Articles | Volume 18, issue 21
https://doi.org/10.5194/acp-18-16081-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-18-16081-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Drivers of atmospheric deposition of polycyclic aromatic hydrocarbons at European high-altitude sites
Lourdes Arellano
Institute of Environmental Assessment and Water Research
(IDÆA-CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia, Spain
Pilar Fernández
CORRESPONDING AUTHOR
Institute of Environmental Assessment and Water Research
(IDÆA-CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia, Spain
Barend L. van Drooge
Institute of Environmental Assessment and Water Research
(IDÆA-CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia, Spain
Neil L. Rose
Environmental Change Research Centre, University College London,
Gower Street, London, WC1E 6BT, UK
Ulrike Nickus
Department of Atmospheric and Cryospheric Sciences, University of
Innsbruck, Innrain 52, 6020 Innsbruck, Austria
Hansjoerg Thies
Institute of Interdisciplinary Mountain Research, Austrian Academy
of Sciences, Technikerstrasse 21a, 6020 Innsbruck, Austria
Evzen Stuchlík
Biology Centre, Czech Academy of Science, Institute of
Hydrobiology, Na Sadkach 7, 37005 Ceske Budejovice, Czech Republic
Lluís Camarero
Centre for Advanced Studies of Blanes (CEAB-CSIC), Accés a la
Cala St. Francesc 14, 17300 Blanes, Catalonia, Spain
Jordi Catalan
Centre for Ecological Research and Forestry Applications (CREAF),
Campus UAB, Edifici C, 08193 Cerdanyola, Catalonia, Spain
Joan O. Grimalt
Institute of Environmental Assessment and Water Research
(IDÆA-CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia, Spain
Related authors
No articles found.
Clara Jaén, Mireia Udina, Roy Harrison, Joan O. Grimalt, and Barend L. Van Drooge
Atmos. Chem. Phys., 25, 18389–18407, https://doi.org/10.5194/acp-25-18389-2025, https://doi.org/10.5194/acp-25-18389-2025, 2025
Short summary
Short summary
Distance changes air pollution in a city, but so does the time of the day and the year, due to varying emission sources and weather conditions. These changes were studied at ground level and 400 meters above the city, and showed that wood burning affected the air quality in winter, while products of atmospheric reaction processes dominated the air in summer. Traffic emissions arrive to the elevated site during the day, while they were trapped at lower level in the night.
Judit Torner, Isabel Cacho, Heather Stoll, Ana Moreno, Joan O. Grimalt, Francisco J. Sierro, Joan J. Fornós, Hai Cheng, and R. Lawrence Edwards
Clim. Past, 21, 465–487, https://doi.org/10.5194/cp-21-465-2025, https://doi.org/10.5194/cp-21-465-2025, 2025
Short summary
Short summary
We offer a clearer view of the timing of three relevant past glacial terminations. By analyzing the climatic signal recorded in stalagmite and linking it with marine records, we revealed differences in the intensity and duration of the ice melting associated with these three key deglaciations. This study shows that some deglaciations began earlier than previously thought; this improves our understanding of natural climate processes, helping us to contextualize current climate change.
Nil Irvalı, Ulysses S. Ninnemann, Are Olsen, Neil L. Rose, David J. R. Thornalley, Tor L. Mjell, and François Counillon
Geochronology, 6, 449–463, https://doi.org/10.5194/gchron-6-449-2024, https://doi.org/10.5194/gchron-6-449-2024, 2024
Short summary
Short summary
Marine sediments are excellent archives for reconstructing past changes in climate and ocean circulation. Yet, dating uncertainties, particularly during the 20th century, pose major challenges. Here we propose a novel chronostratigraphic approach that uses anthropogenic signals, such as the oceanic 13C Suess effect and spheroidal carbonaceous fly-ash particles, to reduce age model uncertainties in high-resolution marine archives over the 20th century.
Aleix Cortina-Guerra, Juan José Gomez-Navarro, Belen Martrat, Juan Pedro Montávez, Alessandro Incarbona, Joan O. Grimalt, Marie-Alexandrine Sicre, and P. Graham Mortyn
Clim. Past, 17, 1523–1532, https://doi.org/10.5194/cp-17-1523-2021, https://doi.org/10.5194/cp-17-1523-2021, 2021
Short summary
Short summary
During late 20th century a singular Mediterranean circulation episode called the Eastern Mediterranean Transient (EMT) event occurred. It involved changes on the seawater physical and biogeochemical properties, which can impact areas broadly. Here, using paleosimulations for the last 1000 years we found that the East Atlantic/Western Russian atmospheric mode was the main driver of the EMT-type events in the past, and enhancement of this mode was coetaneous with low solar insolation.
