Articles | Volume 15, issue 13
https://doi.org/10.5194/acp-15-7351-2015
https://doi.org/10.5194/acp-15-7351-2015
Research article
 | 
08 Jul 2015
Research article |  | 08 Jul 2015

On the reversibility of transitions between closed and open cellular convection

G. Feingold, I. Koren, T. Yamaguchi, and J. Kazil

Related authors

The Impact of Aerosol on Cloud Water: A Heuristic Perspective
Fabian Hoffmann, Franziska Glassmeier, and Graham Feingold
EGUsphere, https://doi.org/10.5194/egusphere-2024-1725,https://doi.org/10.5194/egusphere-2024-1725, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Cloud water adjustments to aerosol perturbations are buffered by solar heating in non-precipitating marine stratocumuli
Jianhao Zhang, Yao-Sheng Chen, Takanobu Yamaguchi, and Graham Feingold
EGUsphere, https://doi.org/10.5194/egusphere-2024-1021,https://doi.org/10.5194/egusphere-2024-1021, 2024
Short summary
Diurnal evolution of non-precipitating marine stratocumuli in an LES ensemble
Yao-Sheng Chen, Jianhao Zhang, Fabian Hoffmann, Takanobu Yamaguchi, Franziska Glassmeier, Xiaoli Zhou, and Graham Feingold
EGUsphere, https://doi.org/10.5194/egusphere-2024-1033,https://doi.org/10.5194/egusphere-2024-1033, 2024
Short summary
Effects of intermittent aerosol forcing on the stratocumulus-to-cumulus transition
Prasanth Prabhakaran, Fabian Hoffmann, and Graham Feingold
Atmos. Chem. Phys., 24, 1919–1937, https://doi.org/10.5194/acp-24-1919-2024,https://doi.org/10.5194/acp-24-1919-2024, 2024
Short summary
The Education and Research 3D Radiative Transfer Toolbox (EaR3T) – towards the mitigation of 3D bias in airborne and spaceborne passive imagery cloud retrievals
Hong Chen, K. Sebastian Schmidt, Steven T. Massie, Vikas Nataraja, Matthew S. Norgren, Jake J. Gristey, Graham Feingold, Robert E. Holz, and Hironobu Iwabuchi
Atmos. Meas. Tech., 16, 1971–2000, https://doi.org/10.5194/amt-16-1971-2023,https://doi.org/10.5194/amt-16-1971-2023, 2023
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Present-day correlations are insufficient to predict cloud albedo change by anthropogenic aerosols in E3SM v2
Naser Mahfouz, Johannes Mülmenstädt, and Susannah Burrows
Atmos. Chem. Phys., 24, 7253–7260, https://doi.org/10.5194/acp-24-7253-2024,https://doi.org/10.5194/acp-24-7253-2024, 2024
Short summary
Simulations of primary and secondary ice production during an Arctic mixed-phase cloud case from the Ny-Ålesund Aerosol Cloud Experiment (NASCENT) campaign
Britta Schäfer, Robert Oscar David, Paraskevi Georgakaki, Julie Thérèse Pasquier, Georgia Sotiropoulou, and Trude Storelvmo
Atmos. Chem. Phys., 24, 7179–7202, https://doi.org/10.5194/acp-24-7179-2024,https://doi.org/10.5194/acp-24-7179-2024, 2024
Short summary
Microphysical characteristics of precipitation within convective overshooting over East China observed by GPM DPR and ERA5
Nan Sun, Gaopeng Lu, and Yunfei Fu
Atmos. Chem. Phys., 24, 7123–7135, https://doi.org/10.5194/acp-24-7123-2024,https://doi.org/10.5194/acp-24-7123-2024, 2024
Short summary
Effects of radiative cooling on advection fog over the northwest Pacific Ocean: observations and large-eddy simulations
Liu Yang, Saisai Ding, Jing-Wu Liu, and Su-Ping Zhang
Atmos. Chem. Phys., 24, 6809–6824, https://doi.org/10.5194/acp-24-6809-2024,https://doi.org/10.5194/acp-24-6809-2024, 2024
Short summary
Evaluating the Wegener–Bergeron–Findeisen process in ICON in large-eddy mode with in situ observations from the CLOUDLAB project
Nadja Omanovic, Sylvaine Ferrachat, Christopher Fuchs, Jan Henneberger, Anna J. Miller, Kevin Ohneiser, Fabiola Ramelli, Patric Seifert, Robert Spirig, Huiying Zhang, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 6825–6844, https://doi.org/10.5194/acp-24-6825-2024,https://doi.org/10.5194/acp-24-6825-2024, 2024
Short summary

Cited articles

Berner, A. H., Bretherton, C. S., Wood, R., and Muhlbauer, A.: Marine boundary layer cloud regimes and POC formation in a CRM coupled to a bulk aerosol scheme, Atmos. Chem. Phys., 13, 12549–12572, https://doi.org/10.5194/acp-13-12549-2013, 2013.
Burleyson, C. D. and Yuter, S. E.: Subdiurnal stratocumulus cloud fraction variability and sensitivity to precipitation, J. Climate, 28, 2968–2985, https://doi.org/10.1175/JCLI-D-14-00648.1, 2015.
Cavallo, S. M., Dudhia, J., and Snyder, C.: A multilayer upper-boundarycondition for longwave radiative flux to correct temperature biases in a mesoscale model, Mon. Weather Rev., 139, 1952–1959, 2010.
Feingold, G. and Koren, I.: A model of coupled oscillators applied to the aerosol–cloud–precipitation system, Nonlin. Processes Geophys., 20, 1011–1021, https://doi.org/10.5194/npg-20-1011-2013, 2013.
Download
Short summary
Most research on the relationship between aerosol and closed/open cell transitions tends to focus on the closed to open transition. Here we address the two-way transition between closed and open cellular states using a cloud resolving model. We find inherent asymmetry in the transitions and explain the source of the asymmetry. Results are supported by a dynamical system analogue to the full system.
Altmetrics
Final-revised paper
Preprint