Insight into winter haze formation mechanisms based on aerosol hygroscopicity and effective density measurements

3	Yuanyuan Xie ¹ , Xingnan Ye ^{1,2} *, Zhen Ma ¹ , Ye Tao ¹ , Ruyu Wang ¹ , Ci Zhang ¹ , Xin Yang ^{1,2} , Jianmin
4	Chen ^{1,2} , Hong Chen ¹
5	¹ Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP ³), Department of
6	Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
7	² Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China.
8	*Correspondence to: Xingnan Ye (<u>yexingnan@fudan.edu.cn</u>) and Jianmin Chen (jmchen@fudan.edu.cn).
9	
10	Abstract: We characterize a representative particulate matter (PM) episode that occurred in Shanghai
11	during winter 2014. Particle size distribution, hygroscopicity, effective density, and single particle mass
12	spectrometry were determined online, along with offline analysis of water-soluble inorganic ions. The
13	mass ratio of SNA/PM _{1.0} (sulfate, nitrate, and ammonium) fluctuated slightly around 0.28, suggesting that
14	both secondary inorganic compounds and carbonaceous aerosols contributed substantially to the haze
15	formation, regardless of pollution level. Nitrate was the most abundant ionic species during hazy periods,
16	indicating that NO _x contributed more to haze formation in Shanghai than did SO ₂ . During the
17	representative PM episode, the calculated PM was always consistent with the measured PM _{1.0} , indicating

18	that the enhanced pollution level was attributable to the elevated number of larger particles. The number
19	fraction of the near-hydrophobic group increased as the PM episode developed, indicating the
20	accumulation of local emissions. Three "banana-shaped" particle evolutions were consistent with the
21	rapid increase of $PM_{1.0}$ mass loading, indicating that the rapid size growth by the condensation of
22	condensable materials was responsible for the severe haze formation. Both hygroscopicity and effective
23	density of the particles increased considerably with growing particle size during the banana-shaped
24	evolutions, indicating that the secondary transformation of NO_x and SO_2 was one of the most important
25	contributors to the particle growth. Our results suggest that the accumulation of gas-phase and particulate
26	pollutants under stagnant meteorological conditions and subsequent rapid particle growth by secondary
27	processes, were primarily responsible for the haze pollution in Shanghai during wintertime.
28	Keywords: air pollution; size distribution; hygroscopic growth; secondary process; Shanghai.
29	
30	1. Introduction
31	Atmospheric aerosol has significant influences on radiation balance and climate forcing of the
32	atmosphere (Wang et al., 2011; Wang et al., 2014c; Wu et al., 2016a; IPCC, 2013). Also, atmospheric
33	aerosol has strong impacts on visibility (Yang et al., 2012;Lin et al., 2014;Xiao et al., 2014) and public
34	health (Heal et al., 2012). Recent studies found that short-term exposure to haze pollution could cause
35	airway inflammation and aggravate respiratory symptoms in chronic obstructive pulmonary disease 2

36 patients (Wu et al., 2016b;Guan et al., 2016).

37	With the huge achievements in economic development and rapid urbanization over the past 30 years,
38	particulate pollution has become a major environmental concern in China. The most severe haze event
39	that occurred in the first quarter of 2013, spread over 1.6 million km ² (Wang et al., 2014a). This event
40	motivated the release of the Action Plan on Prevention and Control of Air Pollution with the goal of
41	reducing $PM_{2.5}$ (particulate matter smaller than 2.5 μ m in aerodynamic diameter) concentration by 15–25%
42	in 2017 against 2012 in three major city clusters
43	(http://english.mep.gov.cn/News_service/infocus/201309/t20130924_260707.htm). In order to reduce
44	the PM _{2.5} concentration, extensive studies have been conducted to investigate the sources and formation
45	mechanisms of haze pollution in recent years (Ye et al., 2011;Sun et al., 2016;Qiao et al., 2016;Hu et al.,
46	2016;Li et al., 2016;Guo et al., 2014;Zheng et al., 2015;Guo et al., 2013;Wang et al., 2016;Peng et al.,
47	2016). However, the haze formation mechanisms and source appointment of fine particles remain
48	uncertain.

Guo et al. (2013) summarized historical reports from 2000 to 2008 in Beijing and found that the origins of urban fine particles varied in different seasons: the contribution of primary emissions is comparable to that of secondary formation during winter heating periods whereas secondarily produced aerosols dominate the fine PM sources in other seasons. As an important type of primary emissions in urban area, black carbon (BC) is primarily from incomplete fossil fuel combustion. Light absorption of

54	BC aerosols is increased after atmospheric aging by coating with secondary materials and restructuring
55	(Khalizov et al., 2009). Due to cooling effect at the surface and warming effect aloft, the enhanced light
56	absorption and scattering by aged BC particles stabilize the atmosphere, hindering vertical transport of
57	gaseous and particulate pollutants (Wang et al., 2013). BC aging occurs much more efficiently in the
58	presence of highly elevated gaseous aerosol precursors so that light absorption increases by a factor of
59	2.4 within 4.6 h under highly polluted conditions in Beijing, significantly exacerbating pollution
60	accumulation and strongly contributing to severe haze formation (Peng et al., 2016).
61	Due to the implement of several effective regulatory policies, the increasing trend of primary
62	emissions has been under control since the 11 th five-year period. A growing number of studies suggested
63	that secondary production was the major contributor to the haze events in recent years (Shi et al.,
64	2014;Zhao et al., 2013;Zhang et al., 2015a;Huang et al., 2014), in contrast with the fact that primary
65	emissions were of great importance in some haze events (Niu et al., 2016). Guo et al. (2014) reported that
66	the development of PM episodes in Beijing was characterized by efficient nucleation and continuous
67	particle growth over an extend period dominated by local secondary formation. They attributed the
68	continuous growth of particle size and constant accumulation of particle mass concentration to the highly
69	elevated concentrations of gaseous precursors such as NO _x , SO ₂ , and volatile organic compounds (VOCs),
70	while the contribution from primary emissions and regional transport was negligible. However, the role
71	of regional transport of $PM_{2.5}$ in haze formation remains controversial (Li et al., 2015;Zhang et al., 2015b). 4

72	The most important advances in the understanding of urban PM formation were reviewed by Zhang
73	et al. (2015c). The concentrations of SO ₂ , NO _x , and anthropogenic source VOCs in Beijing and other
74	cities of the developing world are significantly higher than those in the urban areas of developed countries,
75	resulting in large secondary production of sulfate, nitrate, and SOA. Synergetic effects among various
76	organic and inorganic compounds may exist under highly polluted conditions, indicating different PM
77	formation rates between developing and developed urban regions. Indeed, a large enhancement of
78	particulate sulfate was typically observed during regional haze events in China (Chen et al., 2016; Wang
79	et al., 2015;Fu et al., 2008;Xie et al., 2015). Currently, the highly elevated sulfate concentration during
80	haze events cannot be fully explained by model simulations (Wang et al., 2014b;Chen et al., 2016).
81	Recently, a significant breakthrough made by Wang et al. (2016) has provided a reasonable explanation
82	about the high level of sulfate during haze events. It was revealed by their laboratory experiments that the
83	aqueous oxidation of SO_2 by NO_2 proceeds more efficiently with the increase of NO_2 concentration
84	whereas the reaction is suppressed in acid conditions, because acid effect reduces the solubility of SO_2
85	and reaction rate. The enhanced sulfate formation during severe haze periods in Beijing was attributable
86	to aqueous oxidation of SO ₂ by NO ₂ on hygroscopic fine particles under conditions of elevated RH and
87	the concentrations of NH_3 and NO_2 , as confirmed by the comparable SO_2 uptake coefficients for sulfate
88	formation from field and laboratory results.

