Articles | Volume 16, issue 9
Atmos. Chem. Phys., 16, 5745–5761, 2016
https://doi.org/10.5194/acp-16-5745-2016
Atmos. Chem. Phys., 16, 5745–5761, 2016
https://doi.org/10.5194/acp-16-5745-2016

Research article 11 May 2016

Research article | 11 May 2016

Air–sea fluxes of CO2 and CH4 from the Penlee Point Atmospheric Observatory on the south-west coast of the UK

Mingxi Yang et al.

Related authors

Sea ice concentration impacts dissolved organic gases in the Canadian Arctic
Charel Wohl, Anna E. Jones, William T. Sturges, Philip D. Nightingale, Brent Else, Brian J. Butterworth, and Mingxi Yang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-252,https://doi.org/10.5194/bg-2021-252, 2021
Preprint under review for BG
Short summary
Opportunistic Experiments to Constrain Aerosol Effective Radiative Forcing
Matthew Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel McCoy, Daniel McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, and Tianle Yuan
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-559,https://doi.org/10.5194/acp-2021-559, 2021
Revised manuscript under review for ACP
Short summary
Air–sea exchange of acetone, acetaldehyde, DMS and isoprene at a UK coastal site
Daniel P. Phillips, Frances E. Hopkins, Thomas G. Bell, Peter S. Liss, Philip D. Nightingale, Claire E. Reeves, Charel Wohl, and Mingxi Yang
Atmos. Chem. Phys., 21, 10111–10132, https://doi.org/10.5194/acp-21-10111-2021,https://doi.org/10.5194/acp-21-10111-2021, 2021
Short summary
Uncertainties in eddy covariance air–sea CO2 flux measurements and implications for gas transfer velocity parameterisations
Yuanxu Dong, Mingxi Yang, Dorothee C. E. Bakker, Vassilis Kitidis, and Thomas G. Bell
Atmos. Chem. Phys., 21, 8089–8110, https://doi.org/10.5194/acp-21-8089-2021,https://doi.org/10.5194/acp-21-8089-2021, 2021
Short summary
Ozone deposition to a coastal sea: comparison of eddy covariance observations with reactive air–sea exchange models
David C. Loades, Mingxi Yang, Thomas G. Bell, Adam R. Vaughan, Ryan J. Pound, Stefan Metzger, James D. Lee, and Lucy J. Carpenter
Atmos. Meas. Tech., 13, 6915–6931, https://doi.org/10.5194/amt-13-6915-2020,https://doi.org/10.5194/amt-13-6915-2020, 2020
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Comment on “Isotopic evidence for dominant secondary production of HONO in near-ground wildfire plumes” by Chai et al. (2021)
James M. Roberts
Atmos. Chem. Phys., 21, 16793–16795, https://doi.org/10.5194/acp-21-16793-2021,https://doi.org/10.5194/acp-21-16793-2021, 2021
Short summary
Measurement report: Regional characteristics of seasonal and long-term variations in greenhouse gases at Nainital, India, and Comilla, Bangladesh
Shohei Nomura, Manish Naja, M. Kawser Ahmed, Hitoshi Mukai, Yukio Terao, Toshinobu Machida, Motoki Sasakawa, and Prabir K. Patra
Atmos. Chem. Phys., 21, 16427–16452, https://doi.org/10.5194/acp-21-16427-2021,https://doi.org/10.5194/acp-21-16427-2021, 2021
Short summary
Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data
Zachary C. J. Decker, Michael A. Robinson, Kelley C. Barsanti, Ilann Bourgeois, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Frank M. Flocke, Alessandro Franchin, Carley D. Fredrickson, Georgios I. Gkatzelis, Samuel R. Hall, Hannah Halliday, Christopher D. Holmes, L. Gregory Huey, Young Ro Lee, Jakob Lindaas, Ann M. Middlebrook, Denise D. Montzka, Richard Moore, J. Andrew Neuman, John B. Nowak, Brett B. Palm, Jeff Peischl, Felix Piel, Pamela S. Rickly, Andrew W. Rollins, Thomas B. Ryerson, Rebecca H. Schwantes, Kanako Sekimoto, Lee Thornhill, Joel A. Thornton, Geoffrey S. Tyndall, Kirk Ullmann, Paul Van Rooy, Patrick R. Veres, Carsten Warneke, Rebecca A. Washenfelder, Andrew J. Weinheimer, Elizabeth Wiggins, Edward Winstead, Armin Wisthaler, Caroline Womack, and Steven S. Brown
Atmos. Chem. Phys., 21, 16293–16317, https://doi.org/10.5194/acp-21-16293-2021,https://doi.org/10.5194/acp-21-16293-2021, 2021
Short summary
The effects of the COVID-19 lockdowns on the composition of the troposphere as seen by In-service Aircraft for a Global Observing System (IAGOS) at Frankfurt
Hannah Clark, Yasmine Bennouna, Maria Tsivlidou, Pawel Wolff, Bastien Sauvage, Brice Barret, Eric Le Flochmoën, Romain Blot, Damien Boulanger, Jean-Marc Cousin, Philippe Nédélec, Andreas Petzold, and Valérie Thouret
Atmos. Chem. Phys., 21, 16237–16256, https://doi.org/10.5194/acp-21-16237-2021,https://doi.org/10.5194/acp-21-16237-2021, 2021
Short summary
Winter ClNO2 formation in the region of fresh anthropogenic emissions: seasonal variability and insights into daytime peaks in northern China
Men Xia, Xiang Peng, Weihao Wang, Chuan Yu, Zhe Wang, Yee Jun Tham, Jianmin Chen, Hui Chen, Yujing Mu, Chenglong Zhang, Pengfei Liu, Likun Xue, Xinfeng Wang, Jian Gao, Hong Li, and Tao Wang
Atmos. Chem. Phys., 21, 15985–16000, https://doi.org/10.5194/acp-21-15985-2021,https://doi.org/10.5194/acp-21-15985-2021, 2021
Short summary

Cited articles

Bange, H. W.: Nitrous oxide and methane in European coastal waters, Estuar. Coast. Shelf Sc., 70, 361–374, 2006.
Bange, H. W., Bartell, U. H., Rapsomanikis, S., and Andreae, M. O.: Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane, Global Biogeochem. Cy., 8, 465–480, 1994.
Bates, T. S., Kelly, K. C., Johnson, J. E., and Gammon, R. H.: A reevaluation of the open ocean source of methane to the atmosphere, J. Geophys. Res., 101, 6953–6961, 1996.
Bell, T. G., De Bruyn, W., Miller, S. D., Ward, B., Christensen, K. H., and Saltzman, E. S.: Air–sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed, Atmos. Chem. Phys., 13, 11073–11087, https://doi.org/10.5194/acp-13-11073-2013, 2013.
Blomquist, B., Fairall, C. W., Huebert, B. J., Kieber, D., and Westby G.: DMS sea–air transfer velocity: Direct measurements by eddy covariance and parameterization based on the NOAA/COARE gas transfer model, Geophys. Res. Lett., 33, L07601, https://doi.org/10.1029/2006GL025735, 2006.
Download
Short summary
Coastal seas are sources of methane in the atmosphere and can fluctuate from emitting to absorbing carbon dioxide. Direct air–sea transport measurements of these two greenhouse gases in near shore regions remain scarce. From a recently established coastal atmospheric station on the south-west coast of the UK, we observed that the oceanic absorption of carbon dioxide peaked during the phytoplankton bloom, while methane emission varied with the tidal cycle, likely due to an estuary influence.
Altmetrics
Final-revised paper
Preprint