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Abstract: We characterize a representative particulate matter (PM) episode that occurred in Shanghai 10 

during winter 2014. Particle size distribution, hygroscopicity, effective density, and single particle mass 11 

spectrometry were determined online, along with offline analysis of water-soluble inorganic ions. The 12 

mass ratio of SNA/PM1.0 (sulfate, nitrate, and ammonium) fluctuated slightly around 0.28, suggesting that 13 

both secondary inorganic compounds and carbonaceous aerosols contributed substantially to the haze 14 

formation, regardless of pollution level. Nitrate was the most abundant ionic species during hazy periods, 15 

indicating that NOx contributed more to haze formation in Shanghai than did SO2. During the 16 

representative PM episode, the calculated PM was always consistent with the measured PM1.0, indicating 17 
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that the enhanced pollution level was attributable to the elevated number of larger particles. The number 18 

fraction of the near-hydrophobic group increased as the PM episode developed, indicating the 19 

accumulation of local emissions. Three “banana-shaped” particle evolutions were consistent with the 20 

rapid increase of PM1.0 mass loading, indicating that the rapid size growth by the condensation of 21 

condensable materials was responsible for the severe haze formation. Both hygroscopicity and effective 22 

density of the particles increased considerably with growing particle size during the banana-shaped 23 

evolutions, indicating that the secondary transformation of NOx and SO2 was one of the most important 24 

contributors to the particle growth. Our results suggest that the accumulation of gas-phase and particulate 25 

pollutants under stagnant meteorological conditions and subsequent rapid particle growth by secondary 26 

processes, were primarily responsible for the haze pollution in Shanghai during wintertime. 27 

Keywords: air pollution; size distribution; hygroscopic growth; secondary process; Shanghai. 28 

 29 

1. Introduction 30 

Atmospheric aerosol has significant influences on radiation balance and climate forcing of the 31 

atmosphere (Wang et al., 2011;Wang et al., 2014c;Wu et al., 2016a;IPCC, 2013). Also, atmospheric 32 

aerosol has s strong impacts on visibility (Yang et al., 2012;Lin et al., 2014;Xiao et al., 2014) and public 33 

health (Heal et al., 2012). Recent studies found that short-term exposure to haze pollution could cause 34 

airway inflammation and aggravate respiratory symptoms in chronic obstructive pulmonary disease 35 
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patients (Wu et al., 2016b;Guan et al., 2016). 36 

With the huge achievements in economic development and rapid urbanization over the past 30 years, 37 

particulate pollution has become a major environmental concern in China. The most severe haze event 38 

that occurred in the first quarter of 2013, spread over 1.6 million km2 (Wang et al., 2014a). This event 39 

motivated the release of the Action Plan on Prevention and Control of Air Pollution with the goal of 40 

reducing PM2.5 (particulate matter smaller than 2.5 m in aerodynamic diameter) concentration by 1525% 41 

in 2017 against 2012 in three major city clusters 42 

(http://english.mep.gov.cn/News_service/infocus/201309/t20130924_260707.htm). In order to reduce 43 

the PM2.5 concentration, extensive studies have been conducted to investigate the sources and formation 44 

mechanisms of haze pollution in recent years (Ye et al., 2011;Sun et al., 2016;Qiao et al., 2016;Hu et al., 45 

2016;Li et al., 2016;Guo et al., 2014;Zheng et al., 2015;Guo et al., 2013;Wang et al., 2016;Peng et al., 46 

2016). However, the haze formation mechanisms and source appointment of fine particles remain 47 

uncertain. 48 

Guo et al. (2013) summarized historical reports from 2000 to 2008 in Beijing and found that the 49 

origins of urban fine particles varied in different seasons: the contribution of primary emissions is 50 

comparable to that of secondary formation during winter heating periods whereas secondarily produced 51 

aerosols dominate the fine PM sources in other seasons. As an important type of primary emissions in 52 

urban area, black carbon (BC) is primarily from incomplete fossil fuel combustion. Light absorption of 53 
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BC aerosols is increased after atmospheric aging by coating with secondary materials and restructuring 54 

(Khalizov et al., 2009). Due to cooling effect at the surface and warming effect aloft, the enhanced light 55 

absorption and scattering by aged BC particles stabilize the atmosphere, hindering vertical transport of 56 

gaseous and particulate pollutants (Wang et al., 2013). BC aging occurs much more efficiently in the 57 

presence of highly elevated gaseous aerosol precursors so that light absorption increases by a factor of 58 

2.4 within 4.6 h under highly polluted conditions in Beijing, significantly exacerbating pollution 59 

accumulation and strongly contributing to severe haze formation (Peng et al., 2016). 60 

Due to the implement of several effective regulatory policies, the increasing trend of primary 61 

emissions has been under control since the 11th five-year period. A growing number of studies suggested 62 

that secondary production was the major contributor to the haze events in recent years (Shi et al., 63 