89 The hygroscopic properties of ambient particles vary significantly depending on the origin of the air

90	masses and the atmospheric aging process. In urban air, the population of near-hydrophobic particles can
91	be assumed to consist largely of freshly emitted combustion particles containing high mass fractions of
92	soot and water-insoluble organic compounds (Swietlicki et al., 2008;Massling et al., 2009). In contrast,
93	secondary sulfate or nitrate aged particles are more-hygroscopic, and their relative abundance is primarily
94	responsible for the hygroscopic growth of ambient particles at elevated RH (Topping et al.,
95	2005; Aggarwal et al., 2007; Gysel et al., 2007). Thus, hygroscopicity can serve as a tracer of source origins,
96	mixing state, and aging mechanisms of ambient particles. For example, the temporal variation of aerosol
97	hygroscopicity has thrown some new light on haze formation mechanisms in Beijing and Shanghai (Ye
98	et al., 2011;Guo et al., 2014).
99	Density is one of the most important physicochemical properties for atmospheric aerosols. Effective
100	density has served as a tracer for new particle formation and for the aging process in previous studies (Yin
101	et al., 2015;Guo et al., 2014). The ambient particles in urban areas are mostly complex mixtures of
102	elemental carbon (EC), organics (OC), and secondary inorganic aerosols (SIA) (Hu et al., 2012). The

103 effective density of nascent traffic particles varies from approximately 0.9 g cm⁻³ to below 0.4 g cm⁻³,

104 decreasing with the increase of particle size, because there are more voids between primary particles in 105 relatively larger aggregates (Momenimovahed and Olfert, 2015). The effective density of OC is in 106 between those of EC and SIA, and varies with source. The effective density of combustion particles

107 increases by filling the voids in the agglomerate particles with condensed semi-volatile materials, or by

108	restructuring agglomerates with hygroscopic SIA (Momenimovahed and Olfert, 2015;Zhang et al., 2008).
109	In this study, a combined HTDMA-APM system was used to investigate the variations of
110	hygroscopicity and effective density of submicrometer aerosols during winter 2014 in urban Shanghai. In
111	addition, cascade impactor samples were collected and temporal variations of particle composition were
112	determined by a single particle mass spectrometry, which provided further insight into the hygroscopicity
113	and density variations. The primary objectives of this study were to investigate the particle growth
114	mechanisms and to identify the contribution of local emissions during the winter haze events.
115	
116	2. Experimental
117	2.1. Sampling site
118	The measurements of particle hygroscopicity and effective density were conducted from 21 December
119	2014 to 13 January 2015 at the Department of Environmental Science and Engineering in the main
120	campus of Fudan University (31.30° N, 121.5° E). It can be considered as a representative urban site for
121	Shanghai. There are many dwelling quarters and commercial blocks in surrounding area. About 400 m
122	away from the measurement site, there is the Middle Ring Line, one of the busiest elevated roads in the
123	city.
124	2.2 Measurements of air quality index and ground meteorological parameters
125	At a supersite about 100 m away from the Environmental Building, $PM_{1.0}$ was monitored using a 7

126	Thermo Scientific [™] 5030 SHARP monitor. Trace gas pollutants were monitored using Thermo
127	Scientific TM i-series gas analyzers (43i for SO ₂ , 49i for O ₃ , 42i for NO/NO ₂ /NO _x), and meteorological
128	data were monitored using an automatic meteorological station (Model CAWS600, Huayun Inc., China)
129	(Yin et al., 2015). The datas of PM _{2.5} , PM ₁₀ , and CO were released by the Shanghai Environmental
130	Monitoring Center. The height of the Planet Boundary Layer (PBL) was computed online using the NCEP
131	Global Data Assimilation System (GDAS) model (<u>http://ready.arl.noaa.gov/READYamet.php</u>).
132	2.3. HTDMA-APM system
133	Particle size distribution, hygroscopic growth factor (GF), and effective density were measured using
134	a custom-built HTDMA-APM system (Fig. 1). The custom-built HTDMA (Hygroscopic Tandem
135	Differential Mobility Analyzers) mainly consist of two long DMAs (3081L, TSI Inc.), a humidifier (PD-
136	50T-12MSS, Perma Pure Inc.) and a Condensation Particle Counter (CPC, Model 3771, TSI Inc.). A
137	detailed description of the HTDMA is available in Ye et al. (2009). In this observation, particle number
138	size distribution in the range of 14-600 nm and hygroscopic growth at 83% RH for particles with dry
139	diameters of 40, 100, 220, 300, 350, and 400 nm were determined by HTDMA in turn. The determination
140	of effective density by DMA-APM was described previously (Yin et al., 2015; Pagels et al., 2009). Briefly,
141	a combined system consisting of a compact Aerosol Particle Mass Analyzer (APM, Model 3601,
142	Kanomax Inc.) and a CPC (Model 3775, TSI Inc.) was connected to the sample tubing through a 3-way
143	electrical switch behind the upstream DMA (DMA1). The APM comprises two coaxial cylindrical $\frac{8}{8}$

144	electrodes rotating at the same angular velocity. Charged aerosol particles of a certain diameter sized by
145	DMA1 are axially fed into the annular gap between the electrodes and experienced an outward centrifugal
146	force from the particle rotating and an inward electrostatic force from the high-voltage field between the
147	electrodes. Particles pass through the APM and are sent to the CPC when the two forces are balanced.
148	The mass of particles that pass through the APM is determined by the rotation rate and the applied voltage.
149	Effective densities for dry diameters of 40, 100, 220, and 300 nm were determined by the method of
150	DMA-APM in this study. The HTDMA-APM was operated alternatively in HTDMA mode and then
151	DMA-APM mode, for every 40 min.
152	Before the field observation, the HTDMA-APM was calibrated using 40–450 nm NIST-Traceable PSL
153	particles and ammonium sulfate. The measured HTDMA data were inversed with the $TDMA_{inv}$ algorithm
154	to obtain the actual GF distribution. This is because the raw data are only a skewed and smoothed integral
155	transform of the actual growth factor probability density function (GF-PDF) (Gysel et al., 2009). The
156	hygroscopicity parameter κ was derived from the GF data after inversion with the TDMA_{inv} algorithm
157	according to the κ-Köhler theory (Petters and Kreidenweis, 2007).
158	2.4. SPAMS
159	A Single Particle Aerosol Mass Spectrometry (SPAMS, Hexin Analytical Instrument Co., Ltd., China)
160	installed in the same room with the HTDMA-APM system was used to obtain the chemical and size

161 information of individual particles in the range of $0.2-2 \mu m$. Detailed information on SPAMS is available

in Li et al. (2011). Briefly, ambient particles are drawn into a vacuum chamber through an aerodynamic focusing lens and accelerated to a size-dependent terminal velocity. Sized particles are desorbed and ionized by the pulsed desorption/ionization laser (Q-switched Nd: YAG, λ =266 nm) at the ion source region. Both positive and negative mass spectra for a single particle are recorded by a bipolar time-offlight spectrometer. The single particle information was imported into YAADA (version 2.11, www.yaada.org). Based on the similarities of the mass-to-charge ratio and peak intensity, particles were classified using the ART-2a method.

169 **2.5. Ion chromatography**

170 Cascade impactor aerosol samples for offline analysis were collected at the roof platform of the 171 Environmental Building using a 10-stage MOUDI sampler (Micro-Orifice Uniform Deposit Impactor, 172 Model 110-NR, MSP Corp., USA). Detailed description of the sampling, pretreatment, chemical analysis, 173 and quality control of this system is available in Tao et al. (2016). Briefly, cascade impactor samples were 174 collected every 24 h using the PALL7204 quartz filter as the collection substrate. Each filter was weighted 175 with a BP211D electronic balance at 25±1°C and 40±2%RH. The water extract of each sample was 176 analyzed using an Ion Chromatograph (Metrohm 883 basic IC plus, Switzerland) equipped with a thirdparty column heater (CT-100, Agela Corp., China). Seven anions (F⁻, Cl⁻, NO₂⁻, Br⁻, NO₃⁻, SO₄²⁻ and PO₄³⁻) 177 were resolved using a Metrosep A Supp 5-250/4.0 column at 35°C with an eluent of 3.2 mmol L⁻¹ Na₂CO₃ 178 + 1.0 mmol L⁻¹ NaHCO₃. Six cations (Li⁺, Na⁺, NH₄⁺, K⁺, Ca²⁺, and Mg²⁺) were separated by a Metrosep 179

180 C4-250/4.0 column at 30°C with an eluent of 1.7 mmol L^{-1} HNO₃ + 0.7 mmol L^{-1} 2,6-pyridine 181 dicarboxylic acid.

