Articles | Volume 16, issue 2
https://doi.org/10.5194/acp-16-759-2016
https://doi.org/10.5194/acp-16-759-2016
Research article
 | 
22 Jan 2016
Research article |  | 22 Jan 2016

The impact of shipping emissions on air pollution in the greater North Sea region – Part 2: Scenarios for 2030

V. Matthias, A. Aulinger, A. Backes, J. Bieser, B. Geyer, M. Quante, and M. Zeretzke

Related authors

POPE: a Global Gridded Emission Inventory for PFAS 1950–2020
Pascal Simon, Martin Otto Paul Ramacher, Stefan Hagemann, Volker Matthias, Hanna Joerss, and Johannes Bieser
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-236,https://doi.org/10.5194/essd-2024-236, 2024
Preprint under review for ESSD
Short summary
A multimodel evaluation of the potential impact of shipping on particle species in the Mediterranean Sea
Lea Fink, Matthias Karl, Volker Matthias, Sonia Oppo, Richard Kranenburg, Jeroen Kuenen, Sara Jutterström, Jana Moldanova, Elisa Majamäki, and Jukka-Pekka Jalkanen
Atmos. Chem. Phys., 23, 10163–10189, https://doi.org/10.5194/acp-23-10163-2023,https://doi.org/10.5194/acp-23-10163-2023, 2023
Short summary
Potential impact of shipping on air pollution in the Mediterranean region – a multimodel evaluation: comparison of photooxidants NO2 and O3
Lea Fink, Matthias Karl, Volker Matthias, Sonia Oppo, Richard Kranenburg, Jeroen Kuenen, Jana Moldanova, Sara Jutterström, Jukka-Pekka Jalkanen, and Elisa Majamäki
Atmos. Chem. Phys., 23, 1825–1862, https://doi.org/10.5194/acp-23-1825-2023,https://doi.org/10.5194/acp-23-1825-2023, 2023
Short summary
Effects of vertical ship exhaust plume distributions on urban pollutant concentration – a sensitivity study with MITRAS v2.0 and EPISODE-CityChem v1.4
Ronny Badeke, Volker Matthias, Matthias Karl, and David Grawe
Geosci. Model Dev., 15, 4077–4103, https://doi.org/10.5194/gmd-15-4077-2022,https://doi.org/10.5194/gmd-15-4077-2022, 2022
Short summary
The impact of nitrogen and sulfur emissions from shipping on the exceedance of critical loads in the Baltic Sea region
Sara Jutterström, Filip Moldan, Jana Moldanová, Matthias Karl, Volker Matthias, and Maximilian Posch
Atmos. Chem. Phys., 21, 15827–15845, https://doi.org/10.5194/acp-21-15827-2021,https://doi.org/10.5194/acp-21-15827-2021, 2021
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Technical note: A comparative study of chemistry schemes for volcanic sulfur dioxide in Lagrangian transport simulations – a case study of the 2019 Raikoke eruption
Mingzhao Liu, Lars Hoffmann, Jens-Uwe Grooß, Zhongyin Cai, Sabine Grießbach, and Yi Heng
Atmos. Chem. Phys., 25, 4403–4418, https://doi.org/10.5194/acp-25-4403-2025,https://doi.org/10.5194/acp-25-4403-2025, 2025
Short summary
Revisiting the high tropospheric ozone over southern Africa: role of biomass burning and anthropogenic emissions
Yufen Wang, Ke Li, Xi Chen, Zhenjiang Yang, Minglong Tang, Pascoal M. D. Campos, Yang Yang, Xu Yue, and Hong Liao
Atmos. Chem. Phys., 25, 4455–4475, https://doi.org/10.5194/acp-25-4455-2025,https://doi.org/10.5194/acp-25-4455-2025, 2025
Short summary
Monoterpene oxidation pathways initiated by acyl peroxy radical addition
Dominika Pasik, Thomas Golin Almeida, Emelda Ahongshangbam, Siddharth Iyer, and Nanna Myllys
Atmos. Chem. Phys., 25, 4313–4331, https://doi.org/10.5194/acp-25-4313-2025,https://doi.org/10.5194/acp-25-4313-2025, 2025
Short summary
Local and transboundary contributions to NOy loadings across East Asia using CMAQ-ISAM and a GEMS-informed emission inventory during the winter–spring transition
Jincheol Park, Yunsoo Choi, and Sagun Kayastha
Atmos. Chem. Phys., 25, 4291–4311, https://doi.org/10.5194/acp-25-4291-2025,https://doi.org/10.5194/acp-25-4291-2025, 2025
Short summary
Estimating the variability in NOx emissions from Wuhan with TROPOMI NO2 data during 2018 to 2023
Qianqian Zhang, K. Folkert Boersma, Chiel van der Laan, Alba Mols, Bin Zhao, Shengyue Li, and Yuepeng Pan
Atmos. Chem. Phys., 25, 3313–3326, https://doi.org/10.5194/acp-25-3313-2025,https://doi.org/10.5194/acp-25-3313-2025, 2025
Short summary

Cited articles

Aulinger, A., Matthias, V., Zeretzke, M., Bieser, J., Quante, M., and Backes, A.: The impact of shipping emissions on air pollution in the greater North Sea region – Part 1: Current emissions and concentrations, Atmos. Chem. Phys., 16, 739–758, https://doi.org/10.5194/acp-16-739-2016, 2016.
Bieser, J., Aulinger, A., Matthias, V., Quante, M., and Builtjes, P.: SMOKE for Europe – adaptation, modification and evaluation of a comprehensive emission model for Europe, Geosci. Model Dev., 4, 47–68, https://doi.org/10.5194/gmd-4-47-2011, 2011a.
Bieser, J., Aulinger, A., Matthias, V., Quante, M., and Denier van der Gon, H. A. C.: Vertical emission profiles for Europe based on plume rise calculations, Environ. Pollut., 159, 2935–2946, https://doi.org/10.1016/j.envpol.2011.04.030, 2011b.
Byun, D. and Ching, J.: Science Algorithms of the EPA Models-3 Community Multiscale Air Quality Modeling System, Epa/600/r-99/030, US Environmental Protection Agency, Office of Research and Development, Washington DC, 1999.
Download
Short summary
Scenarios for future shipping emissions in the North Sea were developed. Compared to today, the contribution of shipping to the nitrogen dioxide and ozone concentrations will increase due to the expected enhanced traffic by more than 20 % and 5 %, respectively, by 2030 if no regulation for further emission reductions is implemented. PM2.5 will decrease slightly because the sulfur content in ship fuels will be reduced.
Share
Altmetrics
Final-revised paper
Preprint