2014;Zhao et al., 2013;Zhang et al., 2015a;Huang et al., 2014), in contrast with the fact that primary 64 

emissions were of great importance in some haze events (Niu et al., 2016). Guo et al. (2014) reported that 65 

the development of PM episodes in Beijing was characterized by efficient nucleation and continuous 66 

particle growth over an extend period dominated by local secondary formation. They attributed the 67 

continuous growth of particle size and constant accumulation of particle mass concentration to the highly 68 

elevated concentrations of gaseous precursors such as NOx, SO2, and volatile organic compounds (VOCs), 69 

while the contribution from primary emissions and regional transport was negligible. However, the role 70 

of regional transport of PM2.5 in haze formation remains controversial (Li et al., 2015;Zhang et al., 2015b).  71 
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The most important advances in the understanding of urban PM formation were reviewed by Zhang 72 

et al. (2015c). The concentrations of SO2, NOx, and anthropogenic source VOCs in Beijing and other 73 

cities of the developing world are significantly higher than those in the urban areas of developed countries, 74 

resulting in large secondary production of sulfate, nitrate, and SOA. Synergetic effects among various 75 

organic and inorganic compounds may exist under highly polluted conditions, indicating different PM 76 

formation rates between developing and developed urban regions. Indeed, a large enhancement of 77 

particulate sulfate was typically observed during regional haze events in China (Chen et al., 2016;Wang 78 

et al., 2015;Fu et al., 2008;Xie et al., 2015). Currently, the highly elevated sulfate concentration during 79 

haze events cannot be fully explained by model simulations (Wang et al., 2014b;Chen et al., 2016). 80 

Recently, a significant breakthrough made by Wang et al. (2016) has provided a reasonable explanation 81 

about the high level of sulfate during haze events. It was revealed by their laboratory experiments that the 82 

aqueous oxidation of SO2 by NO2 proceeds more efficiently with the increase of NO2 concentration 83 

whereas the reaction is suppressed in acid conditions, because acid effect reduces the solubility of SO2 84 

and reaction rate. The enhanced sulfate formation during severe haze periods in Beijing was attributable 85 

to aqueous oxidation of SO2 by NO2 on hygroscopic fine particles under conditions of elevated RH and 86 

the concentrations of NH3 and NO2, as confirmed by the comparable SO2 uptake coefficients for sulfate 87 

formation from field and laboratory results. 88 

The hygroscopic properties of ambient particles vary significantly depending on the origin of the air 89 
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masses and the atmospheric aging process. In urban air, the population of near-hydrophobic particles can 90 

be assumed to consist largely of freshly emitted combustion particles containing high mass fractions of 91 

soot and water-insoluble organic compounds (Swietlicki et al., 2008;Massling et al., 2009). In contrast, 92 

secondary sulfate or nitrate aged particles are more-hygroscopic, and their relative abundance is primarily 93 

responsible for the hygroscopic growth of ambient particles at elevated RH (Topping et al., 94 

2005;Aggarwal et al., 2007;Gysel et al., 2007). Thus, hygroscopicity can serve as a tracer of source origins, 95 

mixing state, and aging mechanisms of ambient particles. For example, the temporal variation of aerosol 96 

hygroscopicity has thrown some new light on haze formation mechanisms in Beijing and Shanghai (Ye 97 

et al., 2011;Guo et al., 2014).  98 

Density is one of the most important physicochemical properties for atmospheric aerosols. Effective 99 

density has served as a tracer for new particle formation and for the aging process in previous studies (Yin 100 

et al., 2015;Guo et al., 2014). The ambient particles in urban areas are mostly complex mixtures of 101 

elemental carbon (EC), organics (OC), and secondary inorganic aerosols (SIA) (Hu et al., 2012). The 102 

effective density of nascent traffic particles varies from approximately 0.9 g cm-3 to below 0.4 g cm-3, 103 

decreasing with the increase of particle size, because there are more voids between primary particles in 104 

relatively larger aggregates (Momenimovahed and Olfert, 2015). The effective density of OC is in 105 

between those of EC and SIA, and varies with source. The effective density of combustion particles 106 

increases by filling the voids in the agglomerate particles with condensed semi-volatile materials, or by 107 
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restructuring agglomerates with hygroscopic SIA (Momenimovahed and Olfert, 2015;Zhang et al., 2008).  108 

   In this study, a combined HTDMA-APM system was used to investigate the variations of 109 

hygroscopicity and effective density of submicrometer aerosols during winter 2014 in urban Shanghai. In 110 

addition, cascade impactor samples were collected and temporal variations of particle composition were 111 

determined by a single particle mass spectrometry, which provided further insight into the hygroscopicity 112 

and density variations. The primary objectives of this study were to investigate the particle growth 113 

mechanisms and to identify the contribution of local emissions during the winter haze events. 114 

 115 

2. Experimental 116 

2.1. Sampling site 117 

The measurements of particle hygroscopicity and effective density were conducted from December 21, 118 