182

183 **3. Results and discussion**

184 **3.1.** Periodic cycle of PM episodes during the observation period

185 Figure 2 shows the temporal variations of PM mass loading during the winter observation (21 186 December 2014 to 13 January 2015). The official data of $PM_{2.5}$ and PM_{10} were blank on some clean days. 187 Meteorologically, our measurement was deployed in a typical winter period. The average concentrations of PM_{1.0}, PM_{2.5}, and PM₁₀ were 57 ± 37 , 87 ± 67 , and $129 \pm 78 \ \mu g \ m^{-3}$, respectively. About 62% of hourly 188 averaged PM_{2.5} concentrations exceeded 75 µg m⁻³ of the Chinese Grade II guideline (GB 3095-2012), 189 190 indicating heavy particle pollution in Shanghai during wintertime. The PM episodes exhibited a clear periodic cycle of ~5 days. A similar feature was previously observed in Beijing (Guo et al., 2014). At the 191 beginning of each cycle, the $PM_{1,0}$ level was below 35 µg m⁻³. Generally, the difference between the 192 193 concentrations of PM_{1.0} and PM_{2.5} during clean days was less significant than that in haze periods. 194 Occasionally the measured PM_{2.5} concentrations were larger than those of PM₁₀, possibly due to system 195 error. However, the particle mass concentration began to increase in the next few days, with PM_{1.0} and $PM_{2.5}$ peaking at over 100 and 200 µg m⁻³, respectively. During the end of each PM episode, the change 196 197 in weather conditions played a key role in the decrease of particle concentration. As shown in Fig. S1, the prevailing winds on haze days were from the northwest. The prevailing winds during two clean periods
(25–27 December and 12–14 January) were northeasterly, bringing clean air mass from East China Sea.
Two cold fronts from the north swept Shanghai on 31 December and 6 January, bringing gale and lower
temperature which favored the dispersion of atmospheric pollutants.

202 **3.2** Contributions of secondary inorganic aerosols to PM_{1.0} mass loading

203 Figure 3 illustrates the daily concentrations of sulfate, nitrate, and ammonium as a function of $PM_{1,0}$ 204 mass loading. In general, the sum of concentrations of sulfate, nitrate, and ammonium (SNA) increased 205 linearly as the PM_{1.0} mass loading increased. It is noticeable that the SNA/PM_{1.0} ratio slightly fluctuated 206 around 0.28, regardless of the pollution level. Because soil dust and sea salt made a negligible contribution 207 to the fine particle mass concentration in this study, the almost constant ratio of $SNA/PM_{1,0}$ indicates that 208 SNA and carbonaceous aerosols (including soot and organic matter) synchronously increased during the 209 haze events. As the PM_{1.0} concentration increased, the concentration of nitrate increased more rapidly than sulfate so that it became the most abundant ionic species at $PM_{1,0} > 40 \ \mu g \ m^{-3}$. This finding indicates 210 211 that NO_x contributed more to haze formation in Shanghai compared to SO₂. Generally, the visibility 212 decreased with the increase in PM concentration, indicating photochemical activity began to weaken as 213 the development of haze events. The large increase in nitrate concentration may be attributable to 214 heterogeneous reaction on the preexisting particles. Nitrate formation is highly dependent on the surface 215 area of preexisting particles and is favored under NH₃-rich conditions (Chu et al., 2016). In contrast, Han

et al. (2016) reported that the mass ratio of nitrate to sulfate decreased with the increase of PM_{2.5} level 216 217 and that the sources of sulfate contributed more to the haze formation in Beijing than mobile sources. 218 This finding suggests that the haze formation mechanism in Shanghai is likely different from that in 219 Beijing. VOCs and NO_x are exclusively from local emissions whereas regional transport is a big source 220 of SO₂ under stagnant atmosphere, due to different atmospheric lifetimes among SO₂, NO_x, and VOCs 221 (Guo et al., 2014). Considering the relatively smaller contribution of sulfate, our results reveal that the 222 accumulation and secondary transformation of local emissions likely played a dominant role in this haze 223 formation. 224 3.3 Aerosol hygroscopicity and effective density during the observation period 225 Figure 4a displays a box chart of the mean hygroscopicity of each hygroscopic growth factor 226 distribution for different sizes. Considering all of the growth factor distributions collectively, the 227 hygroscopicity parameter κ increased with increase of the dry diameter, with a mean κ of 0.161 at 40 nm

and 0.338 at 300 nm. Assuming a two-component system of a model salt (ammonium sulfate, $\kappa_m = 0.53$)

and an insoluble species ($\kappa = 0$), the volume fraction of hygroscopic species (ϵ) can be obtained based on

230 the Zdanovskii–Stokes–Robinson (ZSR) mixing rule. The average ε was 0.3 for 40 nm particles,

suggesting that the primary particles or initial growth of freshly generated particles were dominated by

232 non-hygroscopic species. In contrast, the 300 nm particles were extremely aged, with more-hygroscopic

233 species.

234	Generally, HTDMAs measure dry particles smaller than 300 nm due to technical limitations, and it is
235	common that particle hygroscopicity increases with the increase of particle size (Liu et al.,
236	2014;Swietlicki et al., 2008). The increase of particle hygroscopicity with particle size was attributed to
237	the addition of more-hygroscopic SNA (Swietlicki et al., 2008;Ye et al., 2010). The very few
238	measurements for dry particles larger than 300 nm showed different size dependencies. Gasparini et al.
239	(2006) reported that particle hygroscopicity first increased and then decreased with the increase of particle
240	size, peaking at the diameter of 300 nm. In contrast, Wu et al. (2016c) reported that particle hygroscopicity
241	increased with particle diameter in the range of 35-350 nm. In this study, the determination size range
242	was extended to 400 nm and the mean κs of 300, 350, and 400 nm particles were nearly equal. We attribute
243	the different size dependencies of hygroscopicity among various measurement sites to the total emissions
244	of SO_2 and NO_x , gas precursors of hygroscopic sulfate and nitrate. It is noticeable that the 5 th percentile
245	hygroscopicity decreased for dry diameter larger than 300 nm, likely due to the presence of the smallest
246	dust particles (Gasparini et al., 2006). The variability of hygroscopicity parameter κ was much greater for
247	40 nm particles. The particle population with $\kappa < 0.1$ was attributed to fresh traffic particles (Ye et al.,
248	2013). The considerable percentile of $\kappa < 0.1$ indicates that the 40 nm particle population was sometimes
249	dominated by near-hydrophobic particles.

250 Figure 4b displays a box chart of median effective density for different particle sizes. The median

effective density varied in the narrow range of $\rho_{eff} = 1.35 - 1.41$ g cm⁻³ for 40–300 nm particle population.

252	The size dependency of particle effective density varied in the literature. Hu et al. (2012) and Yin et al.
253	(2015) reported that effective density of the particles increased as particle size increased while a opposite
254	trend was observed by Geller et al. (2006) and Spencer et al. (2007). The different trends were attributable
255	to the variable fraction of lower density mode particles ($\rho_{eff} < 1.0 \text{ g cm}^{-3}$). The densities of the secondarily
256	produced (NH ₄) ₂ SO ₄ , NH ₄ HSO ₄ , and NH ₄ NO ₃ are ~1.75 g cm ⁻³ . The effective density of organic aerosols
257	varies mostly in the range of 1.2-1.6 g cm ⁻³ , depending on their source origins (Malloy et al., 2009;Turpin
258	and Lim, 2001;Dinar et al., 2006). The lower density particles with $\rho_{eff} < 1.0$ g cm ⁻³ were attributable to
259	fresh or partially aged traffic-related particles, because the number fraction of the lower density group in
260	urban area was found to be consistent with the concentration of NO (indicator of traffic) (Levy et al.,
261	2013;Rissler et al., 2014). Although the dominant accumulation mode particles have an effective density
262	greater than Aitken mode ones, the presence of a lower effective density group associated with traffic
263	emissions might decrease the mean effective density to a value lower than that of Aitken mode particles
264	(Levy et al., 2014). Yin et al. (2015) reported that effective density distributions were dominated by a
265	single peak in the previous observation. In contrast, a lower density peak below 1.0 g cm ⁻³ was often
266	present in this observation, decreasing the mean effective density of externally mixed aerosols.

