Articles | Volume 14, issue 22
https://doi.org/10.5194/acp-14-12133-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-14-12133-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Characteristics and sources of gravity waves observed in noctilucent cloud over Norway
Norwegian University of Science and Technology (NTNU), Department of Physics, Trondheim, Norway
Birkeland Centre for Space Science, Bergen, Norway
P. J. Espy
Norwegian University of Science and Technology (NTNU), Department of Physics, Trondheim, Norway
Birkeland Centre for Space Science, Bergen, Norway
N. H. Kleinknecht
Norwegian University of Science and Technology (NTNU), Department of Physics, Trondheim, Norway
M. Hatlen
Norwegian University of Science and Technology (NTNU), Department of Physics, Trondheim, Norway
N. Kaifler
Leibniz-Institut für Atmosphärenphysik e. V., 18225 Kühlungsborn, Germany
G. Baumgarten
Leibniz-Institut für Atmosphärenphysik e. V., 18225 Kühlungsborn, Germany
Related authors
Jonathan K. P. Shonk, Teferi D. Demissie, and Thomas Toniazzo
Atmos. Chem. Phys., 19, 11383–11399, https://doi.org/10.5194/acp-19-11383-2019, https://doi.org/10.5194/acp-19-11383-2019, 2019
Short summary
Short summary
Modern climate models are affected by systematic biases that harm their ability to produce reliable seasonal forecasts and climate projections. In this study, we investigate causes of biases in wind patterns over the tropical Atlantic during northern spring in three related models. We find that the wind biases are associated with an increase in excess rainfall and convergence in the tropical western Atlantic at the start of April, leading to the redirection of trade winds away from the Equator.
T. D. Demissie, N. H. Kleinknecht, R. E. Hibbins, P. J. Espy, and C. Straub
Ann. Geophys., 31, 1279–1284, https://doi.org/10.5194/angeo-31-1279-2013, https://doi.org/10.5194/angeo-31-1279-2013, 2013
Natalie Kaifler, Bernd Kaifler, Markus Rapp, Guiping Liu, Diego Janches, Gerd Baumgarten, and Jose-Luis Hormaechea
Atmos. Chem. Phys., 24, 14029–14044, https://doi.org/10.5194/acp-24-14029-2024, https://doi.org/10.5194/acp-24-14029-2024, 2024
Short summary
Short summary
Noctilucent clouds (NLCs) are silvery clouds that can be viewed during twilight and indicate atmospheric conditions like temperature and water vapor in the upper mesosphere. High-resolution measurements from a remote sensing laser instrument provide NLC height, brightness, and occurrence rate since 2017. Most observations occur in the morning hours, likely caused by strong tidal winds, and NLC ice particles are thus transported from elsewhere to the observing location in the Southern Hemisphere.
Robert Reichert, Natalie Kaifler, and Bernd Kaifler
Atmos. Meas. Tech., 17, 4659–4673, https://doi.org/10.5194/amt-17-4659-2024, https://doi.org/10.5194/amt-17-4659-2024, 2024
Short summary
Short summary
Imagine you want to determine how quickly the pitch of a passing ambulance’s siren changes. If the vehicle is traveling slowly, the pitch changes only slightly, but if it is traveling fast, the pitch also changes rapidly. In a similar way, the wind in the middle atmosphere modulates the wavelength of atmospheric gravity waves. We have investigated the question of how strong the maximum wind may be so that the change in wavelength can still be determined with the help of wavelet transformation.
Sabine Wüst, Michael Bittner, Patrick J. Espy, W. John R. French, and Frank J. Mulligan
Atmos. Chem. Phys., 23, 1599–1618, https://doi.org/10.5194/acp-23-1599-2023, https://doi.org/10.5194/acp-23-1599-2023, 2023
Short summary
Short summary
Ground-based OH* airglow measurements have been carried out for almost 100 years. Advanced detector technology has greatly simplified the automatic operation of OH* airglow observing instruments and significantly improved the temporal and/or spatial resolution. Studies based on long-term measurements or including a network of instruments are reviewed, especially in the context of deriving gravity wave properties. Scientific and technical challenges for the next few years are described.