2014 to January 13, 2015 at the Department of Environmental Science and Engineering in the main 119 

campus of Fudan University (31.30°N, 121.5°E). It can be considered as a representative urban site for 120 

Shanghai. There are many dwelling quarters and commercial blocks in surrounding area. About 400 m 121 

away from the measurement site, there is the Middle Ring Line, one of the busiest elevated roads in the 122 

city.  123 

2.2 Measurements of air quality index and ground meteorological parameters 124 

 At a supersite about 100 m away from the Environmental Building, PM1.0 was monitored using a 125 
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Thermo Scientific™ 5030 SHARP monitor. Trace gas pollutants were monitored using Thermo 126 

ScientificTM i-series gas analyzers (43i for SO2, 49i for O3, 42i for NO/NO2/NOx), and meteorological 127 

data were monitored using an automatic meteorological station (Model CAWS600, Huayun Inc., China) 128 

(Yin et al., 2015). The datas of PM2.5, PM10, and CO were released by the Shanghai Environmental 129 

Monitoring Center. The height of the Planet Boundary Layer (PBL) was computed online using the NCEP 130 

Global Data Assimilation System (GDAS) model (http://ready.arl.noaa.gov/READYamet.php). 131 

2.3. HTDMA-APM system  132 

Particle size distribution, hygroscopic growth factor (GF), and effective density were measured using 133 

a custom-built HTDMA-APM system (Figure 1). The custom-built HTDMA (Hygroscopic Tandem 134 

Differential Mobility Analyzers) mainly consist of two long DMAs (3081L, TSI Inc.), a humidifier (PD-135 

50T-12MSS, Perma Pure Inc.) and a Condensation Particle Counter (CPC, Model 3771, TSI Inc.). A 136 

detailed description of the HTDMA is available in Ye et al. (2009). In this observation, particle number 137 

size distribution in the range of 14600 nm and hygroscopic growth at 83% RH for particles with dry 138 

diameters of 40, 100, 220, 300, 350, and 400 nm were determined by HTDMA in turn. The determination 139 

of effective density by DMA-APM was described previously (Yin et al., 2015;Pagels et al., 2009). Briefly, 140 

a combined system consisting of a compact Aerosol Particle Mass Analyzer (APM, Model 3601, 141 

Kanomax Inc.) and a CPC (Model 3775, TSI Inc.) was connected to the sample tubing through a 3-way 142 

electrical switch behind the upstream DMA (DMA1). The APM comprises two coaxial cylindrical 143 

http://ready.arl.noaa.gov/READYamet.php
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electrodes rotating at the same angular velocity. Charged aerosol particles of a certain diameter sized by 144 

DMA1 are axially fed into the annular gap between the electrodes and experienced an outward centrifugal 145 

force from the particle rotating and an inward electrostatic force from the high-voltage field between the 146 

electrodes. Particles pass through the APM and are sent to the CPC when the two forces are balanced. 147 

The mass of particles that pass through the APM is determined by the rotation rate and the applied voltage. 148 

Effective densities for dry diameters of 40, 100, 220, and 300 nm were determined by the method of 149 

DMA-APM in this study. The HTDMA-APM was operated alternatively in HTDMA mode and then 150 

DMA-APM mode, for every 40 min. 151 

Before the field observation, the HTDMA-APM was calibrated using 40450 nm NIST-Traceable PSL 152 

particles and ammonium sulfate. The measured HTDMA data were inversed with the TDMAinv algorithm 153 

to obtain the actual GF distribution. This is  because the raw data are only a skewed and smoothed 154 

integral transform of the actual growth factor probability density function (GF-PDF) (Gysel et al., 2009). 155 

The hygroscopicity parameter  was derived from the GF data after inversion with the TDMAinv algorithm 156 

according to the -Köhler theory (Petters and Kreidenweis, 2007). 157 

2.4. SPAMS  158 

A Single Particle Aerosol Mass Spectrometry (SPAMS, Hexin Analytical Instrument Co., Ltd., China) 159 

installed in the same room with the HTDMA-APM system was used to obtain the chemical and size 160 

information of individual particles in the range of 0.2-2 m. Detailed information on SPAMS is available 161 
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in Li et al. (2011). Briefly, ambient particles are drawn into a vacuum chamber through an aerodynamic 162 

focusing lens and accelerated to a size-dependent terminal velocity. Sized particles are desorbed and 163 

ionized by the pulsed desorption/ionization laser (Q-switched Nd: YAG, λ=266 nm) at the ion source 164 

region. Both positive and negative mass spectra for a single particle are recorded by a bipolar time-of-165 

flight spectrometer. The single particle information was imported into YAADA (version 2.11, 166 

www.yaada.org). Based on the similarities of the mass-to-charge ratio and peak intensity, particles were 167 

classified using the ART-2a method. 168 

2.5. Ion chromatography 169 

Cascade impactor aerosol samples for offline analysis were collected at the roof platform of the 170 