Cited articles
Arellano, L., Fernández, P., Tatosova, J., Stuchlik, E., and Grimalt, J.
O.: Long-Range Transported Atmospheric Pollutants in Snowpacks Accumulated
at Different Altitudes in the Tatra Mountains (Slovakia), Environ. Sci.
Technol., 45, 9268–9275, https://doi.org/10.1021/es202111n,
2011.
Arellano, L., Fernández, P., López, J. F., Rose, N. L., Nickus, U.,
Thies, H. J., Stuchlik, E., Camarero, L., Catalan, J., and Grimalt, J. O.:
Atmospheric deposition of polybromodiphenyl ethers in remote mountain
regions of Europe, Atmos. Chem. Phys., 14, 4441–4457, https://doi.org/10.5194/acp-14-4441-2014, 2014.
Arellano, L., Fernández, P., Fonts, R., Rose, N. L., Nickus, U., Thies,
H. J., Stuchlik, E., Camarero, L., Catalan, J., and Grimalt, J. O.:
Increasing and Decreasing Trends of the Atmospheric Deposition of
Organochlorine Compounds in European Remote Areas during the Last Decade,
Atmos. Chem. Phys., 15, 6069–6085, https://doi.org/10.5194/acp-15-6069-2015, 2015.
Arellano, L., Fernández, P., and Grimalt, J. O.: PAH Atmospheric
Deposition in High Mountain Lakes, available at:
http://hdl.handle.net/10261/171874, last access: 6 November 2018.
Armstrong, B., Hutchinson, E., Unwin, J., and Fletcher, T.: Lung Cancer Risk
after Exposure to Polycyclic Aromatic Hydroarbons: A review and
Meta-Analysis, Environ. Health Persp., 112, 970–978, https://doi.org/10.1289/ehp.6895, 2004.
Bae, S.Y., Yi, S. M., and Kim, Y. P.: Temporal and spatial variations of the
particle size distribution of PAHs and their dry deposition fluxes in Korea,
Atmos. Environ., 36, 5461–5500, https://doi.org/10.1016/S1352-2310(02)00666-0, 2002.
Baek, S. O., Field, R. A., Goldstone, M. E., Kirk, P. W., Lester, J. N., and
Perry, R.: A review of atmospheric polycyclic hydrocarbons: sources, fate
and behaviour, Water Air Soil Poll., 60, 279–300, https://doi.org/10.1007/BF00282628, 1991.
Bari, M. A., Kindzierski, W. B., and Cho, S.: A wintertime investigation of
atmospheric deposition of metals and polycyclic aromatic hydrocarbons in the
Athabasca Oil Sands Region, Canada, Sci. Total Environ., 485, 180–192,
https://doi.org/10.1016/j.scitotenv.2014.03.088, 2014.
Behymer, T. D. and Hites, R. A.: Photolysis of polycyclic aromatic
hydrocarbons adsorbed on fly ash, Environ. Sci. Technol., 22, 1311–1319,
https://doi.org/10.1021/es00176a011, 1988.
Birgul, A., Tasdemir, Y., and Cindoruk, S. S.: Atmospheric wet and dry
deposition of polycyclic aromatic hydrocarbons (PAHs) determined using a
modified sampler, Atmos. Res., 101, 341–353, https://doi.org/10.1016/j.atmosres.2011.03.012, 2011.
Brorström-Lundén, E., and Löfgren, C.: Atmospheric fluxes of
persistent semivolatile organic pollutants to a forest ecological system at
the Swedish west coast and accumulation in spruce needles, Environ. Poll.,
102, 139–149, https://doi.org/10.1016/S0269-7491(98)00081-5,
1998.
Brun, G. L., Vaidya, O. C., and Léger, M. G.: Atmospheric Deposition of
Polycyclic Aromatic Hydrocarbons to Atlantic Canada: Geographic and Temporal
Distributions and Trends 1980–2001, Environ. Sci. Technol., 38, 1941–1948,
https://doi.org/10.1021/es034645l, 2004.