Natalie Kaifler, Bernd Kaifler, Markus Rapp, and David C. Fritts
Atmos. Chem. Phys., 23, 949–961, https://doi.org/10.5194/acp-23-949-2023, https://doi.org/10.5194/acp-23-949-2023, 2023
Short summary
Short summary
We used a lidar to measure polar mesospheric clouds from a balloon floating in the upper stratosphere. The thin-layered ice clouds at 83 km altitude are perturbed by waves. The high-resolution lidar soundings reveal small-scale structures induced by the breaking of those waves. We study these patterns and find that they occur very often. We show their morphology and discuss associated dynamical physical processes, which help to interpret case studies and to guide modelling.
Natalie Kaifler, Bernd Kaifler, Markus Rapp, and David C. Fritts
Earth Syst. Sci. Data, 14, 4923–4934, https://doi.org/10.5194/essd-14-4923-2022, https://doi.org/10.5194/essd-14-4923-2022, 2022
Short summary
Short summary
We measured polar mesospheric clouds (PMCs), our Earth’s highest clouds at the edge of space, with a Rayleigh lidar from a stratospheric balloon. We describe how we derive the cloud’s brightness and discuss the stability of the gondola pointing and the sensitivity of our measurements. We present our high-resolution PMC dataset that is used to study dynamical processes in the upper mesosphere, e.g. regarding gravity waves, mesospheric bores, vortex rings, and Kelvin–Helmholtz instabilities.
Kevin Ohneiser, Albert Ansmann, Bernd Kaifler, Alexandra Chudnovsky, Boris Barja, Daniel A. Knopf, Natalie Kaifler, Holger Baars, Patric Seifert, Diego Villanueva, Cristofer Jimenez, Martin Radenz, Ronny Engelmann, Igor Veselovskii, and Félix Zamorano
Atmos. Chem. Phys., 22, 7417–7442, https://doi.org/10.5194/acp-22-7417-2022, https://doi.org/10.5194/acp-22-7417-2022, 2022
Short summary
Short summary
We present and discuss 2 years of long-term lidar observations of the largest stratospheric perturbation by wildfire smoke ever observed. The smoke originated from the record-breaking Australian fires in 2019–2020 and affects climate conditions and even the ozone layer in the Southern Hemisphere. The obvious link between dense smoke occurrence in the stratosphere and strong ozone depletion found in the Arctic and in the Antarctic in 2020 can be regarded as a new aspect of climate change.
Stefan Bender, Patrick J. Espy, and Larry J. Paxton
Ann. Geophys., 39, 899–910, https://doi.org/10.5194/angeo-39-899-2021, https://doi.org/10.5194/angeo-39-899-2021, 2021
Short summary
Short summary
The coupling of the atmosphere to the space environment has become recognized as an important driver of atmospheric chemistry and dynamics. We have validated the Special Sensor Ultraviolet Spectrographic Imager (SSUSI) products for average electron energy and electron energy flux by comparison to EISCAT electron density profiles. The good agreement shows that SSUSI far-UV observations can be used to provide ionization rate profiles throughout the auroral region.
Gunter Stober, Alexander Kozlovsky, Alan Liu, Zishun Qiao, Masaki Tsutsumi, Chris Hall, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, Patrick J. Espy, Robert E. Hibbins, and Nicholas Mitchell
Atmos. Meas. Tech., 14, 6509–6532, https://doi.org/10.5194/amt-14-6509-2021, https://doi.org/10.5194/amt-14-6509-2021, 2021
Short summary
Short summary
Wind observations at the edge to space, 70–110 km altitude, are challenging. Meteor radars have become a widely used instrument to obtain mean wind profiles above an instrument for these heights. We describe an advanced mathematical concept and present a tomographic analysis using several meteor radars located in Finland, Sweden and Norway, as well as Chile, to derive the three-dimensional flow field. We show an example of a gravity wave decelerating the mean flow.
Ekaterina Vorobeva, Marine De Carlo, Alexis Le Pichon, Patrick Joseph Espy, and Sven Peter Näsholm
Ann. Geophys., 39, 515–531, https://doi.org/10.5194/angeo-39-515-2021, https://doi.org/10.5194/angeo-39-515-2021, 2021
Short summary
Short summary
Our approach compares infrasound data and simulated microbarom soundscapes in multiple directions. Data recorded during 2014–2019 at Infrasound Station 37 in Norway were processed and compared to model results in different aspects (directional distribution, signal amplitude, and ability to track atmospheric changes during extreme events). The results reveal good agreement between the model and data. The approach has potential for near-real-time atmospheric and microbarom diagnostics.