3.4 Characteristics of a representative PM episode

As shown in Fig. 2, the PM episode from 7 to 12 January was a representative case of severe haze

269 formation and elimination processes. It can be divided into clean (7 January), transition (8 January), haze

270	(9–11 January), and post-haze (12 January) periods. During the transition from the clean period to haze
271	period (7 to 8 January), both $PM_{1.0}$ and $PM_{2.5}$ concentrations increased slightly, with an average
272	$PM_{1.0}/PM_{2.5}$ ratio of 0.65. A sharp increase in $PM_{2.5}$ (of 125 µg m ⁻³) was observed from 6:00 to 12:00 LT
273	on the morning of 9 January. During the haze period, the concentration of $PM_{2.5}$ exceeded 115 $\mu g\ m^{-3}$
274	(medially polluted level, HJ633-2012) for 63 h. On 11 January, the hourly $PM_{2.5}$ concentration exceeded
275	$250 \ \mu g \ m^{-3}$, corresponding to the severely polluted level.
276	Figure 5 displays the temporal profile of particle size distribution, along with the measured $PM_{1.0}$
277	concentration during the representative PM episode. The calculated PM concentrations (PM_{cal}) were
278	obtained based on the particle size distribution and average effective density of 1.39 g m ⁻³ in the range of
279	14-600 nm measured in this study. It is noticeable that the temporal trends in mass concentrations of
280	PM_{cal} and $PM_{1.0}$ are highly consistent. In contrast to the fact that particle size distribution was dominated
281	by nanoparticles during the clean period, the burst of Aitken mode particles and subsequent continuous
282	growth to approximately 200 nm in diameter was observed three times during the haze period, indicating
283	that the presence of numerous larger particles is likely responsible for the severe particle pollution (Guo
284	et al., 2014). The importance of larger particles in haze formation is also illustrated by the contour plot of
285	the particle volume size distribution. The difference of particle number concentration between transition
286	and haze periods was less significant, whereas the volume concentration increased considerably during
287	the haze period. This feature clearly demonstrates that the haze formation was closely correlated with

288 particle growth and elevated number of larger particles.

289 Interestingly, the particle mass concentration was sensitive to variations of wind speed and planetary boundary layer (PBL). During the transition and haze periods, the wind speed decreased considerably 290 291 with insignificant change in prevailing wind (Fig. S1). This finding indicates that outside transportation 292 became less and less significant. It is noteworthy that the temporal evolution of the particle mass 293 concentration was inversely correlated with the PBL height. The decreasing PBL provided a stagnant 294 atmosphere that favored the accumulation of local emissions. This finding reveals that the severe haze 295 pollution was likely triggered by the adverse meteorological conditions. The impact of decreasing PBL 296 height on haze formation can also be evidenced by the variations of trace gaseous species (Fig. S2). 297 During the PM episode, the concentrations of NO₂, SO₂, and CO displayed variation trends similar to that 298 of the particle concentration. The fluctuations of trace gas concentrations were caused by primary 299 emission and secondary processes. Noticeably, the concentration of NO increased dramatically in rush 300 hours during the haze period, whereas it fluctuated slightly during the clean period; indicating that local 301 emissions were easily accumulated under stagnant atmosphere. In addition, the maximum concentration 302 of O₃ remained considerably higher during daytime, whereas it decreased significantly at night. The most 303 plausible explanation is that O_3 was consumed rapidly by the accumulated trace gases, such as NO_x , and 304 VOCs.

305 **3.5 Variations of hygroscopicity and effective density during the PM episode**

306	Figure 6 shows the averaged hygroscopicity and effective density for different pollution periods of the
307	PM episode. Regardless of the pollution period, the nearly-hydrophobic particles were externally mixed
308	with some hygroscopic particles. During the clean period, the more-hygroscopic particles dominated the
309	40 nm particle population, indicating that the near-hydrophobic primary particles were rapidly dispersed
310	due to atmospheric dilution. The number fraction of the near-hydrophobic group for different sizes
311	increased as the PM episode developed, indicative of the increasing accumulation of local emissions.
312	Notably, the increase of the near-hydrophobic particles with the evolution of the PM episode become less
313	significant as particle size increased, indicating that primary emission exerted a more significant impact
314	on smaller particles than on larger ones. The median diameter of nascent traffic particles from various
315	gasoline sources ranged between 55 and 73 nm with an average of 65 nm (Momenimovahed and Olfert,
316	2015). Therefore, the number fraction of the near-hydrophobic particles larger than 200 nm is not sensitive
317	to the accumulation of traffic emissions.
318	Interestingly, the variations of particle effective density for different sizes are in good agreement with
319	the hygroscopicity. The dominant peak of effective density distribution appeared at $\rho_{eff} = \sim 1.5 \text{ g cm}^{-3}$ for
320	40 nm particles in the clean period, indicating that they are highly aged with hygroscopic inorganic salts
321	(Yin et al., 2015). As the episode developed, the mean density shifted to lower values, indicating the
322	increasing contribution of lower density carbonaceous materials. The averaged density distribution was
323	broadened as the episode developed, suggesting that it could be deconvolved into two groups and that the 18

324 number fraction of the low-density group increased. This finding revealed that the lower density particles 325 are less hygroscopic whereas the larger density group corresponds to the more-hygroscopic one. In 326 addition, the variations of hygroscopicity and effective density coincided with the evolution of PBL height, 327 indicating that the increasing accumulation of local emissions due to adverse atmospheric conditions is 328 likely responsible for the enhancement of those near-hydrophobic and lower density particles. 329 Figure 7 displays the temporal profiles for contributions of EC (including bare EC and OC-coated EC), OC, sulfate, and nitrate determined by SPAMS. Obviously, the relative contribution of nitrate increased 330 331 as the episode developed. In contrast, the relative contribution of sulfate displayed an opposite trend. This 332 feature is comparable with the aforementioned results of SNA, thus further highlighting the important 333 role of nitrate in haze formation in Shanghai. The number fraction of EC particles generally increased 334 during the haze period, peaking at midnight on 9 and 10 January. It should be pointed out that the 335 measured number fraction possibly underestimated the contribution of EC particles because the dominant 336 size range of fresh traffic particles is below the detection limit of SPAMS (0.2-2.0 µm). This finding 337 provides good support for the increase of near-hydrophobic and lower density particles as the episode 338 developed. Niu et al. (2016) reported that the number ratio of secondary particles to soot in haze samples 339 was higher than that collected in the clean days in Beijing. Our finding is comparable to their results. In 340 contrast, the number fraction of pure OC decreased during the pollution event. The possible explanation is that the condensation of organic matter was favored on the large amount of preexisting EC particles, or 341 19

342 that photo-oxidation of VOCs was minimized due to lower solar radiation.

343 **3.6 Evolutions of hygroscopicity and effective density with particle growth**

344 As shown in Fig. 5, three "banana-shaped" evolutions of the particle size distribution were identified 345 in the representative PM episode. The banana-type contour plot of particle size distributions is a typical 346 characteristics of new particle formation (NPF) events and traditionally regarded as one of the most 347 important criteria for identifying NPF (Xiao et al., 2015; Dal Maso et al., 2005; Levy et al., 2013; Zhang et 348 al., 2012). Atmospheric NPF is often defined by the burst of nucleation mode particles and subsequent 349 growth of the nuclei to larger particles (Zhang et al., 2012;Kulmala et al., 2012). Gas-phase sulfuric acid 350 produced via oxidation of SO₂ by OH radical plays a dominant role in the NPF events. NPF is typically 351 completely suppressed when preexisting particles is abundant, because gas-phase sulfuric acid is rapidly 352 lost to the surfaces of preexisting aerosols (Zhang et al., 2012). In addition to sulfuric acid, low-volatility 353 organic species, and interaction between sulfate and organics are important for NPF (Zhang et al., 354 2004;Zhao et al., 2009). However, the possibility of NPF can be ignored in this study due to the absence 355 of the burst of nucleation mode particles and the high concentration of $PM_{1,0}$. The burst of Aitken mode 356 particles in the current study may be attributable to rapid accumulation of traffic emissions during rush 357 hours under stagnant atmospheric conditions. The "banana-shaped" particle growth in the time evolution 358 of particle size distribution from the Aitken mode size range to accumulation mode size range was 359 primarily due to coagulation and condensation processes. This feature provided an excellent opportunity

to reveal the chemical mechanism of particle growth during the PM episode.

