Articles | Volume 18, issue 23
Atmos. Chem. Phys., 18, 16979–17001, 2018
https://doi.org/10.5194/acp-18-16979-2018
Atmos. Chem. Phys., 18, 16979–17001, 2018
https://doi.org/10.5194/acp-18-16979-2018
Research article
30 Nov 2018
Research article | 30 Nov 2018

Elucidating real-world vehicle emission factors from mobile measurements over a large metropolitan region: a focus on isocyanic acid, hydrogen cyanide, and black carbon

Sumi N. Wren et al.

Related authors

Biomass burning nitrogen dioxide emissions derived from space with TROPOMI: methodology and validation
Debora Griffin, Chris A. McLinden, Enrico Dammers, Cristen Adams, Chelsea E. Stockwell, Carsten Warneke, Ilann Bourgeois, Jeff Peischl, Thomas B. Ryerson, Kyle J. Zarzana, Jake P. Rowe, Rainer Volkamer, Christoph Knote, Natalie Kille, Theodore K. Koenig, Christopher F. Lee, Drew Rollins, Pamela S. Rickly, Jack Chen, Lukas Fehr, Adam Bourassa, Doug Degenstein, Katherine Hayden, Cristian Mihele, Sumi N. Wren, John Liggio, Ayodeji Akingunola, and Paul Makar
Atmos. Meas. Tech., 14, 7929–7957, https://doi.org/10.5194/amt-14-7929-2021,https://doi.org/10.5194/amt-14-7929-2021, 2021
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
What caused ozone pollution during the 2022 Shanghai lockdown? Insights from ground and satellite observations
Yue Tan and Tao Wang
Atmos. Chem. Phys., 22, 14455–14466, https://doi.org/10.5194/acp-22-14455-2022,https://doi.org/10.5194/acp-22-14455-2022, 2022
Short summary
Ammonium adduct chemical ionization to investigate anthropogenic oxygenated gas-phase organic compounds in urban air
Peeyush Khare, Jordan E. Krechmer, Jo E. Machesky, Tori Hass-Mitchell, Cong Cao, Junqi Wang, Francesca Majluf, Felipe Lopez-Hilfiker, Sonja Malek, Will Wang, Karl Seltzer, Havala O. T. Pye, Roisin Commane, Brian C. McDonald, Ricardo Toledo-Crow, John E. Mak, and Drew R. Gentner
Atmos. Chem. Phys., 22, 14377–14399, https://doi.org/10.5194/acp-22-14377-2022,https://doi.org/10.5194/acp-22-14377-2022, 2022
Short summary
Atmospheric biogenic volatile organic compounds in the Alaskan Arctic tundra: constraints from measurements at Toolik Field Station
Vanessa Selimovic, Damien Ketcherside, Sreelekha Chaliyakunnel, Catherine Wielgasz, Wade Permar, Hélène Angot, Dylan B. Millet, Alan Fried, Detlev Helmig, and Lu Hu
Atmos. Chem. Phys., 22, 14037–14058, https://doi.org/10.5194/acp-22-14037-2022,https://doi.org/10.5194/acp-22-14037-2022, 2022
Short summary
Are dense networks of low-cost nodes really useful for monitoring air pollution? A case study in Staffordshire
Louise Bøge Frederickson, Ruta Sidaraviciute, Johan Albrecht Schmidt, Ole Hertel, and Matthew Stanley Johnson
Atmos. Chem. Phys., 22, 13949–13965, https://doi.org/10.5194/acp-22-13949-2022,https://doi.org/10.5194/acp-22-13949-2022, 2022
Short summary
Technical note: Northern midlatitude baseline ozone – long-term changes and the COVID-19 impact
David D. Parrish, Richard G. Derwent, Ian C. Faloona, and Charles A. Mims
Atmos. Chem. Phys., 22, 13423–13430, https://doi.org/10.5194/acp-22-13423-2022,https://doi.org/10.5194/acp-22-13423-2022, 2022
Short summary

Cited articles

Air Pollutants Emission Inventory: Air Pollutants Emission Inventory online search, available at: https://pollution-waste.canada.ca/air-emission-inventory (last access: 18 April 2018), 2015. 
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011. 
Ambrose, J. L., Haase, K., Russo, R. S., Zhou, Y., White, M. L., Frinak, E. K., Jordan, C., Mayne, H. R., Talbot, R., and Sive, B. C.: A comparison of GC-FID and PTR-MS toluene measurements in ambient air under conditions of enhanced monoterpene loading, Atmos. Meas. Tech., 3, 959–980, https://doi.org/10.5194/amt-3-959-2010, 2010. 
Ambrose, J. L., Zhou, Y., Haase, K., Mayne, H. R., Talbot, R., and Sive, B. C.: A gas chromatographic instrument for measurement of hydrogen cyanide in the lower atmosphere, Atmos. Meas. Tech., 5, 1229–1240, https://doi.org/10.5194/amt-5-1229-2012, 2012. 
Araizaga, A. E., Mancilla, Y., and Mendoza, A.: Volatile organic compound emissions from light-duty vehicles in Monterrey, Mexico: a tunnel study, Int. J. Environ. Res., 7, 277–292, 2013. 
Download
Short summary
We made measurements from a mobile laboratory across a large urban area and determined fleet-average vehicle emission factors (EFs) for a suite of traffic-related air pollutants. We present the first real-world EFs for isocyanic acid (HNCO) and hydrogen cyanide (HCN) and insight into their on-road variability. We find that vehicles may represent an important source of these air toxics at an urban scale. This work has implications for understanding population exposure to these species.
Altmetrics
Final-revised paper
Preprint