Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 17, issue 11
Atmos. Chem. Phys., 17, 7277–7290, 2017
https://doi.org/10.5194/acp-17-7277-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Regional transport and transformation of air pollution in...

Atmos. Chem. Phys., 17, 7277–7290, 2017
https://doi.org/10.5194/acp-17-7277-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 16 Jun 2017

Research article | 16 Jun 2017

Insight into winter haze formation mechanisms based on aerosol hygroscopicity and effective density measurements

Yuanyuan Xie et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Xingnan Ye on behalf of the Authors (17 Apr 2017)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (30 Apr 2017) by Renyi Zhang
RR by Anonymous Referee #2 (30 Apr 2017)
RR by Anonymous Referee #1 (02 May 2017)
ED: Publish as is (07 May 2017) by Renyi Zhang
Publications Copernicus
Download
Short summary
Urban air pollution is one of the greatest environmental concern in 21st century. In this paper, we trace temporal evolutions of aerosol hygroscopicity and effective density during a representative particulate matter episode, which provide a strong support on that severe haze pollution can be formed in highly polluted areas by the initial accumulation of gas-phase and particulate pollutants under stagnant meteorological conditions and subsequent rapid particle growth by secondary processes.
Urban air pollution is one of the greatest environmental concern in 21st century. In this paper,...
Citation
Final-revised paper
Preprint