Carrera, G., Fernández, P., Vilanova, R., and Grimalt, J. O.: Analysis
of Trace Polycyclic Aromatic Hydrocarbons and Organochlorine Compounds in
Atmospheric Residues by Solid-Phase Disk Extraction, J. Chromatogr. A, 823,
189–196, https://doi.org/10.1016/S0021-9673(98)00519-6, 1998.
Cetin, B., Odabasi, M., and Bayram, A.: Wet deposition of persistent organic
pollutants (POPs) in Izmir, Turkey, Environ. Sci. Poll. Res., 23, 9227–9236,
https://doi.org/10.1007/s11356-016-6183-6, 2016.
Ding, X., Wang, X. M., Xie, Z. O., Xiang, C. H., Mai, B. X., Sun, L. G.,
Zheng, M., Sheng, G. Y., Fu, J. M., and Pöschl, U.: Atmospheric
polycyclic aromatic hydrocarbons observed over the North Pacific Ocean and
the Arctic area: Spatial distribution and source identification, Atmos.
Environ., 41, 2061–2072, https://doi.org/10.1016/j.atmosenv.2006.11.002, 2007.
Draxler, R. R. and Hess, G. D.: An overview of the HYSPLIT_4
modelling system for trajectories, dispersion, and deposition, Aust.
Meteorol. Mag., 47, 295–308, 1998.
Esen, F., Siddik Cindoruk, S., and Tasdemir, Y.: Bulk deposition of
polycyclic aromatic hydrocarbons (PAHs) in an industrial site of Turkey,
Environ. Poll., 152, 461–467, https://doi.org/10.1016/j.envpol.2007.05.031, 2008.
Fang, G. C., Chang, K. F., Lu, C., and Bai, H.: Estimation of PAHs dry
deposition and BaP toxic equivalency factors (TEFs) study at urban, industry
Park and rural sampling sites in Central Taiwan, Taichung, Chemosphere, 55,
787–796, https://doi.org/10.1016/j.chemosphere.2003.12.012,
2004.
Feng, D., Liu, Y., Gao, Y., Zhou, J., Zheng, L., Qiao, G., Ma, L., Lin, Z.,
and Grathwohl, P.: Atmospheric
bulk deposition of polycyclic aromatic hydrocarbons in Shanghai: Temporal
and spatial variation, and
global comparison, Environ. Poll., 230, 639–647, https://doi.org/10.1016/j.envpol.2017.07.022, 2017.
Fernández, P., Vilanova, R. M., and Grimalt, J. O.: Sediment Fluxes of
Polycyclic Aromatic Hydrocarbons in European High Altitude Mountain Lakes,
Environ. Sci. Technol., 33, 3716–3722, https://doi.org/10.1021/es9904639, 1999.
Fernández, P., Vilanova, R. M., Martínez, C., Appleby, P., and
Grimalt, J. O.: The Historical Record of Atmospheric Pyrolitic Pollution
over Europe Registered in the Sedimentary PAH from Remote Mountain Lakes,
Environ. Sci. Technol., 34, 1906–1913, https://doi.org/10.1021/es9912271, 2000.
Fernández, P., Grimalt, J. O., and Vilanova, R. M.: Atmospheric
Gas-Particle Partitioning of Polycyclic Aromatic Hydrocarbons in High
Mountain Regions of Europe, Environ. Sci. Technol., 36, 1162–1168,
https://doi.org/10.1021/es010190t, 2002.
Fernández, P., Carrera, G., Grimalt, J. O., Ventura, M., Camarero, L.,
Catalán, J., Nickus, U., Thies, H., and Psenner, R.: Factors Governing
the Atmospheric Deposition of Polycyclic Aromatic Hydrocarbons to Remote
Areas, Environ. Sci. Technol., 37, 3261–3267, https://doi.org/10.1021/es020137k, 2003.
Foan, L., Domerq, M., Bermejo, R., M. Santamaria, J., and Simon, V.:
Polycyclic Aromatic Hydrocarbons (PAHs) in Remote Bulk and Throughfall
deposition: Seasonal and Spatial Trends, Environ. Eng. Manag. J., 11,
1101–1110, https://doi.org/10.30638/eemj.2012.134, 2012.
Gaga, E. O., Tuncel, G., and Tuncel, S. G.: Sources and Wet Deposition
Fluxes of Polycyclic Aromatic Hydrocarbons (PAHs) in an Urban Site 1000
Meters High in Central Anatolia (Turkey), Environ. Forensics, 10, 286–298,
https://doi.org/10.1080/15275920903347594, 2009.
