Articles | Volume 18, issue 23
Atmos. Chem. Phys., 18, 16979–17001, 2018
https://doi.org/10.5194/acp-18-16979-2018
Atmos. Chem. Phys., 18, 16979–17001, 2018
https://doi.org/10.5194/acp-18-16979-2018
Research article
30 Nov 2018
Research article | 30 Nov 2018

Elucidating real-world vehicle emission factors from mobile measurements over a large metropolitan region: a focus on isocyanic acid, hydrogen cyanide, and black carbon

Sumi N. Wren et al.

Related authors

Biomass burning nitrogen dioxide emissions derived from space with TROPOMI: methodology and validation
Debora Griffin, Chris A. McLinden, Enrico Dammers, Cristen Adams, Chelsea E. Stockwell, Carsten Warneke, Ilann Bourgeois, Jeff Peischl, Thomas B. Ryerson, Kyle J. Zarzana, Jake P. Rowe, Rainer Volkamer, Christoph Knote, Natalie Kille, Theodore K. Koenig, Christopher F. Lee, Drew Rollins, Pamela S. Rickly, Jack Chen, Lukas Fehr, Adam Bourassa, Doug Degenstein, Katherine Hayden, Cristian Mihele, Sumi N. Wren, John Liggio, Ayodeji Akingunola, and Paul Makar
Atmos. Meas. Tech., 14, 7929–7957, https://doi.org/10.5194/amt-14-7929-2021,https://doi.org/10.5194/amt-14-7929-2021, 2021
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Tropical peat fire emissions: 2019 field measurements in Sumatra and Borneo and synthesis with previous studies
Robert J. Yokelson, Bambang H. Saharjo, Chelsea E. Stockwell, Erianto I. Putra, Thilina Jayarathne, Acep Akbar, Israr Albar, Donald R. Blake, Laura L. B. Graham, Agus Kurniawan, Simone Meinardi, Diah Ningrum, Ati D. Nurhayati, Asmadi Saad, Niken Sakuntaladewi, Eko Setianto, Isobel J. Simpson, Elizabeth A. Stone, Sigit Sutikno, Andri Thomas, Kevin C. Ryan, and Mark A. Cochrane
Atmos. Chem. Phys., 22, 10173–10194, https://doi.org/10.5194/acp-22-10173-2022,https://doi.org/10.5194/acp-22-10173-2022, 2022
Short summary
Sulfuric acid in the Amazon basin: measurements and evaluation of existing sulfuric acid proxies
Deanna C. Myers, Saewung Kim, Steven Sjostedt, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith
Atmos. Chem. Phys., 22, 10061–10076, https://doi.org/10.5194/acp-22-10061-2022,https://doi.org/10.5194/acp-22-10061-2022, 2022
Short summary
Seasonal variation in oxygenated organic molecules in urban Beijing and their contribution to secondary organic aerosol
Yishuo Guo, Chao Yan, Yuliang Liu, Xiaohui Qiao, Feixue Zheng, Ying Zhang, Ying Zhou, Chang Li, Xiaolong Fan, Zhuohui Lin, Zemin Feng, Yusheng Zhang, Penggang Zheng, Linhui Tian, Wei Nie, Zhe Wang, Dandan Huang, Kaspar R. Daellenbach, Lei Yao, Lubna Dada, Federico Bianchi, Jingkun Jiang, Yongchun Liu, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 10077–10097, https://doi.org/10.5194/acp-22-10077-2022,https://doi.org/10.5194/acp-22-10077-2022, 2022
Short summary
Oxygenated volatile organic compounds (VOCs) as significant but varied contributors to VOC emissions from vehicles
Sihang Wang, Bin Yuan, Caihong Wu, Chaomin Wang, Tiange Li, Xianjun He, Yibo Huangfu, Jipeng Qi, Xiao-Bing Li, Qing'e Sha, Manni Zhu, Shengrong Lou, Hongli Wang, Thomas Karl, Martin Graus, Zibing Yuan, and Min Shao
Atmos. Chem. Phys., 22, 9703–9720, https://doi.org/10.5194/acp-22-9703-2022,https://doi.org/10.5194/acp-22-9703-2022, 2022
Short summary
The impacts of wildfires on ozone production and boundary layer dynamics in California's Central Valley
Keming Pan and Ian C. Faloona
Atmos. Chem. Phys., 22, 9681–9702, https://doi.org/10.5194/acp-22-9681-2022,https://doi.org/10.5194/acp-22-9681-2022, 2022
Short summary

Cited articles

Air Pollutants Emission Inventory: Air Pollutants Emission Inventory online search, available at: https://pollution-waste.canada.ca/air-emission-inventory (last access: 18 April 2018), 2015. 
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011. 
Ambrose, J. L., Haase, K., Russo, R. S., Zhou, Y., White, M. L., Frinak, E. K., Jordan, C., Mayne, H. R., Talbot, R., and Sive, B. C.: A comparison of GC-FID and PTR-MS toluene measurements in ambient air under conditions of enhanced monoterpene loading, Atmos. Meas. Tech., 3, 959–980, https://doi.org/10.5194/amt-3-959-2010, 2010. 
Ambrose, J. L., Zhou, Y., Haase, K., Mayne, H. R., Talbot, R., and Sive, B. C.: A gas chromatographic instrument for measurement of hydrogen cyanide in the lower atmosphere, Atmos. Meas. Tech., 5, 1229–1240, https://doi.org/10.5194/amt-5-1229-2012, 2012. 
Araizaga, A. E., Mancilla, Y., and Mendoza, A.: Volatile organic compound emissions from light-duty vehicles in Monterrey, Mexico: a tunnel study, Int. J. Environ. Res., 7, 277–292, 2013. 
Download
Short summary
We made measurements from a mobile laboratory across a large urban area and determined fleet-average vehicle emission factors (EFs) for a suite of traffic-related air pollutants. We present the first real-world EFs for isocyanic acid (HNCO) and hydrogen cyanide (HCN) and insight into their on-road variability. We find that vehicles may represent an important source of these air toxics at an urban scale. This work has implications for understanding population exposure to these species.
Altmetrics
Final-revised paper
Preprint