Bernd Kaifler and Natalie Kaifler
Atmos. Meas. Tech., 14, 1715–1732, https://doi.org/10.5194/amt-14-1715-2021, https://doi.org/10.5194/amt-14-1715-2021, 2021
Short summary
Short summary
This paper describes the Compact Rayleigh Autonomous Lidar (CORAL), which is the first lidar instrument to make fully automatic high-resolution measurements of atmospheric density and temperature between 15 and 90 km altitude. CORAL achieves a much larger measurement cadence than conventional lidars and thus facilitates studies of rare atmospheric phenomena.
Willem E. van Caspel, Patrick J. Espy, Robert E. Hibbins, and John P. McCormack
Ann. Geophys., 38, 1257–1265, https://doi.org/10.5194/angeo-38-1257-2020, https://doi.org/10.5194/angeo-38-1257-2020, 2020
Short summary
Short summary
Global-scale wind measurements from the upper regions of the atmosphere are used to isolate those atmospheric waves that follow the apparent motion of the sun over the course of a day. We present 16 years of near-continuous measurements, demonstrating the unique capabilities of the array of high-latitude SuperDARN radars. The validation steps outlined in our work also provide a methodology for future studies using wind measurements from the (expanding) network of SuperDARN radars.
Bernd Kaifler, Dimitry Rempel, Philipp Roßi, Christian Büdenbender, Natalie Kaifler, and Volodymyr Baturkin
Atmos. Meas. Tech., 13, 5681–5695, https://doi.org/10.5194/amt-13-5681-2020, https://doi.org/10.5194/amt-13-5681-2020, 2020
Short summary
Short summary
The Balloon Lidar Experiment was the first lidar dedicated to measurements in the mesosphere flown on a balloon. During a 6 d flight, it made high-resolution observations of polar mesospheric clouds which form at high latitudes during summer at ~ 83 km altitude and are the highest clouds in Earth's atmosphere. We describe the instrument and assess its performance. We could detect fainter clouds with higher resolution than what is possible with ground-based instruments.
Christoph Franzen, Patrick Joseph Espy, and Robert Edward Hibbins
Atmos. Chem. Phys., 20, 333–343, https://doi.org/10.5194/acp-20-333-2020, https://doi.org/10.5194/acp-20-333-2020, 2020
Short summary
Short summary
Ground-based observations of the hydroxyl (OH) airglow have indicated that the rotational energy levels may not be in thermal equilibrium with the surrounding gas. Here we use simulations of the OH airglow to show that temperature changes across the extended airglow layer, either climatological or those temporarily caused by atmospheric waves, can mimic this effect for thermalized OH. Thus, these must be considered in order to quantify the non-thermal nature of the OH airglow.
Robert Reichert, Bernd Kaifler, Natalie Kaifler, Markus Rapp, Pierre-Dominique Pautet, Michael J. Taylor, Alexander Kozlovsky, Mark Lester, and Rigel Kivi
Atmos. Meas. Tech., 12, 5997–6015, https://doi.org/10.5194/amt-12-5997-2019, https://doi.org/10.5194/amt-12-5997-2019, 2019
Short summary
Short summary
To determine gravity wave properties like wavelengths, periods and propagation directions at mesospheric altitudes (∼ 86 km) we combine lidar and airglow temperature and meteor radar wind data. By means of wavelet transformation we investigate the wave field and determine intrinsic wave properties as functions of time and period. We are able to identify several gravity wave packets by their distinct propagation and discover a superposition with possible wave–wave and wave–mean-flow interaction.
Jonathan K. P. Shonk, Teferi D. Demissie, and Thomas Toniazzo
Atmos. Chem. Phys., 19, 11383–11399, https://doi.org/10.5194/acp-19-11383-2019, https://doi.org/10.5194/acp-19-11383-2019, 2019
Short summary
Short summary
Modern climate models are affected by systematic biases that harm their ability to produce reliable seasonal forecasts and climate projections. In this study, we investigate causes of biases in wind patterns over the tropical Atlantic during northern spring in three related models. We find that the wind biases are associated with an increase in excess rainfall and convergence in the tropical western Atlantic at the start of April, leading to the redirection of trade winds away from the Equator.