Garban, B., Blanchoud, H., Motelay-Massei, A., Chevreuil, M., and Ollivon,
D.: Atmospheric bulk deposition of PAHs onto France: trends from urban to
remote sites, Atmos. Environ., 36, 5395–5403, https://doi.org/10.1016/S1352-2310(02)00414-4, 2002.
Gigliotti, C. L., Totten, L. A., Offenberg, J. H., Dachs, J., Reinfelder, J.
R., Nelson, E. D., Glenn, T. R., and Eisenreich, S. J.: Atmospheric
concentrations and deposition of polycyclic aromatic hydrocarbons to the
Mid-Atlantic East Coast Region, Environ. Sci. Technol., 39, 5550–5559,
https://doi.org/10.1021/es050401k, 2005.
Gocht, T., Klemm, O., and Grathwohl, P.: Long-term atmospheric bulk
deposition of polycyclic aromatic hydrocarbons (PAHs) in rural areas of
Southern Germany, Atmos. Environ., 41, 1315–1327, https://doi.org/10.1016/j.atmosenv.2006.09.036, 2007.
Golomb, D., Barry, E., Fisher, G., Varanusupakul, P., Koleda, M., and
Rooney, T.: Atmospheric deposition of polycyclic aromatic hydrocarbons near
New England coastal waters, Atmos. Environ., 35, 6245–6258, https://doi.org/10.1016/S1352-2310(01)00456-3, 2001.
Grimalt, J. O., Fernández, P., Berdié, L., Vilanova, R. M., Catalan,
J., Psenner, R., Hofer, R., Appleby, P. G., Lien, L., Rosseland, B. O.,
Massabuau, J.-C., and Battarbee, R. W.: Selective Trapping of Organochlorine
Compounds in Mountain Lakes of Temperate Areas, Environ. Sci. Technol., 35,
2690–2697, https://doi.org/10.1021/es000278r, 2001.
Grimalt, J. O., van Drooge, B. L., Ribes, A., Fernández, P., and
Appleby, P.: Polycyclic aromatic hydrocarbon composition in soils and
sediments of high altitude lakes, Environ. Poll., 131, 13–24, https://doi.org/10.1016/j.envpol.2004.02.024, 2004.
Gustafson, K. E. and Dickhut, R. M.: Particle/Gas Concentrations and
Distributions of PAHs in the Atmosphere of Southern Chesapeake Bay, Environ.
Sci. Technol., 31, 140–147, https://doi.org/10.1021/es9602197, 1997.
Halsall, C. J., Coleman, P. J., and Jones, K. C.: Atmospheric deposition of
polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and polycyclic
aromatic hydrocarbons (PAHs) in two UK cities, Chemosphere, 35, 1919–1931,
https://doi.org/10.1016/S0045-6535(97)00265-8, 1997.
Halsall, C. J., Sweetman, A. J., Barrie, L. A., and Jones, K. C.: Modelling
the behaviour of PAHs during atmospheric transport from the UK to the
Arctic, Atmos. Environ., 35, 255–267, https://doi.org/10.1016/S1352-2310(00)00195-3, 2001.
Holoubek, I., Klánová, J., Jarkovský, J., and Kohoutek, J.:
Trends in background levels of persistent organic pollutants at Kosetice
observatory, Czech Republic. Part I. Ambient air and wet deposition
1996–2005, J. Environ. Monitor., 9, 557–563, https://doi.org/10.1039/B700750G, 2007.
Horstmann, M. and McLachlan, M. S.: Atmospheric deposition of semivolatile
organic compounds to two forest canopies, Atmos. Environ., 32, 1799–1809,
https://doi.org/10.1016/S1352-2310(97)00477-9, 1998.
HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory): Model
access via NOAA ARL READY, available at: http://ready.arl.noaa.gov/HYSPLIT.php, 2013.
Jaward, F. M., Farrar, N. J., Harner, T., Sweetman, A. J., and Jones, K. C.:
Passive air sampling of polycyclic aromatic hydrocarbons and polychlorinated
naphthalenes across Europe, Environ. Toxicol. Chem., 23, 1355–1364,
https://doi.org/10.1897/03-420, 2004.
