013GL059174, 2014.
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A.,
Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson,
A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii,
M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema,
M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A.,
Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.:
Climatological mean and decadal change in surface ocean pCO2, and net
sea-air CO2 flux over the global oceans, Deep-Sea Res. Pt. II, 56, 554–577, https://doi.org/10.1016/j.dsr2.2008.12.009,
2009.
van der Werf, G. R., Randerson, J. T., Collatz, G. J., Giglio, L.,
Kasibhatla, P. S., Arellano, A. F., Olsen, S. C., and Kasischke, E. S.:
Continental-scale partitioning of fire emissions during the 1997 to 2001 El
Nino/La Nina period, Science, 303, 73–76,
https://doi.org/10.1126/science.1090753, 2004.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S., and Arellano Jr., A. F.: Interannual variability in global biomass burning emissions from 1997 to 2004, Atmos. Chem. Phys., 6, 3423–3441, https://doi.org/10.5194/acp-6-3423-2006, 2006.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010.
Wang, J. S., Kawa, S. R., Collatz, G. J., Sasakawa, M., Gatti, L. V., Machida, T., Liu, Y., and Manyin, M. E.: A global synthesis inversion analysis of recent variability in CO2 fluxes using GOSAT and in situ observations, Atmos. Chem. Phys., 18, 11097–11124, https://doi.org/10.5194/acp-18-11097-2018, 2018.
Short summary
This research was conducted to quantify the impact of different prior global biosphere models on the estimate of terrestrial CO2 fluxes when assimilating Orbiting Carbon Observatory-2 (OCO-2) satellite observations. To determine the prior model impact, we apply observing system simulation experiments (OSSEs). Even with the substantial spatiotemporal coverage of OCO-2 data, residual differences in posterior CO2 flux estimates remain due to the choice of prior flux mean and uncertainties.
This research was conducted to quantify the impact of different prior global biosphere models on...
Altmetrics
Final-revised paper
Preprint