Articles | Volume 17, issue 15
Atmos. Chem. Phys., 17, 9417–9433, 2017
Atmos. Chem. Phys., 17, 9417–9433, 2017

Research article 07 Aug 2017

Research article | 07 Aug 2017

Sea ice as a source of sea salt aerosol to Greenland ice cores: a model-based study

Rachael H. Rhodes et al.

Related authors

Northern Hemisphere atmospheric history of carbon monoxide since preindustrial times reconstructed from multiple Greenland ice cores
Xavier Faïn, Rachael H. Rhodes, Place Philip, Vasilii V. Petrenko, Kévin Fourteau, Nathan Chellman, Edward Crosier, Joseph R. McConnell, Edward J. Brook, Thomas Blunier, Michel Legrand, and Jérôme Chappellaz
Clim. Past Discuss.,,, 2021
Revised manuscript under review for CP
Short summary
Spatial pattern of accumulation at Taylor Dome during Marine Isotope Stage 4: stratigraphic constraints from Taylor Glacier
James A. Menking, Edward J. Brook, Sarah A. Shackleton, Jeffrey P. Severinghaus, Michael N. Dyonisius, Vasilii Petrenko, Joseph R. McConnell, Rachael H. Rhodes, Thomas K. Bauska, Daniel Baggenstos, Shaun Marcott, and Stephen Barker
Clim. Past, 15, 1537–1556,,, 2019
Short summary
Sea salt aerosol production via sublimating wind-blown saline snow particles over sea ice: parameterizations and relevant microphysical mechanisms
Xin Yang, Markus M. Frey, Rachael H. Rhodes, Sarah J. Norris, Ian M. Brooks, Philip S. Anderson, Kouichi Nishimura, Anna E. Jones, and Eric W. Wolff
Atmos. Chem. Phys., 19, 8407–8424,,, 2019
Short summary
Ice core evidence for decoupling between midlatitude atmospheric water cycle and Greenland temperature during the last deglaciation
Amaëlle Landais, Emilie Capron, Valérie Masson-Delmotte, Samuel Toucanne, Rachael Rhodes, Trevor Popp, Bo Vinther, Bénédicte Minster, and Frédéric Prié
Clim. Past, 14, 1405–1415,,, 2018
Short summary
Sea ice and pollution-modulated changes in Greenland ice core methanesulfonate and bromine
Olivia J. Maselli, Nathan J. Chellman, Mackenzie Grieman, Lawrence Layman, Joseph R. McConnell, Daniel Pasteris, Rachael H. Rhodes, Eric Saltzman, and Michael Sigl
Clim. Past, 13, 39–59,,, 2017
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Estimation of secondary organic aerosol viscosity from explicit modeling of gas-phase oxidation of isoprene and α-pinene
Tommaso Galeazzo, Richard Valorso, Ying Li, Marie Camredon, Bernard Aumont, and Manabu Shiraiwa
Atmos. Chem. Phys., 21, 10199–10213,,, 2021
Short summary
Quantitative assessment of changes in surface particulate matter concentrations and precursor emissions over China during the COVID-19 pandemic and their implications for Chinese economic activity
Hyun Cheol Kim, Soontae Kim, Mark Cohen, Changhan Bae, Dasom Lee, Rick Saylor, Minah Bae, Eunhye Kim, Byeong-Uk Kim, Jin-Ho Yoon, and Ariel Stein
Atmos. Chem. Phys., 21, 10065–10080,,, 2021
Short summary
Secondary aerosol formation from dimethyl sulfide – improved mechanistic understanding based on smog chamber experiments and modelling
Robin Wollesen de Jonge, Jonas Elm, Bernadette Rosati, Sigurd Christiansen, Noora Hyttinen, Dana Lüdemann, Merete Bilde, and Pontus Roldin
Atmos. Chem. Phys., 21, 9955–9976,,, 2021
Short summary
Non-linear response of PM2.5 to changes in NOx and NH3 emissions in the Po basin (Italy): consequences for air quality plans
Philippe Thunis, Alain Clappier, Matthias Beekmann, Jean Philippe Putaud, Cornelis Cuvelier, Jessie Madrazo, and Alexander de Meij
Atmos. Chem. Phys., 21, 9309–9327,,, 2021
Short summary
Insights into seasonal variation of wet deposition over southeast Asia via precipitation adjustment from the findings of MICS-Asia III
Syuichi Itahashi, Baozhu Ge, Keiichi Sato, Zhe Wang, Junichi Kurokawa, Jiani Tan, Kan Huang, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Gregory R. Carmichael, and Zifa Wang
Atmos. Chem. Phys., 21, 8709–8734,,, 2021
Short summary

Cited articles

Abram, N. J., Wolff, E. W., and Curran, M. A.: A review of sea ice proxy information from polar ice cores, Quaternary Sci. Rev., 79, 168–183, 2013.
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present), J. Hydrometeorol., 4, 1147–1167,<1147:TVGPCP>2.0.CO;2, 2003.
Bales, R.: Core Atmospheric Measurements at Summit, Greenland Environmental Observatory, Arctic Data Center, urn:uuid:e9136a64-661f-470d-9b3a-72f31d54d066,, 2009.
Banta, J. R., McConnell, J. R., Edwards, R., and Engelbrecht, J. P.: Delineation of carbonate dust, aluminous dust, and sea salt deposition in a Greenland glaciochemical array using positive matrix factorization, Geochem. Geophy. Geosy., 9, Q07013,, 2008.
Barrie, L. A.: Arctic Aerosols: Composition, Sources and Transport, in: Ice Core Studies of Global Biogeochemical Cycles, edited by: Delmas, R. J., NATO ASI Series, Springer Berlin Heidelberg, 1–22,, 1995.
Short summary
Sea salt aerosol comes from the open ocean or the sea ice surface. In the polar regions, this opens up the possibility of reconstructing sea ice history using sea salt recorded in ice cores. We use a chemical transport model to demonstrate that the sea ice source of aerosol is important in the Arctic. For the first time, we simulate realistic Greenland ice core sea salt in a process-based model. The importance of the sea ice source increases from south to north across the Greenland ice sheet.
Final-revised paper