Kirchgeorg, T., Dreyer, A., Gabrielli, P., Gabrieli, J., Thompson, L. G.,
Barbante, C., and Ebinghaus, R.: Seasonal accumulation of persistent organic
pollutants on a high altitude glacier in the Eastern Alps, Environ. Poll.,
218, 804–812, https://doi.org/10.1016/j.envpol.2016.08.004,
2016
Kiss, G., Varga-Puchony, Z., Tolnai, B., Varga, B., Gelencsér, A.,
Krivácsy, Z., and Hlavay, J.: The seasonal changes in the concentration
of polycyclic aromatic hydrocarbons in precipitation and aerosol near Lake
Balaton, Hungary, Environ. Poll., 114, 55–61, https://doi.org/10.1016/S0269-7491(00)00208-6, 2001.
Leister, D. L. and Baker, J. E.: Atmospheric deposition of organic
contaminants to the Chesepeake Bay, Atmos. Environ., 28, 1499–1520,
https://doi.org/10.1016/1352-2310(94)90210-0, 1994.
Li, J., Cheng, H., Zhang, G., Qi, S., and Li, X.: Polycyclic aromatic
hydrocarbon (PAH) deposition to and exchange at the air-water interface of
Luhu, an urban lake in Guangzhou, China, Environ. Poll., 157, 273–279,
https://doi.org/10.1016/j.envpol.2008.06.039, 2009.
Li, P.-H., Wang, Y., Li, Y.-H., Wang, Z.-f., Zhang, H.-Y., Xu, P.-J., and
Wang, W.-X.: Characterization of polycyclic aromatic hydrocarbons deposition
in PM2.5 and cloud/fog water at Mount Taishan (China), Atmos. Environ., 44,
1996–2003, https://doi.org/10.1016/j.atmosenv.2010.02.031,
2010.
Li, P.-H., Wang, Y., Li, Y.-H., Wai, K.-M., Li, H.-L., and Tong, L.:
Gas-particle partitioning and precipitation scavenging of polycyclic
aromatic hydrocarbons (PAHs) in the free troposphere in southern China,
Atmos. Environ., 128, 165–174, https://doi.org/10.1016/j.atmosenv.2015.12.030, 2016.
Lipiatou, E., Tolosa, I., Simo, R., Bouloubassi, I., Dachs, J., Marti, S.,
Sicre, M. A., Bayona, J. M., Grimalt, J. O., Saliot, A., and Albaiges, J.: Mass
budget and dynamics of polycyclic aromatic hydrocarbons in the Mediterranean
Sea, Deep-Sea Res. Pt. II, 4, 881–905, https://doi.org/10.1016/S0967-0645(96)00093-8, 1997.
Ma, J. and Cao, Z.: Quantifying the Perturbations of Persistent Organic
Pollutants Induced by Climate Change, Environ. Sci. Technol., 44, 8567–8573,
https://doi.org/10.1021/es101771g, 2010.
Ma, J., Hung, H., Tian, C., and Kallenborn, R.: Revolatilization of
persistent organic pollutants in the Arctic induced by climate change,
Nat. Clim. Change, 1, 255–260, https://doi.org/10.1038/nclimate1167, 2011.
Ma, Y., Xie, Z., Yang, H., Moeller, A., Halsall, C., Cai, M., Sturm, R., and
Ebinghaus, R.: Deposition of polycyclic aromatic hydrocarbons in the North
Pacific and the Arctic, J. Geophys. Res.-Atmos., 118, 5822,
https://doi.org/10.1002/jgrd.50473, 2013.
McVeety, B. D. and Hites, R. A.: Atmospheric deposition of polycyclic
aromatic hydrocarbons to water surfaces: A mass balance approach, Atmos.
Environ., 22, 511–536, https://doi.org/10.1016/0004-6981(88)90196-5, 1988.
Meijer, S. N., Sweetman, A. J., Halsall, C. J., and Jones, K. C.: Temporal
Trends of Polycyclic Aromatic Hydrocarbons in the U.K. Atmosphere:
1991–2005, Environ. Sci. Technol., 42, 3213–3218, https://doi.org/10.1021/es702979d, 2008.
Meijer, S. N., Grimalt, J. O., Fernández, P., and Dach, J.: Seasonal fluxes
and temperature-dependent accumulation of persistent organic pollutants in
lakes: The role of internal biogeochemical cycling, Environ. Poll., 157,
1815–1822, https://doi.org/10.1016/j.envpol.2009.01.024,
2009.
Menichini, E., Barbera, S., Merli, F., Settimo, G., and Viviano, G.:
Atmospheric bulk deposition of carcinogenic PAHs in a rural area in Southern
Italy, Pol. Arom. Comp., 26, 253–263, https://doi.org/10.1080/10406630600904026, 2006.
