Articles | Volume 15, issue 5
Atmos. Chem. Phys., 15, 2651–2673, 2015
https://doi.org/10.5194/acp-15-2651-2015
Atmos. Chem. Phys., 15, 2651–2673, 2015
https://doi.org/10.5194/acp-15-2651-2015
Research article
09 Mar 2015
Research article | 09 Mar 2015

Air quality monitoring in communities of the Canadian Arctic during the high shipping season with a focus on local and marine pollution

A. A. Aliabadi et al.

Related authors

Ship emissions measurement in the Arctic by plume intercepts of the Canadian Coast Guard icebreaker Amundsen from the Polar 6 aircraft platform
Amir A. Aliabadi, Jennie L. Thomas, Andreas B. Herber, Ralf M. Staebler, W. Richard Leaitch, Hannes Schulz, Kathy S. Law, Louis Marelle, Julia Burkart, Megan D. Willis, Heiko Bozem, Peter M. Hoor, Franziska Köllner, Johannes Schneider, Maurice Levasseur, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 16, 7899–7916, https://doi.org/10.5194/acp-16-7899-2016,https://doi.org/10.5194/acp-16-7899-2016, 2016
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
The unexpected high frequency of nocturnal surface ozone enhancement events over China: characteristics and mechanisms
Cheng He, Xiao Lu, Haolin Wang, Haichao Wang, Yan Li, Guowen He, Yuanping He, Yurun Wang, Youlang Zhang, Yiming Liu, Qi Fan, and Shaojia Fan
Atmos. Chem. Phys., 22, 15243–15261, https://doi.org/10.5194/acp-22-15243-2022,https://doi.org/10.5194/acp-22-15243-2022, 2022
Short summary
Source apportionment of VOCs, IVOCs and SVOCs by positive matrix factorization in suburban Livermore, California
Rebecca A. Wernis, Nathan M. Kreisberg, Robert J. Weber, Greg T. Drozd, and Allen H. Goldstein
Atmos. Chem. Phys., 22, 14987–15019, https://doi.org/10.5194/acp-22-14987-2022,https://doi.org/10.5194/acp-22-14987-2022, 2022
Short summary
Measurement report: Intra- and interannual variability and source apportionment of volatile organic compounds during 2018–2020 in Zhengzhou, central China
Shijie Yu, Shenbo Wang, Ruixin Xu, Dong Zhang, Meng Zhang, Fangcheng Su, Xuan Lu, Xiao Li, Ruiqin Zhang, and Lingling Wang
Atmos. Chem. Phys., 22, 14859–14878, https://doi.org/10.5194/acp-22-14859-2022,https://doi.org/10.5194/acp-22-14859-2022, 2022
Short summary
Formation and impacts of nitryl chloride in Pearl River Delta
Haichao Wang, Bin Yuan, E Zheng, Xiaoxiao Zhang, Jie Wang, Keding Lu, Chenshuo Ye, Lei Yang, Shan Huang, Weiwei Hu, Suxia Yang, Yuwen Peng, Jipeng Qi, Sihang Wang, Xianjun He, Yubin Chen, Tiange Li, Wenjie Wang, Yibo Huangfu, Xiaobing Li, Mingfu Cai, Xuemei Wang, and Min Shao
Atmos. Chem. Phys., 22, 14837–14858, https://doi.org/10.5194/acp-22-14837-2022,https://doi.org/10.5194/acp-22-14837-2022, 2022
Short summary
Multidecadal increases in global tropospheric ozone derived from ozonesonde and surface site observations: can models reproduce ozone trends?
Amy Christiansen, Loretta J. Mickley, Junhua Liu, Luke D. Oman, and Lu Hu
Atmos. Chem. Phys., 22, 14751–14782, https://doi.org/10.5194/acp-22-14751-2022,https://doi.org/10.5194/acp-22-14751-2022, 2022
Short summary

Cited articles

Bond, T. C., Anderson, T. L., and Campbell, D.: Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols, Aerosol Sci. Tech., 30, 582–600, https://doi.org/10.1080/027868299304435, 1999.
Brigham, L., McCalla, R., Cunningham, E., Barr, W., Vanderzaag, D., Chircop, A., Santos-Pedro, V., MacDonald, R., Harder, S., Ellis, B., Snyder, J., Huntington, H., Skjoldal, H., Williams, M., Wojhan, T., and Falkingham, J.: Arctic Marine Shipping Assessment, Report, Arctic Council, Tromsø, Norway, available at: http://library.arcticportal.org/1400/ (last access: 3 March 2014), 2009.
Browse, J., Carslaw, K. S., Schmidt, A., and Corbett, J. J.: Impact of future Arctic shipping on high-latitude black carbon deposition, Geophys. Res. Lett., 40, 4459–4463, https://doi.org/10.1002/grl.50876, 2013.
Bulletin: Ship Safety Bulletin: New regulations for vessel air emissions, ship to ship transfer of oil, and greywater, Bulletin 06/2013, Transport Canada, Marine Safety and Security, Tower C, Place de Ville, 10th Floor, 330 Sparks Street, Ottawa, ON K1A 0N8, available at: http://www.tc.gc.ca/media/documents/marinesafety/SSB-06-2013E.pdf (last access: 10 July 2014), 2013.
Capaldo, K. P. and Pandis, S. N.: Dimethylsulfide chemistry in the remote marine atmosphere: evaluation and sensitivity analysis of available mechanisms, J. Geophys. Res.-Atmos., 102, 23251–23267, https://doi.org/10.1029/97JD01807, 1997.
Download
Short summary
In an effort to characterize the effect of shipping on Arctic air quality during the 2013 shipping season, air-quality monitoring stations were installed in Cape Dorset and Resolute, Nunavut, Canada, to measure NOx, SO2, PM2.5, O3, and BC. Results indicate that on the order of 5--25% of local cumulative exposure to these pollutants is due to ship emissions. This approach is complementary to pollution measurements at the source and has wider applications for the impact of traffic on air quality.
Altmetrics
Final-revised paper
Preprint