Stefan Bender, Miriam Sinnhuber, Patrick J. Espy, and John P. Burrows
Atmos. Chem. Phys., 19, 2135–2147, https://doi.org/10.5194/acp-19-2135-2019, https://doi.org/10.5194/acp-19-2135-2019, 2019
Short summary
Short summary
We present an empirical model for nitric oxide (NO) in the mesosphere (60–90 km) derived from SCIAMACHY limb scan data. Our model relates the daily (longitudinally) averaged NO number densities from SCIAMACHY as a function of geomagnetic latitude to the solar Lyman-alpha and the geomagnetic AE indices. We use a non-linear regression model, incorporating a finite and seasonally varying lifetime for the geomagnetically induced NO.
Andreas Dörnbrack, Sonja Gisinger, Natalie Kaifler, Tanja Christina Portele, Martina Bramberger, Markus Rapp, Michael Gerding, Jens Faber, Nedjeljka Žagar, and Damjan Jelić
Atmos. Chem. Phys., 18, 12915–12931, https://doi.org/10.5194/acp-18-12915-2018, https://doi.org/10.5194/acp-18-12915-2018, 2018
Short summary
Short summary
A deep upper-air sounding stimulated the current investigation of internal gravity waves excited during a minor sudden stratospheric warming (SSW) in the Arctic winter 2015/16. The analysis of the radiosonde profile revealed large kinetic and potential energies in the upper stratosphere without any simultaneous enhancement of upper tropospheric and lower stratospheric values. In combination with high-resolution meteorological analyses we identified an elevated source of gravity wave excitation.
Christoph Franzen, Robert Edward Hibbins, Patrick Joseph Espy, and Anlaug Amanda Djupvik
Atmos. Meas. Tech., 10, 3093–3101, https://doi.org/10.5194/amt-10-3093-2017, https://doi.org/10.5194/amt-10-3093-2017, 2017
Short summary
Short summary
We discuss a technique to extract the hydroxyl (OH) airglow signal from routine astronomical spectroscopic observations from the Nordic Optical Telescope. Emission spectra from the vibrational manifold from v′ = 9 down to v′ = 3. The fitted rotational temperature distribution with v′ agrees with model conditions and the preponderance of previous work. We highlight the potential for archived and future observations with unprecedented spatial and temporal resolutions.
Stefan Lossow, Farahnaz Khosrawi, Gerald E. Nedoluha, Faiza Azam, Klaus Bramstedt, John. P. Burrows, Bianca M. Dinelli, Patrick Eriksson, Patrick J. Espy, Maya García-Comas, John C. Gille, Michael Kiefer, Stefan Noël, Piera Raspollini, William G. Read, Karen H. Rosenlof, Alexei Rozanov, Christopher E. Sioris, Gabriele P. Stiller, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 10, 1111–1137, https://doi.org/10.5194/amt-10-1111-2017, https://doi.org/10.5194/amt-10-1111-2017, 2017
B. Ehard, B. Kaifler, N. Kaifler, and M. Rapp
Atmos. Meas. Tech., 8, 4645–4655, https://doi.org/10.5194/amt-8-4645-2015, https://doi.org/10.5194/amt-8-4645-2015, 2015
Short summary
Short summary
We evalute four methods currently used for gravity wave extraction from lidar temperature measurements. The spectral response of these methods is determined with the help of synthetic temperature perturbations. Afterwards, the methods are applied to lidar temperature measurements over New Zealand for further evaluation of the four algorithms. Based on the results two methods are recommended for gravity wave extraction.
N. H. Stray, Y. J. Orsolini, P. J. Espy, V. Limpasuvan, and R. E. Hibbins
Atmos. Chem. Phys., 15, 4997–5005, https://doi.org/10.5194/acp-15-4997-2015, https://doi.org/10.5194/acp-15-4997-2015, 2015
Short summary
Short summary
Planetary wave activity measured in the mesosphere to lower thermosphere is shown to increase drastically after strong stratospheric polar cap wind reversals associated with sudden stratospheric warmings. In addition, a moderate but significant correlation was found between planetary wave enhancement in the mesosphere to lower thermosphere and all stratospheric polar cap wind reversals, irrespective of the strength of the reversal.