Motelay-Massei, A., Ollivon, D., Garban, B., and Chevreuil, M.: Polycylic
aromatic hydrocarbons in bulk deposition at a suburban site: assessment by
principal component analysis of the influence of meteorological parameters,
Atmos. Environ., 37, 3135–3146, https://doi.org/10.1016/S1352-2310(03)00218-8, 2003.
Nelson, E. D., McConnell, L. L., and Baker, J. E.: Diffusive exchange of gaseous
polycyclic aromatic hydrocarbons
and polychlorinated biphenyls across the air-water interface of the
Chesapeake Bay, Environ. Sci. Technol.,
32, 912–919, https://doi.org/10.1021/es9706155, 1998.
Offenthaler, I., Jakobi, G., Kaiser, A., Kirchner, M., Kräuchi, N.,
Niedermoser, B., Schramm, K. W., Sedivy, I., Staudinger, M., Thanner, G.,
Weiss, P., and Moche, W.: Novel sampling methods for atmospheric
semi-volatile organic compounds (SOCs) in a high altitude alpine
environment, Environ. Poll., 157, 3290–3297, https://doi.org/10.1016/j.envpol.2009.05.053, 2009.
Ollivon, D., Blanchoud, H., Motelay-Massei, A., and Garban, B.: Atmospheric
deposition of PAHs to an urban site, Paris, France, Atmos. Environ., 36,
2891–2900, https://doi.org/10.1016/S1352-2310(02)00089-4,
2002.
Pacyna, J. M., Breivik, K., Münch, J., and Fudala, J.: European
Atmospheric Emissions of Selected Persistent Organic Pollutants, 1970–1995,
Atmos. Environ., 37, S119–S131, https://doi.org/10.1016/S1352-2310(03)00240-1, 2003.
Park, J.-S., Wade, T. L., and Sweet, S.: Atmospheric distribution of
polycyclic aromatic hydrocarbons and deposition to Galveston Bay, Texas,
USA, Atmos. Environ., 35, 3241–3249, https://doi.org/10.1016/S1352-2310(01)00080-2, 2001.
Pekey, B., Karakas, D., and Ayberk, S.: Atmospheric deposition of polycyclic
aromatic hydrocarbons to Izmit Bay, Turkey, Chemosphere, 67, 537–547,
https://doi.org/10.1016/j.chemosphere.2006.09.054, 2007.
Poor, N., Tremblay, R., Kay, H., Bhethanabotla, V., Swartz, E., Luther, M.,
and Campbell, S.: Atmospheric concentrations and dry deposition rates of
polycyclic aromatic hydrocarbons (PAHs) for Tampa Bay, Florida, USA, Atmos.
Environ., 38, 6005–6015, https://doi.org/10.1016/j.atmosenv.2004.06.037, 2004.
Rose, N. L.: An Historical Record of Toxaphene and Its Congeners in a Remote
Lake in Western Europe, Environ. Sci. Technol., 35, 1312, https://doi.org/10.1021/es0015895, 2001.
Rowan, D. J., Cornett, R. J., King, K., and Risto, B.: Sediment focusing and
210Pb dating: a new approach, J. Paleolimnol., 13, 107–118, https://doi.org/10.1007/BF00678101, 1995.
Ruge, Z., Muir, D., Helm, P., and Lohmann, R.: Concentrations, Trends, and
Air–Water Exchange of PAHs
and PBDEs Derived from Passive Samplers in Lake Superior in 2011, Environ.
Sci. Technol., 49, 13777–13786, https://doi.org/10.1021/acs.est.5b02611, 2015.
Schifman, L. A. and Boving, T. B.: Spatial and seasonal atmospheric PAH
deposition patterns and sources in Rhode Island, Atmos. Environ., 120,
253–261, https://doi.org/10.1016/j.atmosenv.2015.08.056,
2015.
Shahpoury, P., Lammel, G., Smejkalova, A. H., Klánová, J.,
Pribylova, P., and Vana, M.: Polycyclic aromatic hydrocarbons,
polychlorinated biphenyls, and chlorinated pesticides in background air in
central Europe – investigating parameters affecting wet scavenging of
polycyclic aromatic hydrocarbons, Atmos. Chem. Phys., 15, 1795–1805,
https://doi.org/10.5194/acp-15-1795-2015, 2015.