361	The first "banana-shaped" evolution of the particle size distribution occurred from approximately
362	05:00 to 15:00 LT on 9 January, with increase of the particle number concentration (N _{total}) from 1.7×10^4
363	to 3.4×10^4 cm ⁻³ followed by a decrease trend until 17:00 LT (Period 1). The second "banana-shaped"
364	evolution occurred from approximately 18:00 LT on 9 January to approximately 12:00 LT on 10 January
365	(Period 2). The N _{total} increased from 2.1×10^4 to 4.2×10^4 cm ⁻³ within 3 h, followed by gradual decrease of
366	N_{total} in contrast to a continuous increase of the particle mass concentration. During the growth process,
367	the mode diameter of the particle population increased from below 40 nm to approximately 200 nm. The
368	third "banana-shaped" evolution began in the evening rush hours on 10 January, with the continuous
369	increase of PM mass concentration for 12 h (Period 3). The latter two banana-shaped evolutions lasted
370	long enough to tracer the changes in hygroscopicity and effective density due to particle growth.
371	Figure 8 illustrates the evolution of particle hygroscopicity and effective density during periods 2 and
372	3. During the initial stage, the measured GF and effective density distributions were both bimodal, with
373	a dominant peak at GF = ~1.0 and ρ_{eff} = ~1.0 g cm ⁻³ , respectively. In a previous study, we found that the
374	number fraction of near-hydrophobic particles varied with the traffic exhaust (Ye et al., 2013). Moreover,
375	laboratory studies showed that the effective density of 50 nm vehicle particles was approximately 1.0 g
376	cm ⁻³ (Olfert et al., 2007;Park et al., 2003;Momenimovahed and Olfert, 2015). These findings indicate that
377	the initial burst of Aitken mode particles is attributable to the presence of enhanced traffic-related

378	emissions. In contrast, the number fraction and GF of the more-hygroscopic group increased with the
379	growing particle size, indicating the addition of hygroscopic inorganic species. The variation of the
380	effective density of the particles was similar to that of the hygroscopicity, indicating the increase of high
381	density materials. In general, inorganic sulfate and nitrate are more hygroscopic and denser than soot
382	particles or organic aerosols (Yin et al., 2015). These findings suggest that secondary sulfate and nitrate
383	increased with the growing particle size, indicating the importance of the conversion of SO_2 and NO_x in
384	particle growth. This conclusion is supported by the largest SNA concentration in $PM_{1.0}$ during the PM
385	episode (31.3 μ g m ⁻³ on 10 January and 23.8 μ g m ⁻³ on 11 January). Considering that the concentration
386	of nitrate was much higher than that of sulfate during the haze event, the increase of hygroscopicity was
387	dominated by the addition of nitrate.

389 **4. Conclusions**

Particle size distribution, size-resolved hygroscopic growth and effective density of sub-micrometer
 aerosols were determined using a HTDMA-APM system, along with measurements of cascade impactor
 samples and single particle mass spectrometry in urban Shanghai during winter 2014.

393 The PM episode exhibited a periodic cycle of ~5 days. The average concentration of $PM_{2.5}$ was 87 ±

 $394 \quad 67 \ \mu g \ m^{-3}$, with approximately 62% of hourly $PM_{2.5}$ concentrations exceeding the Chinese Grade II

395 guideline. Both secondary inorganic salts and carbonaceous aerosols contributed substantially to haze

396 formation, because the mass ratio of SNA/PM₁₀ fluctuated slightly around 0.28 during the observation period. Nitrate became the most abundant ionic species at $PM_{10} > 40 \mu g m^{-3}$, indicating that the sources 397 398 of nitrate contributed more to haze formation in Shanghai than did SO₂. 399 The severe haze pollution was likely triggered by the adverse meteorological conditions, which favored 400 the accumulation of local emissions and subsequent rapid growth to larger particles. As the PM episode 401 developed, the number fraction of nearly-hydrophobic particles of different size increased, consistent with 402 decrease of the mean effective density. Both hygroscopicity and effective density of the particles were 403 found to increase considerably with growing particle size, indicating that secondary aerosol formation 404 was one of the most important contributors to particle growth. Our results suggest that the accumulation 405 of local emissions under adverse meteorological conditions and subsequent rapid particle growth by 406 secondary processes are primarily responsible for the haze pollution in Shanghai during wintertime.

407

Acknowledgments. This work was supported by the National Natural Science Foundation of China
(21477020, 21527814, and 91544224), and the National Science and Technology Support Program of
China (2014BAC22B01).

411

412 Reference

413 Aggarwal, S. G., Mochida, M., Kitamori, Y., and Kawamura, K.: Chemical closure study on hygroscopic

- 414 properties of urban aerosol particles in Sapporo, Japan, Environmental Science & Technology, 41, 6920-
- 415 6925, 10.1021/es063092m, 2007.
- 416 Chen, D., Liu, Z., Fast, J., and Ban, J.: Simulations of sulfate-nitrate-ammonium (SNA) aerosols during
- 417 the extreme haze events over northern China in October 2014, Atmospheric Chemistry and Physics, 16,
- 418 10707-10724, 10.5194/acp-16-10707-2016, 2016.
- 419 Chu, B., Zhang, X., Liu, Y., He, H., Sun, Y., Jiang, J., Li, J., and Hao, J.: Synergetic formation of secondary
- 420 inorganic and organic aerosol: effect of SO2 and NH3 on particle formation and growth, Atmospheric
- 421 Chemistry and Physics, 16, 14219-14230, 10.5194/acp-16-14219-2016, 2016.
- 422 Dal Maso, M., Kulmala, M., Riipinen, I., Wagner, R., Hussein, T., Aalto, P. P., and Lehtinen, K. E. J.:
- Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyvtiala, Finland, Boreal Environment Research, 10, 323-336, 2005.
- 425 Dinar, E., Mentel, T. F., and Rudich, Y.: The density of humic acids and humic like substances (HULIS)
- 426 from fresh and aged wood burning and pollution aerosol particles, Atmospheric Chemistry and Physics,
- 427 6, 5213-5224, 2006.
- 428 Fu, Q. Y., Zhuang, G. S., Wang, J., Xu, C., Huang, K., Li, J., Hou, B., Lu, T., and Streets, D. G.:
- 429 Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China,
- 430 Atmospheric Environment, 42, 2023-2036, 2008.
- 431 Gasparini, R., Li, R. J., Collins, D. R., Ferrare, R. A., and Brackett, V. G.: Application of aerosol
- 432 hygroscopicity measured at the Atmospheric Radiation Measurement Program's Southern Great Plains
- 433 site to examine composition and evolution, J. Geophys. Res.-Atmos., 111, D05S12, 434 doi:10.1029/2004JD005448, 10.1029/2004jd005448, 2006.
- Guan, W. J., Zheng, X. Y., Chung, K. F., and Zhong, N. S.: Impact of air pollution on the burden of chronic
 respiratory diseases in China: time for urgent action, Lancet, 388, 1939-1951, 2016.
- Guo, S., Hu, M., Guo, Q., Zhang, X., Schauer, J. J., and Zhang, R.: Quantitative evaluation of emission
 controls on primary and secondary organic aerosol sources during Beijing 2008 Olympics, Atmospheric
 Chemistry and Physics, 13, 8303-8314, 10.5194/acp-13-8303-2013, 2013.
- 440 Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu, Z., Shao, M., Zeng, L., Molina,
- 441 M. J., and Zhang, R.: Elucidating severe urban haze formation in China, Proceedings of the National
- 442 Academy of Sciences of the United States of America, 111, 17373-17378, 10.1073/pnas.1419604111, 443 2014.
- 444 Gysel, M., Crosier, J., Topping, D. O., Whitehead, J. D., Bower, K. N., Cubison, M. J., Williams, P. I.,
- Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmospheric Chemistry and Physics, 7, 6131-
- 447 6144, 2007.
- 448 Gysel, M., McFiggans, G. B., and Coe, H.: Inversion of tandem differential mobility analyser (TDMA)

