Articles | Volume 19, issue 20
https://doi.org/10.5194/acp-19-12935-2019
https://doi.org/10.5194/acp-19-12935-2019
Research article
 | 
18 Oct 2019
Research article |  | 18 Oct 2019

Development of a daily PM10 and PM2.5 prediction system using a deep long short-term memory neural network model

Hyun S. Kim, Inyoung Park, Chul H. Song, Kyunghwa Lee, Jae W. Yun, Hong K. Kim, Moongu Jeon, Jiwon Lee, and Kyung M. Han

Related authors

An investigation into atmospheric nitrous acid (HONO) processes in South Korea
Kiyeon Kim, Kyung Man Han, Chul Han Song, Hyojun Lee, Ross Beardsley, Jinhyeok Yu, Greg Yarwood, Bonyoung Koo, Jasper Madalipay, Jung-Hun Woo, and Seogju Cho
Atmos. Chem. Phys., 24, 12575–12593, https://doi.org/10.5194/acp-24-12575-2024,https://doi.org/10.5194/acp-24-12575-2024, 2024
Short summary
Aerosol optical depth data fusion with Geostationary Korea Multi-Purpose Satellite (GEO-KOMPSAT-2) instruments GEMS, AMI, and GOCI-II: statistical and deep neural network methods
Minseok Kim, Jhoon Kim, Hyunkwang Lim, Seoyoung Lee, Yeseul Cho, Yun-Gon Lee, Sujung Go, and Kyunghwa Lee
Atmos. Meas. Tech., 17, 4317–4335, https://doi.org/10.5194/amt-17-4317-2024,https://doi.org/10.5194/amt-17-4317-2024, 2024
Short summary
Satellite-based, top-down approach for the adjustment of aerosol precursor emissions over East Asia: the TROPOspheric Monitoring Instrument (TROPOMI) NO2 product and the Geostationary Environment Monitoring Spectrometer (GEMS) aerosol optical depth (AOD) data fusion product and its proxy
Jincheol Park, Jia Jung, Yunsoo Choi, Hyunkwang Lim, Minseok Kim, Kyunghwa Lee, Yun Gon Lee, and Jhoon Kim
Atmos. Meas. Tech., 16, 3039–3057, https://doi.org/10.5194/amt-16-3039-2023,https://doi.org/10.5194/amt-16-3039-2023, 2023
Short summary
Highly resolved mapping of NO2 vertical column densities from GeoTASO measurements over a megacity and industrial area during the KORUS-AQ campaign
Gyo-Hwang Choo, Kyunghwa Lee, Hyunkee Hong, Ukkyo Jeong, Wonei Choi, and Scott J. Janz
Atmos. Meas. Tech., 16, 625–644, https://doi.org/10.5194/amt-16-625-2023,https://doi.org/10.5194/amt-16-625-2023, 2023
Short summary
The Comprehensive Automobile Research System (CARS) – a Python-based automobile emissions inventory model
Bok H. Baek, Rizzieri Pedruzzi, Minwoo Park, Chi-Tsan Wang, Younha Kim, Chul-Han Song, and Jung-Hun Woo
Geosci. Model Dev., 15, 4757–4781, https://doi.org/10.5194/gmd-15-4757-2022,https://doi.org/10.5194/gmd-15-4757-2022, 2022
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Impact of biomass burning aerosols (BBA) on the tropical African climate in an ocean–atmosphere–aerosol coupled climate model
Marc Mallet, Aurore Voldoire, Fabien Solmon, Pierre Nabat, Thomas Drugé, and Romain Roehrig
Atmos. Chem. Phys., 24, 12509–12535, https://doi.org/10.5194/acp-24-12509-2024,https://doi.org/10.5194/acp-24-12509-2024, 2024
Short summary
Retrieval of refractive index and water content for the coating materials of aged black carbon aerosol based on optical properties: a theoretical analysis
Jia Liu, Cancan Zhu, Donghui Zhou, and Jinbao Han
Atmos. Chem. Phys., 24, 12341–12354, https://doi.org/10.5194/acp-24-12341-2024,https://doi.org/10.5194/acp-24-12341-2024, 2024
Short summary
Predicting hygroscopic growth of organosulfur aerosol particles using COSMOtherm
Zijun Li, Angela Buchholz, and Noora Hyttinen
Atmos. Chem. Phys., 24, 11717–11725, https://doi.org/10.5194/acp-24-11717-2024,https://doi.org/10.5194/acp-24-11717-2024, 2024
Short summary
Dust aerosol from the Aralkum Desert influences the radiation budget and atmospheric dynamics of Central Asia
Jamie R. Banks, Bernd Heinold, and Kerstin Schepanski
Atmos. Chem. Phys., 24, 11451–11475, https://doi.org/10.5194/acp-24-11451-2024,https://doi.org/10.5194/acp-24-11451-2024, 2024
Short summary
Global modeling of aerosol nucleation with a semi-explicit chemical mechanism for highly oxygenated organic molecules (HOMs)
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Wenxiang Shen, Stephen R. Arnold, Leighton A. Regayre, Meinrat O. Andreae, Mira L. Pöhlker, Duseong S. Jo, Man Yue, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 11365–11389, https://doi.org/10.5194/acp-24-11365-2024,https://doi.org/10.5194/acp-24-11365-2024, 2024
Short summary

Cited articles

Abdul-Wahab, S. A. and Al-Alawi, S. M.: Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks, Environ. Modell. Softw., 17, 219–228, 2002. 
Amarasinghe, K., Marino, D. L., and Manic, M: Deep neural networks for energy load forecasting, Proceedings of the 26th IEEE International Symposium on Industrial Electronics, 19–21 June, Scotland, UK, 1483–1488, 2017. 
Ayinde, B. O., Inanc, T., and Zurada, J. M.: On Correlation of Features Extracted by Deep Neural Networks, arXiv:1901.10900v1, 2019. 
Bengio, Y., Simard, P., and Frasconi, P.: Learning long-term dependencies with gradient descent is difficult, IEEE Trans. Neural Networ., 5, 157–166, 1994. 
Berge, E., Huang, H.-C., Chang, J., and Liu, T.-H.: A study of importance of initial conditions for photochemical oxidant modeling, J. Geophys. Res.-Atmos., 106, 1347–1363, 2001. 
Download
Short summary
In this study, a deep recurrent neural network system based on a long short-term memory (LSTM) model was developed for daily PM10 and PM2.5 predictions in South Korea. In general, the accuracies of the LSTM-based predictions were superior to the 3-D CTM-based predictions. Based on this, we concluded that the LSTM-based system could be applied to daily operational PM forecasts in South Korea. We expect that similar AI systems can be applied to the predictions of other atmospheric pollutants.
Altmetrics
Final-revised paper
Preprint