Environmental Building using a 10-stage MOUDI sampler (Micro-Orifice Uniform Deposit Impactor, 171 

Model 110-NR, MSP Corp., USA). Detailed description of the sampling, pretreatment, chemical analysis, 172 

and quality control of this system is available in Tao et al. (2016). Briefly, cascade impactor samples were 173 

collected every 24 h using the PALL7204 quartz filter as the collection substrate. Each filter was weighted 174 

with a BP211D electronic balance at 251C and 402%RH. The water extract of each sample was 175 

analyzed using an Ion Chromatograph (Metrohm 883 basic IC plus, Switzerland) equipped with a third-176 

party column heater (CT-100, Agela Corp., China). Seven anions (F-, Cl-, NO2
-, Br-, NO3

-, SO4
2- and PO4

3-) 177 

were resolved using a Metrosep A Supp 5-250/4.0 column at 35C with an eluent of 3.2 mmol L-1 Na2CO3 178 

+ 1.0 mmol L-1 NaHCO3. Six cations (Li+, Na+, NH4
+, K+, Ca2+, and Mg2+) were separated by a Metrosep 179 
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C4-250/4.0 column at 30C with an eluent of 1.7 mmol L-1 HNO3 + 0.7 mmol L-1 2,6-pyridine 180 

dicarboxylic acid. 181 

 182 

3. Results and discussion  183 

3.1. Periodic cycle of PM episodes during the observation period 184 

Figure 2 shows the temporal variations of PM mass loading during the winter observation (December 185 

21, 2014 to January 13, 2015). The official data of PM2.5 and PM10 were blank on some clean days. 186 

Meteorologically, our measurement was deployed in a typical winter period. The average concentrations 187 

of PM1.0, PM2.5, and PM10 were 57  37, 87  67, and 129 78 g m-3, respectively. About 62% of hourly 188 

averaged PM2.5 concentrations exceeded 75 g m-3 of the Chinese Grade II guideline (GB 3095-2012), 189 

indicating heavy particle pollution in Shanghai during wintertime. The PM episodes exhibited a clear 190 

periodic cycle of ~5 days. A similar feature was previously observed in Beijing (Guo et al., 2014). At the 191 

beginning of each cycle, the PM1.0 level was below 35 g m-3. Generally, the difference between the 192 

concentrations of PM1.0 and PM2.5 during clean days was less significant than that in haze periods. 193 

Occasionally the measured PM2.5 concentrations were larger than those of PM10, possibly due to system 194 

error. However, the particle mass concentration began to increase in the next few days, with PM1.0 and 195 

PM2.5 peaking at over 100 and 200 g m-3, respectively. During the end of each PM episode, the change 196 

in weather conditions played a key role in the decrease of particle concentration. As shown in Figure S1, 197 
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the prevailing winds on haze days were from the northwest. The prevailing winds during two clean periods 198 

(December 25-27 and January 12-14) were northeasterly, bringing clean air mass from East China Sea. 199 

Two cold fronts from the north swept Shanghai on December 31 and January 6, bringing gale and lower 200 

temperature which favored the dispersion of atmospheric pollutants. 201 

3.2 Contributions of secondary inorganic aerosols to PM1.0 mass loading 202 

Figure 3 illustrates the daily concentrations of sulfate, nitrate, and ammonium as a function of PM1.0 203 

mass loading. In general, the sum of concentrations of sulfate, nitrate, and ammonium (SNA) increased 204 

linearly as the PM1.0 mass loading increased. It is noticeable that the SNA/PM1.0 ratio slightly fluctuated 205 

around 0.28, regardless of the pollution level. Because soil dust and sea salt made a negligible contribution 206 

to the fine particle mass concentration in this study, the almost constant ratio of SNA/PM1.0 indicates that 207 

SNA and carbonaceous aerosols (including soot and organic matter) synchronously increased during the 208 

haze events. As the PM1.0 concentration increased, the concentration of nitrate increased more rapidly 209 

than sulfate so that it became the most abundant ionic species at PM1.0 > 40 g m-3. This finding indicates 210 

that NOx contributed more to haze formation in Shanghai compared to SO2. Generally, the visibility 211 

decreased with the increase in PM concentration, indicating photochemical activity began to weaken as 212 

the development of haze events. The large increase in nitrate concentration may be attributable to 213 

heterogeneous reaction on the preexisting particles. Nitrate formation is highly dependent on the surface 214 

area of preexisting particles and is favored under NH3-rich conditions (Chu et al., 2016). In contrast, Han 215 
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et al. (2016) reported that the mass ratio of nitrate to sulfate decreased with the increase of PM2.5 level 216 

and that the sources of sulfate contributed more to the haze formation in Beijing than mobile sources. 217 

This finding suggests that the haze formation mechanism in Shanghai is likely different from that in 218 

Beijing. VOCs and NOx are exclusively from local emissions whereas regional transport is a big source 219 

of SO2 under stagnant atmosphere, due to different atmospheric lifetimes among SO2, NOx, and VOCs 220 