R. J. de Wit, R. E. Hibbins, P. J. Espy, and E. A. Hennum
Ann. Geophys., 33, 309–319, https://doi.org/10.5194/angeo-33-309-2015, https://doi.org/10.5194/angeo-33-309-2015, 2015
Short summary
Short summary
Sudden stratospheric warmings (SSWs) are a natural laboratory to study vertical and horizontal coupling throughout the whole atmosphere. This study presents MLS derived pole-to-pole temperature anomalies associated with the 2013 major SSW. The results provide observational evidence for interhemispheric coupling, and the wave-mean flow interactions thought to be responsible for the formation of temperature anomalies in the summer hemisphere.
M. Daae, C. Straub, P. J. Espy, and D. A. Newnham
Earth Syst. Sci. Data, 6, 105–115, https://doi.org/10.5194/essd-6-105-2014, https://doi.org/10.5194/essd-6-105-2014, 2014
T. D. Demissie, N. H. Kleinknecht, R. E. Hibbins, P. J. Espy, and C. Straub
Ann. Geophys., 31, 1279–1284, https://doi.org/10.5194/angeo-31-1279-2013, https://doi.org/10.5194/angeo-31-1279-2013, 2013
C. Straub, P. J. Espy, R. E. Hibbins, and D. A. Newnham
Earth Syst. Sci. Data, 5, 199–208, https://doi.org/10.5194/essd-5-199-2013, https://doi.org/10.5194/essd-5-199-2013, 2013
Related subject area
Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Variations in global zonal wind from 18 to 100 km due to solar activity and the quasi-biennial oscillation and El Niño–Southern Oscillation during 2002–2019
Radar observations of winds, waves and tides in the mesosphere and lower thermosphere over South Georgia island (54° S, 36° W) and comparison with WACCM simulations
Simultaneous in situ measurements of small-scale structures in neutral, plasma, and atomic oxygen densities during the WADIS sounding rocket project
Mesospheric anomalous diffusion during noctilucent cloud scenarios
Thermal structure of the mesopause region during the WADIS-2 rocket campaign
On the origin of the mesospheric quasi-stationary planetary waves in the unusual Arctic winter 2015/2016
Influence of geomagnetic activity on mesopause temperature over Yakutia
Quasi-12 h inertia–gravity waves in the lower mesosphere observed by the PANSY radar at Syowa Station (39.6° E, 69.0° S)
Change in turbopause altitude at 52 and 70° N
High-resolution observations of the near-surface wind field over an isolated mountain and in a steep river canyon
Observation of a mesospheric front in a thermal-doppler duct over King George Island, Antarctica
The role of the QBO in the inter-hemispheric coupling of summer mesospheric temperatures
Xiao Liu, Jiyao Xu, Jia Yue, and Vania F. Andrioli
Atmos. Chem. Phys., 23, 6145–6167, https://doi.org/10.5194/acp-23-6145-2023, https://doi.org/10.5194/acp-23-6145-2023, 2023
Short summary
Short summary
Winds are important in characterizing atmospheric dynamics and coupling. However, it is difficult to directly measure the global winds from the stratosphere to the lower thermosphere. We developed a global zonal wind dataset according to the gradient wind theory and SABER and meteor radar observations. Using the dataset, we studied the intra-annual, inter-annual, and long-term variations. This is helpful to understand the variations and coupling of the stratosphere to the lower thermosphere.
Neil P. Hindley, Nicholas J. Mitchell, Neil Cobbett, Anne K. Smith, Dave C. Fritts, Diego Janches, Corwin J. Wright, and Tracy Moffat-Griffin
Atmos. Chem. Phys., 22, 9435–9459, https://doi.org/10.5194/acp-22-9435-2022, https://doi.org/10.5194/acp-22-9435-2022, 2022
Short summary
Short summary
We present observations of winds in the mesosphere and lower thermosphere (MLT) from a recently installed meteor radar on the remote island of South Georgia (54° S, 36° W). We characterise mean winds, tides, planetary waves, and gravity waves in the MLT at this location and compare our measured winds with a leading climate model. We find that the observed wintertime winds are unexpectedly reversed from model predictions, probably because of missing impacts of secondary gravity waves in the model.