- 449 measurements, Journal of Aerosol Science, 40, 134-151, 10.1016/j.jaerosci.2008.07.013, 2009.
- 450 Han, B., Zhang, R., Yang, W., Bai, Z., Ma, Z., and Zhang, W.: Heavy haze episodes in Beijing during 451 January 2013: Inorganic ion chemistry and source analysis using highly time-resolved measurements 452 from an urban site. Science of The Total Environment, 544, 319-329. 453 http://dx.doi.org/10.1016/j.scitotenv.2015.10.053, 2016.
- Heal, M. R., Kumar, P., and Harrison, R. M.: Particles, air quality, policy and health, Chemical Society
 Reviews, 41, 6606-6630, 10.1039/c2cs35076a, 2012.
- Hu, M., Peng, J., Sun, K., Yue, D., Guo, S., Wiedensohler, A., and Wu, Z.: Estimation of size-resolved
 ambient particle density based on the measurement of aerosol number, mass, and chemical size
 distributions in the winter in Beijing, Environ Sci Technol, 46, 9941-9947, 10.1021/es204073t, 2012.
- Hu, Q. Q., Fu, H. B., Wang, Z. Z., Kong, L. D., Chen, M. D., and Chen, J. M.: The variation of
 characteristics of individual particles during the haze evolution in the urban Shanghai atmosphere,
 Atmospheric Research, 181, 95-105, 10.1016/j.atmosres.2016.06.016, 2016.
- 462 Huang, R.-J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y., Daellenbach, K. R., Slowik, J. G.,
- 463 Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G.,
- 464 Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat,
- 465 S., Baltensperger, U., El Haddad, I., and Prevot, A. S. H.: High secondary aerosol contribution to 466 particulate pollution during haze events in China, Nature, 514, 218-222, 10.1038/nature13774, 2014.
- 467 IPCC: Climate Change 2013: The Physical Science Basis, Cambridge, UK, 2013.
- Khalizov, A. F., Xue, H., Wang, L., Zheng, J., and Zhang, R.: Enhanced Light Absorption and Scattering
 by Carbon Soot Aerosol Internally Mixed with Sulfuric Acid, Journal of Physical Chemistry A, 113,
 1066-1074, 10.1021/jp807531n, 2009.
- 471 Kulmala, M., Petaja, T., Nieminen, T., Sipila, M., Manninen, H. E., Lehtipalo, K., Dal Maso, M., Aalto,
- P. P., Junninen, H., Paasonen, P., Riipinen, I., Lehtinen, K. E., Laaksonen, A., and Kerminen, V. M.:
 Measurement of the nucleation of atmospheric aerosol particles, Nature protocols, 7, 1651-1667,
 10.1038/nprot.2012.091, 2012.
- 475 Levy, M. E., Zhang, R. Y., Khalizov, A. F., Zheng, J., Collins, D. R., Glen, C. R., Wang, Y., Yu, X. Y.,
- 476 Luke, W., Jayne, J. T., and Olaguer, E.: Measurements of submicron aerosols in Houston, Texas during
- 477 the 2009 SHARP field campaign, J. Geophys. Res.-Atmos., 118, 10518-10534, 10.1002/jgrd.50785, 2013.
- 478 Levy, M. E., Zhang, R. Y., Zheng, J., Tan, H. B., Wang, Y., Molina, L. T., Takahama, S., Russell, L. M.,
- and Li, G. H.: Measurements of submicron aerosols at the California-Mexico border during the Cal-Mex
 2010 field campaign, Atmospheric Environment, 88, 308-319, 10.1016/j.atmosenv.2013.08.062, 2014.
- Li, J. J., Wang, G. H., Ren, Y. Q., Wang, J. Y., Wu, C., Han, Y. N., Zhang, L., Cheng, C. L., and Meng, J.
 J.: Identification of chemical compositions and sources of atmospheric aerosols in Xi'an, inland China
 during two types of haze events, Science of the Total Environment, 566, 230-237,

- 484 10.1016/j.scitotenv.2016.05.057, 2016.
- 485 Li, L., Huang, Z. X., Dong, J. G., Li, M., Gao, W., Nian, H. Q., Fu, Z., Zhang, G. H., Bi, X. H., Cheng,
- P., and Zhou, Z.: Real time bipolar time-of-flight mass spectrometer for analyzing single aerosol particles,
 International Journal of Mass Spectrometry, 303, 118-124, 10.1016/j.ijms.2011.01.017, 2011.
- 488 Li, P., Yan, R., Yu, S., Wang, S., Liu, W., and Bao, H.: Reinstate regional transport of PM_{2.5} as a major
- 489 cause of severe haze in Beijing, Proceedings of the National Academy of Sciences of the United States of
- 490 America, 112, E2739-E2740, 10.1073/pnas.1502596112, 2015.
- 491 Lin, Y., Huang, K., Zhuang, G., Fu, J. S., Wang, Q., Liu, T., Deng, C., and Fu, Q.: A multi-year evolution
- 492 of aerosol chemistry impacting visibility and haze formation over an Eastern Asia megacity, Shanghai,
- 493 Atmospheric Environment, 92, 76-86, 10.1016/j.atmosenv.2014.04.007, 2014.
- 494 Liu, H. J., Zhao, C. S., Nekat, B., Ma, N., Wiedensohler, A., van Pinxteren, D., Spindler, G., Müller, K.,
- and Herrmann, H.: Aerosol hygroscopicity derived from size-segregated chemical composition and its
 parameterization in the North China Plain, Atmospheric Chemistry and Physics, 14, 2525-2539,
 10.5194/acp-14-2525-2014, 2014.
- 498 Malloy, Q. G. J., Nakao, S., Qi, L., Austin, R., Stothers, C., Hagino, H., and Cocker, D. R.: Real-Time
- 499 Aerosol Density Determination Utilizing a Modified Scanning Mobility Particle SizerAerosol Particle
- 500 Mass Analyzer System, Aerosol Science and Technology, 43, 673-678, 10.1080/02786820902832960,
 501 2009.
- 502 Massling, A., Stock, M., Wehner, B., Wu, Z. J., Hu, M., Bruggemann, E., Gnauk, T., Herrmann, H., and
- 503 Wiedensohler, A.: Size segregated water uptake of the urban submicrometer aerosol in Beijing,
- 504 Atmospheric Environment, 43, 1578-1589, 2009.
- 505 Momenimovahed, A., and Olfert, J. S.: Effective density and volatility of particles emitted from gasoline
- direct injection vehicles and implications for particle mass measurement, Aerosol Sci. Technol., 49, 1051 1062, 10.1080/02786826.2015.1094181, 2015.
- 508 Niu, H. Y., Hu, W., Zhang, D. Z., Wu, Z. J., Guo, S., Pian, W., Cheng, W. J., and Hu, M.: Variations of
- 509 fine particle physiochemical properties during a heavy haze episode in the winter of Beijing, Science of
- 510 the Total Environment, 571, 103-109, 10.1016/j.scitotenv.2016.07.147, 2016.
- 511 Olfert, J. S., Symonds, J. P. R., and Collings, N.: The effective density and fractal dimension of particles
- 512 emitted from a light-duty diesel vehicle with a diesel oxidation catalyst, Journal of Aerosol Science, 38,
- 513 69-82, 10.1016/j.jaerosci.2006.10.002, 2007.
- 514 Pagels, J., Khalizov, A. F., McMurry, P. H., and Zhang, R. Y.: Processing of Soot by Controlled Sulphuric
- 515 Acid and Water CondensationMass and Mobility Relationship, Aerosol Sci. Technol., 43, 629-640,
- 516 10.1080/02786820902810685, 2009.
- 517 Park, K., F., C., Kittelson, D. B., and McMurry, P. H.: Relationship between particle mass and mobility
- 518 for diesel exhaust particles Environmental Science and Technology, 37, 577-583, 2003.