(Guo et al., 2014). Considering the relatively smaller contribution of sulfate, our results reveal that the 221 

accumulation and secondary transformation of local emissions likely played a dominant role in this haze 222 

formation. 223 

3.3 Aerosol hygroscopicity and effective density during the observation period 224 

Figure 4a displays a box chart of the mean hygroscopicity of each hygroscopic growth factor 225 

distribution for different sizes. Considering all of the growth factor distributions collectively, the 226 

hygroscopicity parameter  increased with increase of the dry diameter, with a mean  of 0.161 at 40 nm 227 

and 0.338 at 300 nm. Assuming a two-component system of a model salt (ammonium sulfate, m = 0.53) 228 

and an insoluble species ( = 0), the volume fraction of hygroscopic species () can be obtained based on 229 

the Zdanovsldi-Stokes-Robinson (ZSR) mixing rule. The average  was 0.3 for 40 nm particles, 230 

suggesting that the primary particles or initial growth of freshly generated particles were dominated by 231 

non-hygroscopic species. In contrast, the 300 nm particles were extremely aged, with more-hygroscopic 232 

species.  233 
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Generally, HTDMAs measure dry particles smaller than 300 nm due to technical limitations, and it is 234 

common that particle hygroscopicity increases with the increase of particle size (Liu et al., 235 

2014;Swietlicki et al., 2008). The increase of particle hygroscopicity with particle size was attributed to 236 

the addition of more-hygroscopic SNA (Swietlicki et al., 2008;Ye et al., 2010). The very few 237 

measurements for dry particles larger than 300 nm showed different size dependencies. Gasparini et al. 238 

(2006) reported that particle hygroscopicity first increased and then decreased with the increase of particle 239 

size, peaking at the diameter of 300 nm. In contrast, Wu et al. (2016c) reported that particle hygroscopicity 240 

increased with particle diameter in the range of 35-350 nm. In this study, the determination size range 241 

was extended to 400 nm and the mean s of 300, 350, and 400 nm particles were nearly equal. We attribute 242 

the different size dependencies of hygroscopicity among various measurement sites to the total emissions 243 

of SO2 and NOx, gas precursors of hygroscopic sulfate and nitrate. It is noticeable that the 5th percentile 244 

hygroscopicity decreased for dry diameter larger than 300 nm, likely due to the presence of the smallest 245 

dust particles (Gasparini et al., 2006). The variability of hygroscopicity parameter  was much greater for 246 

40 nm particles. The particle population with  < 0.1 was attributed to fresh traffic particles (Ye et al., 247 

2013). The considerable percentile of  < 0.1 indicates that the 40 nm particle population was sometimes 248 

dominated by near-hydrophobic particles. 249 

Figure 4b displays a box chart of median effective density for different particle sizes. The median 250 

effective density varied in the narrow range of eff = 1.351.41 g cm-3 for 40300 nm particle population. 251 
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The size dependency of particle effective density varied in the literature. Hu et al. (2012) and Yin et al. 252 

(2015) reported that effective density of the particles increased as particle size increased while a opposite 253 

trend was observed by Geller et al. (2006) and Spencer et al. (2007). The different trends were attributable 254 

to the variable fraction of lower density mode particles (eff < 1.0 g cm-3). The densities of the secondarily 255 

produced (NH4)2SO4, NH4HSO4, and NH4NO3 are ~1.75 g cm-3. The effective density of organic aerosols 256 

varies mostly in the range of 1.2-1.6 g cm-3, depending on their source origins (Malloy et al., 2009;Turpin 257 

and Lim, 2001;Dinar et al., 2006). The lower density particles with eff < 1.0 g cm-3 were attributable to 258 

fresh or partially aged traffic-related particles, because the number fraction of the lower density group in 259 

urban area was found to be consistent with the concentration of NO (indicator of traffic) (Levy et al., 260 

2013;Rissler et al., 2014). Although the dominant accumulation mode particles have an effective density 261 

greater than Aitken mode ones, the presence of a lower effective density group associated with traffic 262 

emissions might decrease the mean effective density to a value lower than that of Aitken mode particles 263 

(Levy et al., 2014). Yin et al. (2015) reported that effective density distributions were dominated by a 264 

single peak in the previous observation. In contrast, a lower density peak below1.0 g cm-3 was often 265 

present in this observation, decreasing the mean effective density of externally mixed aerosols.  266 

3.4 Characteristics of a representative PM episode 267 

As shown in Figure 2, the PM episode from January 7 to 12 was a representative case of severe haze 268 

formation and elimination processes. It can be divided into clean (January 7), transition (January 8), haze 269 
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(January 911), and post-haze (January 12) periods. During the transition from the clean period to haze 270 

period (January 7 to 8), both PM1.0 and PM2.5 concentrations increased slightly, with an average 271 