Boris Strelnikov, Martin Eberhart, Martin Friedrich, Jonas Hedin, Mikhail Khaplanov, Gerd Baumgarten, Bifford P. Williams, Tristan Staszak, Heiner Asmus, Irina Strelnikova, Ralph Latteck, Mykhaylo Grygalashvyly, Franz-Josef Lübken, Josef Höffner, Raimund Wörl, Jörg Gumbel, Stefan Löhle, Stefanos Fasoulas, Markus Rapp, Aroh Barjatya, Michael J. Taylor, and Pierre-Dominique Pautet
Atmos. Chem. Phys., 19, 11443–11460, https://doi.org/10.5194/acp-19-11443-2019, https://doi.org/10.5194/acp-19-11443-2019, 2019
Short summary
Short summary
Sounding rockets are the only means of measuring small-scale structures (i.e., spatial scales of kilometers to centimeters) in the Earth's middle atmosphere (50–120 km). We present and analyze brand-new high-resolution measurements of atomic oxygen (O) concentration together with high-resolution measurements of ionospheric plasma and neutral air parameters. We found a new behavior of the O inside turbulent layers, which might be essential to adequately model weather and climate.
Fazlul I. Laskar, Gunter Stober, Jens Fiedler, Meers M. Oppenheim, Jorge L. Chau, Duggirala Pallamraju, Nicholas M. Pedatella, Masaki Tsutsumi, and Toralf Renkwitz
Atmos. Chem. Phys., 19, 5259–5267, https://doi.org/10.5194/acp-19-5259-2019, https://doi.org/10.5194/acp-19-5259-2019, 2019
Short summary
Short summary
Meteor radars are used to track and estimate the fading time of meteor trails. In this investigation, it is observed that the diffusion time estimated from such trail fading time is anomalously higher during noctilucent clouds (NLC) than that in its absence. We propose that NLC particles absorb background electrons and thus modify the background electrodynamics, leading to such an anomaly.
Raimund Wörl, Boris Strelnikov, Timo P. Viehl, Josef Höffner, Pierre-Dominique Pautet, Michael J. Taylor, Yucheng Zhao, and Franz-Josef Lübken
Atmos. Chem. Phys., 19, 77–88, https://doi.org/10.5194/acp-19-77-2019, https://doi.org/10.5194/acp-19-77-2019, 2019
Short summary
Short summary
Simultaneous temperature measurements during the WADIS-2 rocket campaign are used to investigate the thermal structure of the mesopause region. Vertically and horizontally resolved in situ and remote measurements are in good agreement and show dominating long-term and large-scale waves with periods of 24 h and higher tidal harmonics. Only a few gravity waves with periods shorter than 6 h and small amplitudes are there.
Vivien Matthias and Manfred Ern
Atmos. Chem. Phys., 18, 4803–4815, https://doi.org/10.5194/acp-18-4803-2018, https://doi.org/10.5194/acp-18-4803-2018, 2018
Short summary
Short summary
The aim of this study is to find the origin of mesospheric stationary planetary wave (SPW) in the subtropics and in mid and polar latitudes in mid winter 2015/2016. Our results based on observations show that upward propagating SPW and in situ generated SPWs by longitudinally variable gravity wave drag and by instabilities can be responsible for the occurrence of mesospheric SPWs and that they can act at the same time, which confirms earlier model studies.
Galina Gavrilyeva and Petr Ammosov
Atmos. Chem. Phys., 18, 3363–3367, https://doi.org/10.5194/acp-18-3363-2018, https://doi.org/10.5194/acp-18-3363-2018, 2018
Short summary
Short summary
The study of the response of the upper atmosphere to changes in solar and geomagnetic activity is an important contribution to the study of the Earth's climate. Measurements showed that the change in the atmospheric temperature at an altitude of 87 km above Yakutia lags behind the maximum solar radiation by 2 years and correlates with a change in geomagnetic activity. The winter temperature is higher in the years of the geomagnetic activity maximum than in the years of the minimum.