- 519 Peng, J., Hu, M., Guo, S., Du, Z., Zheng, J., Shang, D., Zamora, M. L., Zeng, L., Shao, M., Wu, Y.-S.,
- 520 Zheng, J., Wang, Y., Glen, C. R., Collins, D. R., Molina, M. J., and Zhang, R.: Markedly enhanced
- absorption and direct radiative forcing of black carbon under polluted urban environments, Proceedings
 of the National Academy of Sciences of the United States of America, 113, 4266-4271,
 10 1072/ 10 10 1072/ 1002/ 10 1
- 523 10.1073/pnas.1602310113, 2016.
- 524 Petters, M. D., and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and 525 cloud condensation nucleus activity, Atmospheric Chemistry and Physics, 7, 1961-1971, 2007.
- Qiao, T., Zhao, M., Xiu, G., and Yu, J.: Simultaneous monitoring and compositions analysis of PM₁ and
 PM_{2.5} in Shanghai: Implications for characterization of haze pollution and source apportionment, The
- 528 Science of the total environment, 557-558, 386-394, 10.1016/j.scitotenv.2016.03.095, 2016.
- 529 Rissler, J., Nordin, E. Z., Eriksson, A. C., Nilsson, P. T., Frosch, M., Sporre, M. K., Wierzbicka, A.,
- Svenningsson, B., Londahl, J., Messing, M. E., Sjogren, S., Hemmingsen, J. G., Loft, S., Pagels, J. H.,
 and Swietlicki, E.: Effective density and mixing state of aerosol particles in a near-traffic urban
 environment, Environ Sci Technol, 48, 6300-6308, 10.1021/es5000353, 2014.
- 533 Shi, Y., Chen, J., Hu, D., Wang, L., Yang, X., and Wang, X.: Airborne submicron particulate (PM₁)
- 534 pollution in Shanghai, China: Chemical variability, formation/dissociation of associated semi-volatile 535 components and the impacts on visibility, Science of the Total Environment, 473, 199-206, 536 10.1016/j.scitotenv.2013.12.024, 2014.
- 537 Spencer, M. T., Shields, L. G., and Prather, K. A.: Simultaneous measurement of the effective density and
- chemical composition of ambient aerosol particles, Environmental Science & Technology, 41, 1303-1309,
 10.1021/es061425+, 2007.
- 540 Sun, Y. L., Chen, C., Zhang, Y. J., Xu, W. Q., Zhou, L. B., Cheng, X. L., Zheng, H. T., Ji, D. S., Li, J.,
- Tang, X., Fu, P. Q., and Wang, Z. F.: Rapid formation and evolution of an extreme haze episode in Northern China during winter 2015, Scientific Reports, 6, 10.1038/srep27151, 2016.
- 543 Swietlicki, E., Hansson, H. C., Hameri, K., Svenningsson, B., Massling, A., McFiggans, G., McMurry, P.
- 544 H., Petaja, T., Tunved, P., Gysel, M., Topping, D., Weingartner, E., Baltensperger, U., Rissler, J.,
- 545 Wiedensohler, A., and Kulmala, M.: Hygroscopic properties of submicrometer atmospheric aerosol
- 546 particles measured with H-TDMA instruments in various environments a review, Tellus Ser. B-Chem.
- 547 Phys. Meteorol., 60, 432-469, 10.1111/j.1600-0889.2008.00350.x, 2008.
- Tao, Y., Ye, X. N., Ma, Z., Xie, Y. Y., Wang, R. Y., Chen, J. M., Yang, X., and Jiang, S. Q.: Insights into
 different nitrate formation mechanisms from seasonal variations of secondary inorganic aerosols in
 Shanghai, Atmospheric Environment, 145, 1-9, 10.1016/j.atmosenv.2016.09.012, 2016.
- 551 Topping, D. O., McFiggans, G. B., and Coe, H.: A curved multi-component aerosol hygroscopicity model
- framework: Part 1 Inorganic compounds, Atmospheric Chemistry and Physics, 5, 1205-1222, 2005.
- 553 Turpin, B. J., and Lim, H. J.: Species contributions to PM2.5 mass concentrations: Revisiting common

- assumptions for estimating organic mass, Aerosol Science and Technology, 35, 602-610,
 10.1080/02786820152051454, 2001.
- 556 Wang, G., Zhang, R., Gomez, M. E., Yang, L., Zamora, M. L., Hu, M., Lin, Y., Peng, J., Guo, S., Meng,
- 557 J., Li, J., Cheng, C., Hu, T., Ren, Y., Wang, Y., Gao, J., Cao, J., An, Z., Zhou, W., Li, G., Wang, J., Tian,
- 558 P., Marrero-Ortiz, W., Secrest, J., Du, Z., Zheng, J., Shang, D., Zeng, L., Shao, M., Wang, W., Huang, Y.,
- 559 Wang, Y., Zhu, Y., Li, Y., Hu, J., Pan, B., Cai, L., Cheng, Y., Ji, Y., Zhang, F., Rosenfeld, D., Liss, P. S.,
- 560 Duce, R. A., Kolb, C. E., and Molina, M. J.: Persistent sulfate formation from London Fog to Chinese
- haze, Proceedings of the National Academy of Sciences of the United States of America, 113, 13630-
- 562 13635, 10.1073/pnas.1616540113, 2016.
- Wang, H., Xu, J., Zhang, M., Yang, Y., Shen, X., Wang, Y., Chen, D., and Guo, J.: A study of the
 meteorological causes of a prolonged and severe haze episode in January 2013 over central-eastern China,
 Atmospheric Environment, 98, 146-157, 10.1016/j.atmosenv.2014.08.053, 2014a.
- Wang, Y., Wan, Q., Meng, W., Liao, F., Tan, H., and Zhang, R.: Long-term impacts of aerosols on
 precipitation and lightning over the Pearl River Delta megacity area in China, Atmospheric Chemistry
 and Physics, 11, 12421-12436, 10.5194/acp-11-12421-2011, 2011.
- 569 Wang, Y., Khalizov, A., Levy, M., and Zhang, R.: New Directions: Light absorbing aerosols and their 570 atmospheric impacts, Atmospheric Environment, 81, 713-715, 10.1016/j.atmosenv.2013.09.034, 2013.
- Wang, Y., Zhang, Q., Jiang, J., Zhou, W., Wang, B., He, K., Duan, F., Zhang, Q., Philip, S., and Xie, Y.:
 Enhanced sulfate formation during China's severe winter haze episode in January 2013 missing from
 current models, J. Geophys. Res.-Atmos., 119, 10.1002/2013jd021426, 2014b.
- Wang, Y., Zhang, R., and Saravanan, R.: Asian pollution climatically modulates mid-latitude cyclones
 following hierarchical modelling and observational analysis, Nature Communications, 5,
 10.1038/ncomms4098, 2014c.
- Wang, Y. H., Liu, Z. R., Zhang, J. K., Hu, B., Ji, D. S., Yu, Y. C., and Wang, Y. S.: Aerosol
 physicochemical properties and implications for visibility during an intense haze episode during winter
 in Beijing, Atmospheric Chemistry and Physics, 15, 3205-3215, 10.5194/acp-15-3205-2015, 2015.
- 580 Wu, G., Li, Z., Fu, C., Zhang, X., Zhang, R., Zhang, R., Zhou, T., Li, J., Li, J., Zhou, D., Wu, L., Zhou,
- 581 L., He, B., and Huang, R.: Advances in studying interactions between aerosols and monsoon in China,
- 582 Science China-Earth Sciences, 59, 1-16, 10.1007/s11430-015-5198-z, 2016a.
- Wu, S., Ni, Y., Li, H., Pan, L., Yang, D., Baccarelli, A. A., Deng, F., Chen, Y., Shima, M., and Guo, X.:
 Short-term exposure to high ambient air pollution increases airway inflammation and respiratory
 symptoms in chronic obstructive pulmonary disease patients in Beijing, China, Environment International,
 94, 76-82, 10.1016/j.envint.2016.05.004, 2016b.
- Wu, Z. J., Zheng, J., Shang, D. J., Du, Z. F., Wu, Y. S., Zeng, L. M., Wiedensohler, A., and Hu, M.: Particle hygroscopicity and its link to chemical composition in the urban atmosphere of Beijing, China, during