PM1.0/PM2.5 ratio of 0.65. A sharp increase in PM2.5 (of 125 g m-3) was observed from 6:00 to 12:00 272 

local time on the morning of January 9. During the haze period, the concentration of PM2.5 exceeded 115 273 

µg m-3 (medially polluted level, HJ633-2012) for 63 h. On January 11, the hourly PM2.5 concentration 274 

exceeded 250 µg m-3, corresponding to the severely polluted level.  275 

Figure 5 displays the temporal profile of particle size distribution, along with the measured PM1.0 276 

concentration during the representative PM episode. The calculated PM concentrations (PMcal) were 277 

obtained based on the particle size distribution and average effective density of 1.39 g m-3 in the range of 278 

14600 nm measured in this study. It is noticeable that the temporal trends in mass concentrations of 279 

PMcal and PM1.0 are highly consistent. In contrast to the fact that particle size distribution was dominated 280 

by nanoparticles during the clean period, the burst of Aitken mode particles and subsequent continuous 281 

growth to approximately 200 nm in diameter was observed three times during the haze period, indicating 282 

that the presence of numerous larger particles is likely responsible for the severe particle pollution (Guo 283 

et al., 2014). The importance of larger particles in haze formation is also illustrated by the contour plot of 284 

the particle volume size distribution. The difference of particle number concentration between transition 285 

and haze periods was less significant, whereas the volume concentration increased considerably during 286 

the haze period. This feature clearly demonstrates that the haze formation was closely correlated with 287 
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particle growth and elevated number of larger particles.  288 

Interestingly, the particle mass concentration was sensitive to variations of wind speed and planetary 289 

boundary layer (PBL). During the transition and haze periods, the wind speed decreased considerably 290 

with insignificant change in prevailing wind (Figure S1). This finding indicates that outside transportation 291 

became less and less significant. It is noteworthy that the temporal evolution of the particle mass 292 

concentration was inversely correlated with the PBL height. The decreasing PBL provided a stagnant 293 

atmosphere that favored the accumulation of local emissions. This finding reveals that the severe haze 294 

pollution was likely triggered by the adverse meteorological conditions. The impact of decreasing PBL 295 

height on haze formation can also be evidenced by the variations of trace gaseous species (Figure S2). 296 

During the PM episode, the concentrations of NO2, SO2, and CO displayed variation trends similar to that 297 

of the particle concentration. The fluctuations of trace gas concentrations were caused by primary 298 

emission and secondary processes. Noticeably, the concentration of NO increased dramatically in rush 299 

hours during the haze period, whereas it fluctuated slightly during the clean period; indicating that local 300 

emissions were easily accumulated under stagnant atmosphere. In addition, the maximum concentration 301 

of O3 remained considerably higher during daytime, whereas it decreased significantly at night. The most 302 

plausible explanation is that O3 was consumed rapidly by the accumulated trace gases, such as NOx, and 303 

VOCs.  304 

3.5 Variations of hygroscopicity and effective density during the PM episode 305 
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Figure 6 shows the averaged hygroscopicity and effective density for different pollution periods of the 306 

PM episode. Regardless of the pollution period, the nearly-hydrophobic particles were externally mixed 307 

with some hygroscopic particles. During the clean period, the more-hygroscopic particles dominated the 308 

40 nm particle population, indicating that the near-hydrophobic primary particles were rapidly dispersed 309 

due to atmospheric dilution. The number fraction of the near-hydrophobic group for different sizes 310 

increased as the PM episode developed, indicative of the increasing accumulation of local emissions. 311 

Notably, the increase of the near-hydrophobic particles with the evolution of the PM episode become less 312 

significant as particle size increased, indicating that primary emission exerted a more significant impact 313 

on smaller particles than on larger ones. The median diameter of nascent traffic particles from various 314 

gasoline sources ranged between 55 and 73 nm with an average of 65 nm (Momenimovahed and Olfert, 315 

2015). Therefore, the number fraction of the near-hydrophobic particles larger than 200 nm is not sensitive 316 

to the accumulation of traffic emissions.  317 

Interestingly, the variations of particle effective density for different sizes are in good agreement with 318 

the hygroscopicity. The dominant peak of effective density distribution appeared at eff = ~1.5 g cm-3 for 319 

40 nm particles in the clean period, indicating that they are highly aged with hygroscopic inorganic salts 320 

(Yin et al., 2015). As the episode developed, the mean density shifted to lower values, indicating the 321 

increasing contribution of lower density carbonaceous materials. The averaged density distribution was 322 

broadened as the episode developed, suggesting that it could be deconvolved into two groups and that the 323 
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number fraction of the low-density group increased. This finding revealed that the lower density particles 324 

are less hygroscopic whereas the larger density group corresponds to the more-hygroscopic one. In 325 

addition, the variations of hygroscopicity and effective density coincided with the evolution of PBL height, 326 

indicating that the increasing accumulation of local emissions due to adverse atmospheric conditions is 327 

likely responsible for the enhancement of those near-hydrophobic and lower density particles. 328 