Ryosuke Shibuya, Kaoru Sato, Masaki Tsutsumi, Toru Sato, Yoshihiro Tomikawa, Koji Nishimura, and Masashi Kohma
Atmos. Chem. Phys., 17, 6455–6476, https://doi.org/10.5194/acp-17-6455-2017, https://doi.org/10.5194/acp-17-6455-2017, 2017
Short summary
Short summary
The first observations made by a complete PANSY radar system (Program of the Antarctic Syowa MST/IS radar) installed at Syowa Station were successfully performed from 16 to 24 March 2015. Over this period, quasi-12 h period disturbances in the mesosphere at heights of 70 to 80 km were observed. Combining the observational data and numerical simulation outputs, we found that quasi-12 h disturbances are due to large-scale inertia–gravity waves, not to semi-diurnal migrating tides.
Chris M. Hall, Silje E. Holmen, Chris E. Meek, Alan H. Manson, and Satonori Nozawa
Atmos. Chem. Phys., 16, 2299–2308, https://doi.org/10.5194/acp-16-2299-2016, https://doi.org/10.5194/acp-16-2299-2016, 2016
Short summary
Short summary
Turbulent energy dissipation rates are calculated using MF-radar signals from 70 and 52° N for the period 2001–2014 inclusive, and they are used to estimate turbopause altitudes. A positive trend in turbopause altitude is identified for 70° N in summer, but not in winter and not at 52° N. The turbopause altitude change between 2001 and 2014 can be used to hypothesize a corresponding change in atomic oxygen concentration.
B. W. Butler, N. S. Wagenbrenner, J. M. Forthofer, B. K. Lamb, K. S. Shannon, D. Finn, R. M. Eckman, K. Clawson, L. Bradshaw, P. Sopko, S. Beard, D. Jimenez, C. Wold, and M. Vosburgh
Atmos. Chem. Phys., 15, 3785–3801, https://doi.org/10.5194/acp-15-3785-2015, https://doi.org/10.5194/acp-15-3785-2015, 2015
Short summary
Short summary
Interest in numerical wind models continues to increase, especially for models that can simulate winds at relatively high spatial resolution (~100m). However, limited observational data exist for evaluation of model predictive performance. This study presents high-resolution surface wind data sets collected from an isolated mountain and a steep river canyon. The data are available to the public at http://www.firemodels.org/index.php/windninja-introduction/windninja-publications.
J. V. Bageston, C. M. Wrasse, P. P. Batista, R. E. Hibbins, D. C Fritts, D. Gobbi, and V. F. Andrioli
Atmos. Chem. Phys., 11, 12137–12147, https://doi.org/10.5194/acp-11-12137-2011, https://doi.org/10.5194/acp-11-12137-2011, 2011
P. J. Espy, S. Ochoa Fernández, P. Forkman, D. Murtagh, and J. Stegman
Atmos. Chem. Phys., 11, 495–502, https://doi.org/10.5194/acp-11-495-2011, https://doi.org/10.5194/acp-11-495-2011, 2011
Cited articles
Baumgarten, G., Fiedler, J., Fricke, K. H., Gerding, M., Hervig, M., Hoffmann, P., Müller, N., Pautet, P.-D., Rapp, M., Robert, C., Rusch, D., von Savigny, C., and Singer, W.: The noctilucent cloud (NLC) display during the ECOMA/MASS sounding rocket flights on 3 August 2007: morphology on global to local scales, Ann. Geophys., 27, 953–965, https://doi.org/10.5194/angeo-27-953-2009, 2009a.
Baumgarten, G., Gerding, M., Kaifler, B., and Müller, N.: A trans-European network of cameras for observation of noctilucent clouds from 37° N to 69° N, Proceedings 19th ESA Symposium on European Rocket and Ballon Programmes and Related Research, Bad Reichenhall, Germany, 7–11 June 2009, 2009b.
Chandran, A., Rusch, D. W., Palo, S. E., Thomas, G. E., and Taylor, M. J.: Gravity wave observations in the summertime polar mesosphere from the cloud imaging and particle size (CIPS) experiment on the AIM spacecraft, J. Atmos. Sol.-Terr. Phys., 71, 285–288, 2009.