Sharma, B. M., Melymuk, L., Bharat, G. K., Přibylová, P.,
Sáňka, O., Klánová, J., and Nizzetto, L.: Spatial gradients
of polycyclic aromatic hydrocarbons (PAHs) in air, atmospheric deposition,
and surface water of the Ganges River basin, Sci. Total Environ., 627,
1495–1504, https://doi.org/10.1016/j.scitotenv.2018.01.262,
2018.
Sicre, M. A., Marty, J. C., Saliot, A., Aparicio, X., Grimalt, J. O., and
Albaigés, J.: Aliphatic and aromatic hydrocarbons in different sized
aerosols over the Mediterranean Sea: Occurrence and Origin, Atmos. Environ.
21, 2247–2259, https://doi.org/10.1016/0004-6981(87)90356-8,
1987
Simcik, M. F., Franz, T. P., Zhang, H., and Eisenreich, S. J.: Gas-particle
partitioning of PCBs and PAHs in the Chicago urban and adjacent coastal
atmosphere: states of equilibrium, Environ. Sci. Technol., 32, 251–257,
https://doi.org/10.1021/es970557n, 1998.
Singh, D. K., Kawamura, K., Yanase, A., and Barrie, L. A.: Distributions of
Polycyclic Aromatic
Hydrocarbons, Aromatic Ketones, Carboxylic Acids, and Trace Metals in Arctic
Aerosols: Long-Range
Atmospheric Transport, Photochemical Degradation/Production at Polar
Sunrise, Environ. Sci. Technol.,
51, 8992–9004, https://doi.org/10.1021/acs.est.7b01644, 2017.
Su, Y., Wania, F., Harner, T., and Lei, Y. D.: Deposition of polybrominated
diphenyl ethers, polychlorinated biphenyls, and polycyclic aromatic
hydrocarbons to a boreal deciduous forest, Environ. Sci. Technol., 41,
534–540, https://doi.org/10.1021/es0622047, 2007.
Sun, P., Blanchard, P., Brice, K. A., and Hites, R. A.: Trends in Polycyclic
Aromatic Hydrocarbon Concentrations in the Great Lakes Atmosphere, Environ.
Sci. Technol., 40, 6221–6227, https://doi.org/10.1021/es0607279, 2006.
Terzi, E. and Samara, C.: Dry deposition of polycyclic aromatic
hydrocarbons in urban and rural sites of Western Greece, Atmos. Environ.,
39, 6261–6270, https://doi.org/10.1016/j.atmosenv.2005.06.057,
2005.
Torseth, K., Aas, W., Breivik, K., Fjaeraa, A. M., Fiebig, M., Hjellbrekke,
A. G., Myhre, C. L., Solberg, S., and Yttri, K. E.: Introduction to the
European Monitoring and Evaluation Programme (EMEP) and observed atmospheric
composition change during 1972–2009, Atmos. Chem. Phys., 12, 5447–5481,
https://doi.org/10.5194/acp-12-5447-2012, 2012.
Tsapakis, M., Apostolaki, M., Eisenreich, S., and Stephanou, E. G.:
Atmospheric Deposition and Marine Sedimentation Fluxes of Polycyclic
Aromatic Hydrocarbons in the Eastern Mediterranean Basin, Environ. Sci.
Technol., 40, 4922–4927, https://doi.org/10.1021/es060487x,
2006.
Usenko, S., Simonich, S. L. M., Hageman, K. J., Schrlau, J. E., Geiser, L.,
Campbell, D. H., Appleby, P. G., and Landers, D. H.: Sources and Deposition
of Polycyclic Aromatic Hydrocarbons to Western U.S. National Parks,
Environ. Sci. Technol., 44, 4512–4518, https://doi.org/10.1021/es903844n, 2010.
van der Gong, H. D., Bolscher, M. V. H., Visschedijk, A., and Zandveld, P.:
Emissions of persistent organic pollutants and eight candidate POPs from
UNECE-Europe in 2000, 2010 and 2020 and the emission reduction resulting
from the implementation of the UNECE POP protocol, Atmos. Environ., 41,
9245–9261, https://doi.org/10.1016/j.atmosenv.2007.06.055,
2007.
van Drooge, B. L., López, J., Fernández, P., Grimalt, J. O., and
Stuchlik, E.: Polycyclic aromatic hydrocarbons in lake sediments from the
High Tatras, Environ. Poll., 159, 1234–1259, https://doi.org/10.1016/j.envpol.2011.01.035, 2011.