Figure 7 displays the temporal profiles for contributions of EC (including bare EC and OC-coated EC), 329 

OC, sulfate, and nitrate determined by SPAMS. Obviously, the relative contribution of nitrate increased 330 

as the episode developed. In contrast, the relative contribution of sulfate displayed an opposite trend. This 331 

feature is comparable with the aforementioned results of SNA, thus further highlighting the important 332 

role of nitrate in haze formation in Shanghai. The number fraction of EC particles generally increased 333 

during the haze period, peaking at midnight on January 9 and 10. It should be pointed out that the 334 

measured number fraction possibly underestimated the contribution of EC particles because the dominant 335 

size range of fresh traffic particles is below the detection limit of SPAMS (0.22.0 m). This finding 336 

provides good support for the increase of near-hydrophobic and lower density particles as the episode 337 

developed. Niu et al. (2016) reported that the number ratio of secondary particles to soot in haze samples 338 

was higher than that collected in the clean days in Beijing. Our finding is comparable to their results. In 339 

contrast, the number fraction of pure OC decreased during the pollution event. The possible explanation 340 

is that the condensation of organic matter was favored on the large amount of preexisting EC particles, or 341 
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that photo-oxidation of VOCs was minimized due to lower solar radiation. 342 

3.6 Evolutions of hygroscopicity and effective density with particle growth  343 

  As shown in Figure 5, three “banana-shaped” evolutions of the particle size distribution were identified 344 

in the representative PM episode. The banana-type contour plot of particle size distributions is a typical 345 

characteristics of new particle formation (NPF) events and traditionally regarded as one of the most 346 

important criteria for identifying NPF (Xiao et al., 2015;Dal Maso et al., 2005;Levy et al., 2013;Zhang et 347 

al., 2012). Atmospheric NPF is often defined by the burst of nucleation mode particles and subsequent 348 

growth of the nuclei to larger particles (Zhang et al., 2012;Kulmala et al., 2012). Gas-phase sulfuric acid 349 

produced via oxidation of SO2 by OH radical plays a dominant role in the NPF events. NPF is typically 350 

completely suppressed when preexisting particles is abundant, because gas-phase sulfuric acid is rapidly 351 

lost to the surfaces of preexisting aerosols (Zhang et al., 2012). In addition to sulfuric acid, low-volatility 352 

organic species, and interaction between sulfate and organics are important for NPF (Zhang et al., 353 

2004;Zhao et al., 2009). However, the possibility of NPF can be ignored in this study due to the absence 354 

of the burst of nucleation mode particles and the high concentration of PM1.0. The burst of Aitken mode 355 

particles in the current study may be attributable to rapid accumulation of traffic emissions during rush 356 

hours under stagnant atmospheric conditions. The ‘‘banana-shaped’’ particle growth in the time evolution 357 

of particle size distribution from the Aitken mode size range to accumulation mode size range was 358 

primarily due to coagulation and condensation processes. This feature provided an excellent opportunity 359 
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to reveal the chemical mechanism of particle growth during the PM episode.  360 

The first “banana-shaped’’ evolution of the particle size distribution occurred from approximately 361 

05:00 to 15:00 on January 9, with increase of the particle number concentration (Ntotal) from 1.7104 to 362 

3.4104 cm-3 followed by a decrease trend until 17:00 (Period 1). The second ‘‘banana-shaped’’ evolution 363 

occurred from approximately 18:00 on January 9 to approximately 12:00 on January 10 (Period 2). The 364 

Ntotal increased from 2.1104 to 4.2104 cm-3 within 3 h, followed by gradual decrease of Ntotal in contrast 365 

to a continuous increase of the particle mass concentration. During the growth process, the mode diameter 366 

of the particle population increased from below 40 nm to approximately 200 nm. The third “banana-367 

shaped” evolution began in the evening rush hours on January 10, with the continuous increase of PM 368 

mass concentration for 12 h (Period 3). The latter two banana-shaped evolutions lasted long enough to 369 

tracer the changes in hygroscopicity and effective density due to particle growth.    370 

Figure 8 illustrates the evolution of particle hygroscopicity and effective density during periods 2 and 371 

3. During the initial stage, the measured GF and effective density distributions were both bimodal, with 372 

a dominant peak at GF = ~1.0 and eff = ~1.0 g cm-3, respectively. In a previous study, we found that the 373 

number fraction of near-hydrophobic particles varied with the traffic exhaust (Ye et al., 2013). Moreover, 374 

laboratory studies showed that the effective density of 50 nm vehicle particles was approximately 1.0 g 375 

cm-3 (Olfert et al., 2007;Park et al., 2003;Momenimovahed and Olfert, 2015). These findings indicate that 376 

the initial burst of Aitken mode particles is attributable to the presence of enhanced traffic-related 377 
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emissions. In contrast, the number fraction and GF of the more-hygroscopic group increased with the 378 