- 589 summertime, Atmospheric Chemistry and Physics, 16, 1123-1138, 10,5194/acp-16-1123-2016, 2016c.
- 590 Xiao, S., Wang, O. Y., Cao, J. J., Huang, R. J., Chen, W. D., Han, Y. M., Xu, H. M., Liu, S. X., Zhou, Y.
- 591 O., Wang, P., Zhang, J. O., and Zhan, C. L.: Long-term trends in visibility and impacts of aerosol composition on visibility impairment in Baoji, China, Atmospheric Research, 149, 88-95, 592 593 10.1016/i.atmosres.2014.06.006, 2014.
- 594 Xiao, S., Wang, M. Y., Yao, L., Kulmala, M., Zhou, B., Yang, X., Chen, J. M., Wang, D. F., Fu, O. Y.,
- 595 Worsnop, D. R., and Wang, L.: Strong atmospheric new particle formation in winter in urban Shanghai,
- 596 China, Atmospheric Chemistry and Physics, 15, 1769-1781, 10.5194/acp-15-1769-2015, 2015.
- Xie, Y., Ding, A., Nie, W., Mao, H., Qi, X., Huang, X., Xu, Z., Kerminen, V.-M., Petaja, T., Chi, X., 597
- Virkkula, A., Boy, M., Xue, L., Guo, J., Sun, J., Yang, X., Kulmala, M., and Fu, C.: Enhanced sulfate 598
- 599 formation by nitrogen dioxide: Implications from in situ observations at the SORPES station, J. Geophys.
- 600 Res.-Atmos., 120, 12679-12694, 10.1002/2015jd023607, 2015.
- 601 Yang, L., Zhou, X., Wang, Z., Zhou, Y., Cheng, S., Xu, P., Gao, X., Nie, W., Wang, X., and Wang, W.:
- 602 Airborne fine particulate pollution in Jinan, China: Concentrations, chemical compositions and influence
- 603 on visibility impairment, Atmospheric Environment, 55, 506-514, 10.1016/j.atmosenv.2012.02.029, 2012.
- 604 Ye, X. N., Chen, T. Y., Hu, D. W., Yang, X., Chen, J. M., Zhang, R. Y., Khakuziv, A. F., and Wang, L.: A
- 605 multifunctional HTDMA system with a robust temperature control, Advances in Atmospheric Sciences, 606 26, 1235-1240, 10.1007/s00376-009-8134-3, 2009.
- 607 Ye, X. N., Ma, Z., Hu, D. W., Yang, X., and Chen, J. M.: Size-resolved hygroscopicity of submicrometer 608 urban aerosols in Shanghai during wintertime, Atmospheric Research, 99, 353-364, 2010.
- Ye, X. N., Ma, Z., Zhang, J. C., Du, H. H., Chen, J. M., Chen, H., Yang, X., Gao, W., and Geng, F. H.: 609
- 610 Important role of ammonia on haze formation in Shanghai, Environ Res Lett, 6, Artn 024019
- 611 Doi 10.1088/1748-9326/6/2/024019, 2011.
- 612 Ye, X. N., Tang, C., Yin, Z., Chen, J. M., Ma, Z., Kong, L. D., Yang, X., Gao, W., and Geng, F. H.:
- 613 Hygroscopic growth of urban aerosol particles during the 2009 Mirage-Shanghai Campaign, Atmospheric
- Environment, 64, 263-269, 10.1016/j.atmosenv.2012.09.064, 2013. 614
- 615 Yin, Z., Ye, X., Jiang, S., Tao, Y., Shi, Y., Yang, X., and Chen, J.: Size-resolved effective density of urban 616 aerosols in Shanghai, Atmospheric Environment, 100, 133-140, 10.1016/j.atmosenv.2014.10.055, 2015.
- 617
- Zhang, Q., Quan, J., Tie, X., Li, X., Liu, Q., Gao, Y., and Zhao, D.: Effects of meteorology and secondary 618 particle formation on visibility during heavy haze events in Beijing, China, Science of The Total
- 619 Environment, 502, 578-584, http://dx.doi.org/10.1016/j.scitotenv.2014.09.079, 2015a.
- Zhang, R., Khalizov, A., Wang, L., Hu, M., and Xu, W.: Nucleation and Growth of Nanoparticles in the 620 621 Atmosphere, Chemical Reviews, 112, 1957-2011, 10.1021/cr2001756, 2012.
- 622 Zhang, R., Guo, S., Zamora, M. L., and Hu, M.: Reply to Li et al.: Insufficient evidence for the 623 contribution of regional transport to severe haze formation in Beijing, Proceedings of the National

- Academy of Sciences of the United States of America, 112, E2741-E2741, 10.1073/pnas.1503855112, 624 625 2015b.
- 626 Zhang, R., Wang, G., Guo, S., Zarnora, M. L., Ying, O., Lin, Y., Wang, W., Hu, M., and Wang, Y.: 627 Formation of Urban Fine Particulate Matter, Chemical Reviews, 115. 3803-3855,
- 628 10.1021/acs.chemrev.5b00067, 2015c.
- 629 Zhang, R. Y., Suh, I., Zhao, J., Zhang, D., Fortner, E. C., Tie, X. X., Molina, L. T., and Molina, M. J.:
- 630 Atmospheric new particle formation enhanced by organic acids, Science, 304, 1487-1490,
- 631 10.1126/science.1095139, 2004.
- 632 Zhang, R. Y., Khalizov, A. F., Pagels, J., Zhang, D., Xue, H. X., and McMurry, P. H.: Variability in
- 633 morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing, 634 Proceedings of the National Academy of Sciences of the United States of America, 105, 10291-10296, 635 2008.
- 636 Zhao, J., Khalizov, A., Zhang, R., and McGraw, R.: Hydrogen-Bonding Interaction in Molecular
- Complexes and Clusters of Aerosol Nucleation Precursors, Journal of Physical Chemistry A, 113, 680-637 638 689, 10.1021/jp806693r, 2009.
- 639
 - Zhao, X. J., Zhao, P. S., Xu, J., Meng, W., Pu, W. W., Dong, F., He, D., and Shi, Q. F.: Analysis of a winter 640 regional haze event and its formation mechanism in the North China Plain, Atmospheric Chemistry and
 - 641 Physics, 13, 5685-5696, 10.5194/acp-13-5685-2013, 2013.
 - 642 Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y., Zheng, B., Zhang, Q., Huang, T., Kimoto, T.,
 - Chang, D., Poeschl, U., Cheng, Y. F., and He, K. B.: Exploring the severe winter haze in Beijing: the 643
 - 644 impact of synoptic weather, regional transport and heterogeneous reactions, Atmospheric Chemistry and
- 645 Physics, 15, 2969-2983, 10.5194/acp-15-2969-2015, 2015.

647 Figure and Table Captions

648 Figure 1 Schematic diagram of HTDMA-APM system.

- 649 Figure 2. Temporal evolutions of PM_{1.0}, PM_{2.5}, and PM₁₀ concentrations during the winter observation.
- Figure 3 Variations of sulfate, nitrate, and ammonium concentrations as a function of PM_{1.0} mass loading.
- 651 Figure 4 Box plots showing hygroscopicity parameter and effective density at each dry diameter over the
- 652 whole observation. The whiskers represent the 5th and 95th percentile, the two borders of box display the
- 653 25^{th} and 75^{th} percentile, and the band in each box denotes the median.
- Figure 5 Temporal evolutions of particle number size distribution (A), volume size distribution (B), total

number concentration and total volume concentration (C), and PM_{1.0} concentration and calculated PM

656 (less than 600 nm in mobility diameter) concentration during the representative PM episode from 7 to 12

657 January.

Figure 6 Evolutions of particle hygroscopic growth factor and effective density for different sizes duringthe representative PM episode.

Figure 7 Temporal evolutions of chemical compositions determined by SPAMS during the representativePM episode.

662 Figure 8 Particle hygroscopicity and density during the two particle growth processes

663

Figure 2. Temporal evolutions of PM_{1.0}, PM_{2.5}, and PM₁₀ concentrations during the winter observation.

Figure 3. Variations of sulfate, nitrate, and ammonium concentrations as a function of PM_{1.0} mass loading

Figure 4. Box plots showing hygroscopicity parameter and effective density at each dry diameter over the
whole observation. The whiskers represent the 5th and 95th percentile, the two borders of box display the
25th and 75th percentile, and the band in each box denotes the median.

Figure 5. Temporal evolutions of particle number size distribution (a), volume size distribution (b), total
number concentration and total volume concentration (c), and PM_{1.0} concentration and calculated PM
(less than 600 nm in mobility diameter) concentration (d) during the representative PM episode from 7 to
12 January.

Figure 6. Evolutions of particle hygroscopic growth factor and effective density for different sizes duringthe representative PM episode.

701 PM episode.

Figure 8. Particle hygroscopicity and density during the two particle growth processes.