Articles | Volume 18, issue 5
https://doi.org/10.5194/acp-18-3419-2018
https://doi.org/10.5194/acp-18-3419-2018
Research article
 | 
08 Mar 2018
Research article |  | 08 Mar 2018

The vapor pressure over nano-crystalline ice

Mario Nachbar, Denis Duft, and Thomas Leisner

Related authors

Optical properties of meteoric smoke analogues
Tasha Aylett, James S. A. Brooke, Alexander D. James, Mario Nachbar, Denis Duft, Thomas Leisner, and John M. C. Plane
Atmos. Chem. Phys., 19, 12767–12777, https://doi.org/10.5194/acp-19-12767-2019,https://doi.org/10.5194/acp-19-12767-2019, 2019
Short summary
The impact of solar radiation on polar mesospheric ice particle formation
Mario Nachbar, Henrike Wilms, Denis Duft, Tasha Aylett, Kensei Kitajima, Takuya Majima, John M. C. Plane, Markus Rapp, and Thomas Leisner
Atmos. Chem. Phys., 19, 4311–4322, https://doi.org/10.5194/acp-19-4311-2019,https://doi.org/10.5194/acp-19-4311-2019, 2019
Short summary
Unravelling the microphysics of polar mesospheric cloud formation
Denis Duft, Mario Nachbar, and Thomas Leisner
Atmos. Chem. Phys., 19, 2871–2879, https://doi.org/10.5194/acp-19-2871-2019,https://doi.org/10.5194/acp-19-2871-2019, 2019
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Laboratory Studies | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
The impact of solar radiation on polar mesospheric ice particle formation
Mario Nachbar, Henrike Wilms, Denis Duft, Tasha Aylett, Kensei Kitajima, Takuya Majima, John M. C. Plane, Markus Rapp, and Thomas Leisner
Atmos. Chem. Phys., 19, 4311–4322, https://doi.org/10.5194/acp-19-4311-2019,https://doi.org/10.5194/acp-19-4311-2019, 2019
Short summary
Unravelling the microphysics of polar mesospheric cloud formation
Denis Duft, Mario Nachbar, and Thomas Leisner
Atmos. Chem. Phys., 19, 2871–2879, https://doi.org/10.5194/acp-19-2871-2019,https://doi.org/10.5194/acp-19-2871-2019, 2019
Short summary
Technical Note: VUV photodesorption rates from water ice in the 120–150 K temperature range – significance for Noctilucent Clouds
M. Yu. Kulikov, A. M. Feigin, S. K. Ignatov, P. G. Sennikov, Th. Bluszcz, and O. Schrems
Atmos. Chem. Phys., 11, 1729–1734, https://doi.org/10.5194/acp-11-1729-2011,https://doi.org/10.5194/acp-11-1729-2011, 2011

Cited articles

Arnold, G. P., Finch, E. D., Rabideau, S. W., and Wenzel, R. G.: Neutron-diffraction study of ice polymorphs: III. Ice ic, J. Chem. Phys., 49, 4365–4369, 1968. 
Backus, E. H. G. and Bonn, M.: Theory of bulk, surface and interface phase transition kinetics in thin films, J. Chem. Phys., 121, 1038–1049, 2004. 
Batista, E. R., Ayotte, P., Bilic, A., Kay, B. D., and Jonsson, H.: What determines the sticking probability of water molecules on ice?, Phys. Rev. Lett., 95, 1–4, 2005. 
Brown, D. E., George, S. M., Huang, C., Wong, E. K. L., Rider, K. B., Smith, R. S., and Kay, B. D.: H2O condensation coefficient and refractive index for vapor-deposited ice from molecular beam and optical interference measurements, J. Phys. Chem., 100, 4988–4995, 1996. 
Bryson, C. E., Cazcarra, V., and Levenson, L. L.: Sublimation rates and vapor-pressures of H2O, CO2, N2O, and XE, J. Chem. Eng. Data, 19, 107–110, 1974. 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
The crystallization process of amorphous ice below 160 K forms nano-crystalline ice. We report high-quality vapor pressure measurements over ice crystallized from amorphous ice below 160 K. We show that the vapor pressure is increased by more than 100 % compared to bulk crystalline ice and that amorphous ice always forms first, followed by the crystallization of nano-crystalline ice. Our findings are relevant for cold ice clouds in the atmospheres of planets, e.g., Earth and Mars.
Altmetrics
Final-revised paper
Preprint