growing particle size, indicating the addition of hygroscopic inorganic species. The variation of the 379 

effective density of the particles was similar to that of the hygroscopicity, indicating the increase of high 380 

density materials. In general, inorganic sulfate and nitrate are more hygroscopic and denser than soot 381 

particles or organic aerosols (Yin et al., 2015). These findings suggest that secondary sulfate and nitrate 382 

increased with the growing particle size, indicating the importance of the conversion of SO2 and NOx in 383 

particle growth. This conclusion is supported by the largest SNA concentration in PM1.0 during the PM 384 

episode (31.3 g m-3 on January 10 and 23.8 g m-3 on January 11). Considering that the concentration 385 

of nitrate was much higher than that of sulfate during the haze event, the increase of hygroscopicity was 386 

dominated by the addition of nitrate. 387 

 388 

4. Conclusions 389 

Particle size distribution, size-resolved hygroscopic growth and effective density of sub-micrometer 390 

aerosols were determined using a HTDMA-APM system, along with measurements of cascade impactor 391 

samples and single particle mass spectrometry in urban Shanghai during winter 2014. 392 

The PM episode exhibited a periodic cycle of ~5 days. The average concentration of PM2.5 was 87  393 

67 g m-3, with approximately 62% of hourly PM2.5 concentrations exceeding the Chinese Grade II 394 

guideline. Both secondary inorganic salts and carbonaceous aerosols contributed substantially to haze 395 
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formation, because the mass ratio of SNA/PM1.0 fluctuated slightly around 0.28 during the observation 396 

period. Nitrate became the most abundant ionic species at PM1.0 >40 g m-3, indicating that the sources 397 

of nitrate contributed more to haze formation in Shanghai than did SO2. 398 

The severe haze pollution was likely triggered by the adverse meteorological conditions, which favored 399 

the accumulation of local emissions and subsequent rapid growth to larger particles. As the PM episode 400 

developed, the number fraction of nearly-hydrophobic particles of different size increased, consistent with 401 

decrease of the mean effective density. Both hygroscopicity and effective density of the particles were 402 

found to increase considerably with growing particle size, indicating that secondary aerosol formation 403 

was one of the most important contributors to particle growth. Our results suggest that the accumulation 404 

of local emissions under adverse meteorological conditions and subsequent rapid particle growth by 405 

secondary processes are primarily responsible for the haze pollution in Shanghai during wintertime. 406 
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Figure and Table Captions 647 

Figure 1 Schematic diagram of HTDMA-APM system. 648 

Figure 2. Temporal evolutions of PM1.0, PM2.5, and PM10 concentrations during the winter observation. 649 

Figure 3 Variations of sulfate, nitrate, and ammonium concentrations as a function of PM1.0 mass loading. 650 

Figure 4 Box plots showing hygroscopicity parameter and effective density at each dry diameter over the 651 

whole observation. The whiskers represent the 5th and 95th percentile, the two borders of box display the 652 

25th and 75th percentile, and the band in each box denotes the median. 653 

Figure 5 Temporal evolutions of particle number size distribution (A), volume size distribution (B), total 654 

number concentration and total volume concentration (C), and PM1.0 concentration and calculated PM 655 

(less than 600 nm in mobility diameter) concentration during the representative PM episode from 7 to 12 656 

January. 657 

Figure 6 Evolutions of particle hygroscopic growth factor and effective density for different sizes during 658 

the representative PM episode. 659 

Figure 7 Temporal evolutions of chemical compositions determined by SPAMS during the representative 660 

PM episode. 661 

Figure 8 Particle hygroscopicity and density during the two particle growth processes 662 

 663 

  664 



32 

 

 665 

 666 

  667 

 668 

 669 

 670 

Figure 1 Schematic diagram of HTDMA-APM system.  671 



33 

 

 672 

 673 

Figure 2. Temporal evolutions of PM1.0, PM2.5, and PM10 concentrations during the winter observation. 674 
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Figure 3 Variations of sulfate, nitrate, and ammonium concentrations as a function of PM1.0 mass loading 680 
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Figure 4 Box plots showing hygroscopicity parameter and effective density at each dry diameter over the 684 

whole observation. The whiskers represent the 5th and 95th percentile, the two borders of box display the 685 

25th and 75th percentile, and the band in each box denotes the median. 686 
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 690 

Figure 5 Temporal evolutions of particle number size distribution (A), volume size distribution (B), total 691 

number concentration and total volume concentration (C), and PM1.0 concentration and calculated PM 692 

(less than 600 nm in mobility diameter) concentration during the representative PM episode from 7 to 12 693 

January. 694 
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Figure 6  Evolutions of particle hygroscopic growth factor and effective density for different sizes during 700 

the representative PM episode.  701 
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 705 

Figure 7 Temporal evolutions of chemical compositions determined by SPAMS during the representative 706 

PM episode.  707 
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 710 

Figure 8 Particle hygroscopicity and density during the two particle growth processes. 711 