van Drooge, B. L., Fernández, P., Grimalt, J. O., Stuchlïk, E.,
Torres-García, C. J., and Cuevas, E.: Atmospheric polycyclic aromatic
hydrocarbons in remote European and Atlantic sites located above the
boundary mixing layer, Environ. Sci. Poll. Res., 17, 1207–1216, https://doi.org/10.1007/s11356-010-0296-0, 2010.
van Metre, P. C. and Mahler, B. J.: Trends in Hydrophobic Organic
Contaminants in Urban and Reference Lake Sediments across the United States,
1970–2001, Environ. Sci. Technol., 39, 5567–5574, https://doi.org/10.1021/es0503175, 2005.
Venier, M., Salamova, A., and Hites, R. A.: Temporal trends of persistent
organic pollutant concentrations in precipitation around the Great Lakes,
Environ. Poll., 217, 143–148, https://doi.org/10.1016/j.envpol.2016.01.034, 2016.
Vilanova, R. M., Fernández, P., Martínez, C., and Grimalt, J. O.:
Polycyclic aromatic hydrocarbons in remote mountain lake waters, Water Res.,
35, 3916–3926,
2001.
Vives, I., Grimalt, J. O., Fernández, P., and Rosseland, B.: Polycyclic
aromatic hydrocarbons in fish from remote and high mountian lakes in Europe
and Greenland, Sci. Total Environ., 324, 67–77, https://doi.org/10.1016/j.scitotenv.2003.10.026, 2004.
Wang, W., Jariyasopit, N., Schrlau, J., Jia, Y., Tao, S., Yu, T.-W.,
Dashwood, R. H., Zhang, W., Wang, X., and Simonich, S. L. M.: Concentration
and Photochemistry of PAHs, NPAHs, and OPAHs and Toxicity of PM2.5 during
the Beijing Olympic Games, Environ. Sci. Technol., 45, 6887–6895, https://doi.org/10.1021/es201443z, 2011a.
Wang, W., Simonich, S. L. M., Giri, B., Xue, M., Zhao, J., Chen, S., Shen,
H., Shen, G., Wang, R., Cao, J., and Tao, S.: Spatial distribution and
seasonal variation of atmospheric bulk deposition of polycyclic aromatic
hydrocarbons in Beijing-Tianjin region, North China, Environ. Poll., 159,
287–293, https://doi.org/10.1016/j.envpol.2010.08.029, 2011b.
Wild, S. R. and Jones, K. C.: Polynuclear aromatic hydrocarbons in the
United Kingdom environment: a preliminary source inventory and budget,
Environ. Poll., 88, 91–108, https://doi.org/10.1016/0269-7491(95)91052-M, 1995.
Xing, X., Zhang, Y., Yang, D., Zhang, J., Chen, W., Wu, C., Liu, H., and Qi,
S.: Spatio-temporal variations and influencing factors of polycyclic
aromatic hydrocarbons in atmospheric bulk deposition along a plain-mountain
transect in western China, Atmos. Environ., 139, 131–138, https://doi.org/10.1016/j.atmosenv.2016.05.027, 2016.
Yang, R., Xie, T., Li, A., Yang, H., Turner, S., Wu, G., and Jing, C.:
Sedimentary records of polycyclic
aromatic hydrocarbons (PAHs) in remote lakes across the Tibetan Plateau,
Environ. Poll., 214, 1–7,
https://doi.org/10.1016/j.envpol.2016.03.068, 2016.
Zhang, J., Yang, L., Mellouki, A., Chen, J., Chen, X., Gao, Y., Jiang, P.,
Li, Y., Yu, H., and Wang, W.:
Atmospheric PAHs, NPAHs, and OPAHs at an urban, mountainous, and marine
sites in Northern
China: Molecular composition, sources, and ageing, Atmos. Environ., 173,
256–264,
https://doi.org/10.1016/j.atmosenv.2017.11.002, 2018.
Short summary
Mountain areas are key for studying the impact of diffuse pollution due to human activities on the continental areas. Polycyclic aromatic hydrocarbons (PAHs), human carcinogens with increased levels since the 1950s, are significant constituents of this pollution. We determined PAHs in monthly atmospheric deposition collected in European high mountain areas. The number of sites, period of study and sampling frequency provide the most comprehensive description of PAH fallout at remote sites.
Mountain areas are key for studying the impact of diffuse pollution due to human activities on...
Altmetrics
Final-revised paper
Preprint