Articles | Volume 16, issue 6
https://doi.org/10.5194/acp-16-4101-2016
https://doi.org/10.5194/acp-16-4101-2016
Research article
 | 
30 Mar 2016
Research article |  | 30 Mar 2016

Hygroscopic behavior of multicomponent organic aerosols and their internal mixtures with ammonium sulfate

Bo Jing, Shengrui Tong, Qifan Liu, Kun Li, Weigang Wang, Yunhong Zhang, and Maofa Ge

Related authors

Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids
Bo Jing, Zhen Wang, Fang Tan, Yucong Guo, Shengrui Tong, Weigang Wang, Yunhong Zhang, and Maofa Ge
Atmos. Chem. Phys., 18, 5115–5127, https://doi.org/10.5194/acp-18-5115-2018,https://doi.org/10.5194/acp-18-5115-2018, 2018
Short summary
Hygroscopic behavior and chemical composition evolution of internally mixed aerosols composed of oxalic acid and ammonium sulfate
Xiaowei Wang, Bo Jing, Fang Tan, Jiabi Ma, Yunhong Zhang, and Maofa Ge
Atmos. Chem. Phys., 17, 12797–12812, https://doi.org/10.5194/acp-17-12797-2017,https://doi.org/10.5194/acp-17-12797-2017, 2017
Short summary
Heterogeneous reactions of NO2 with CaCO3–(NH4)2SO4 mixtures at different relative humidities
Fang Tan, Shengrui Tong, Bo Jing, Siqi Hou, Qifan Liu, Kun Li, Ying Zhang, and Maofa Ge
Atmos. Chem. Phys., 16, 8081–8093, https://doi.org/10.5194/acp-16-8081-2016,https://doi.org/10.5194/acp-16-8081-2016, 2016
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Secondary organic aerosol formation from nitrate radical oxidation of styrene: aerosol yields, chemical composition, and hydrolysis of organic nitrates
Yuchen Wang, Xiang Zhang, Yuanlong Huang, Yutong Liang, and Nga L. Ng
Atmos. Chem. Phys., 25, 5215–5231, https://doi.org/10.5194/acp-25-5215-2025,https://doi.org/10.5194/acp-25-5215-2025, 2025
Short summary
Hydrogen peroxide photoformation in particulate matter and its contribution to S(IV) oxidation during winter in Fairbanks, Alaska
Michael Oluwatoyin Sunday, Laura Marie Dahler Heinlein, Junwei He, Allison Moon, Sukriti Kapur, Ting Fang, Kasey C. Edwards, Fangzhou Guo, Jack Dibb, James H. Flynn III, Becky Alexander, Manabu Shiraiwa, and Cort Anastasio
Atmos. Chem. Phys., 25, 5087–5100, https://doi.org/10.5194/acp-25-5087-2025,https://doi.org/10.5194/acp-25-5087-2025, 2025
Short summary
The importance of burning conditions on the composition of domestic biomass-burning organic aerosol and the impact of atmospheric ageing
Rhianna L. Evans, Daniel J. Bryant, Aristeidis Voliotis, Dawei Hu, Huihui Wu, Sara Aisyah Syafira, Osayomwanbor E. Oghama, Gordon McFiggans, Jacqueline F. Hamilton, and Andrew R. Rickard
Atmos. Chem. Phys., 25, 4367–4389, https://doi.org/10.5194/acp-25-4367-2025,https://doi.org/10.5194/acp-25-4367-2025, 2025
Short summary
Heterogeneous phototransformation of halogenated polycyclic aromatic hydrocarbons: influencing factors, mechanisms and products
Yueyao Yang, Yahui Liu, Guohua Zhu, Bingcheng Lin, Shanshan Zhang, Xin Li, Fangxi Xu, He Niu, Rong Jin, and Minghui Zheng
Atmos. Chem. Phys., 25, 3981–3994, https://doi.org/10.5194/acp-25-3981-2025,https://doi.org/10.5194/acp-25-3981-2025, 2025
Short summary
Boosting aerosol surface effects: strongly enhanced cooperative surface propensity of atmospherically relevant organic molecular ions in aqueous solution
Harmanjot Kaur, Stephan Thürmer, Shirin Gholami, Bruno Credidio, Florian Trinter, Debora Vasconcelos, Ricardo Marinho, Joel Pinheiro, Hendrik Bluhm, Arnaldo Naves de Brito, Gunnar Öhrwall, Bernd Winter, and Olle Björneholm
Atmos. Chem. Phys., 25, 3503–3518, https://doi.org/10.5194/acp-25-3503-2025,https://doi.org/10.5194/acp-25-3503-2025, 2025
Short summary

Cited articles

Braban, C. F. and Abbatt, J. P. D.: A study of the phase transition behavior of internally mixed ammonium sulfate – malonic acid aerosols, Atmos. Chem. Phys., 4, 1451–1459, https://doi.org/10.5194/acp-4-1451-2004, 2004.
Braban, C. F., Carroll, M. F., Styler, S. A., and Abbatt, J. P. D.: Phase transitions of malonic and oxalic acid aerosols, J. Phys. Chem. A, 107, 6594–6602, https://doi.org/10.1021/jp034483f, 2003.
Brooks, S. D., Wise, M. E., Cushing, M., and Tolbert, M. A.: Deliquescence behavior of organic/ammonium sulfate aerosol, Geophys. Res. Lett., 29, 1917, https://doi.org/10.1029/2002GL014733, 2002.
Brooks, S. D., DeMott, P. J., and Kreidenweis, S. M.: Water uptake by particles containing humic materials and mixtures of humic materials with ammonium sulfate, Atmos. Environ., 38, 1859–1868, https://doi.org/10.1016/j.atmosenv.2004.01.009, 2004.
Cappa, C. D., Lovejoy, E. R., and Ravishankara, A. R.: Evidence for liquid-like and nonideal behavior of a mixture of organic aerosol components, P. Natl. Acad. Sci. USA, 105, 18687–18691, https://doi.org/10.1073/pnas.0802144105, 2008.
Download
Short summary
Water-soluble organic compounds (WSOCs) play an important role in the hygroscopicity of aerosols. The coexisting hygroscopic species such as levoglucosan, malonic acid, and phthalic acid have a strong influence on hygroscopic growth and phase behavior of oxalic acid, even suppressing its crystallization completely. The hygroscopic species such as levoglucosan in the mixed particles may significantly influence the hygroscopic behavior of ammonium sulfate by changing phase state of oxalic acid.
Share
Altmetrics
Final-revised paper
Preprint