Chandran, A., Rusch, D. W., Merkel, A. W., Palo, S. E., Thomas, G. E., Taylor, M. J., Bailey, S. M., and Russell III, J. M.: Polar Mesospheric Cloud structures observed from the CIPS experiment on the AIM spacecraft: atmospheric gravity waves as drivers for longitudinal variability in PMC occurrence, J. Geophys. Res., 115, D13102, https://doi.org/10.1029/2009JD013185, 2010.
Eckermann, S. D.: Ray-tracing simulation of the global propagation of inertia gravity waves through the zonally averaged middle atmosphere, J. Geophys. Res. , 97 , 15849–15866, https://doi.org/10.1029/92JD01410, 1992.
Eckermann, S. D. and Marks C. J.: GROGRAT: A new model of the global propagation and dissipation of atmospheric gravity waves, Adv. Space Res. 20, 1253–1256, 1997.
Ejiri, M. K., Shiokawa, K., Ogawa, T., Igarashi, K., Nakamura, T., and Tsuda, T.: Statistical study of short-period gravity waves in OH and OI nightglow images at two separated sites, J. Geophys. Res., 108, 4679, https://doi.org/10.1029/2002JD002795, 2003.
Espy, P. J. and Stegman, J.: Trends and variability of mesospheric temperature at high-latitudes, Phys. Chem. Earth, 27, 543–553, 2002.
Espy, P. J., Jones, G. O. L., Swenson, G. R., Tang, J., and Taylor, M. J.: Seasonal variations of the gravity-wave momentum flux in the Antarctic mesosphere and lower thermosphere, J. Geophys. Res., 109, D23109, https://doi.org/10.1029/2003JD004446, 2004.
Espy, P. J., Hibbins, R. E., Swenson, G. R., Tang, J., Taylor, M. J., Riggin, D. M., and Fritts, D. C.: Regional variations of mesospheric gravity-wave momentum flux over Antarctica, Ann. Geophys., 24, 81–88, https://doi.org/10.5194/angeo-24-81-2006, 2006.
Fiedler, J., Baumgarten, G., and Lübken, F. -J.: NLC observations during one solar cycle above ALOMAR, J. Atmos. Sol.-Terr. Phys., 71, 424, 2009.
Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106, 2003.
Fritts, D. C. and Luo, Z. G.: Dynamical and radiative forcing of the summer mesopause circulation and thermal structure: 1. Mean solstice conditions, J. Geophys. Res., 100, 3119–3128, 1995.
Fritts, D. C., Isler, J. R., Thomas, G. E., and Andreassen, Ø: Wave breaking signatures in noctilucent clouds, Geophys. Res. Lett., 20, 2039–2042, https://doi.org/10.1029/93GL01982, 1993.
Gadsden, M. and Schröder, M.: Noctilucent Clouds, Springer-Verlag, Berlin, 165 pp., 1989.
Garcia, R. G. and Solomon, S.: The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere, J. Geophys. Res., 90, 3850–3868, 1985.
Garcia, R. R. and Boville, B. A.: "Downward control" of the mean meridional circulation and temperature distribution of the polar winter stratosphere, J. Atmos. Sci., 51, 2238–2245, 1994.
Garcia, F. J., Taylor, M. J., and Kelley, M. C.: Two-dimensional spectral analysis of mesospheric airglow image data, Appl. Optics, 36, 7374–7385, 1997.
Hamilton, K.: Comprehensive modeling of the middle atmosphere climate: some recent results, Clim. Dynam., 11, 223–241, 1995.
Hamilton, K.: Comprehensive meteorological modeling of the middle atmosphere: a tutorial review, J. Atmos. Sol.-Terr. Phy., 58, 1591–1627, 1996.
Haurwitz, B.: Wave formations in noctilucent clouds, Planet. Space Sci., 5, 92–98, 1961.
Hecht, J. H., Walterscheid, R. L., Hickey, M. P., and Franke, S. J.: Climatology and modeling of quasi-monochromatic atmospheric gravity waves observed over Urbana Illinois, J. Geophys. Res., 106, 5181–5195, 2001.
Hedin, A. E.: Extension of the MSIS thermospheric model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159–1172, 1991.
Hedin, A. E., Fleming, E. L., Manson, A. H., Schmidlin, F. J., Avery, S. K., Clark, R. R., Franke, S. J., Fraser, G. J., Tsuda, T., Vial, F., and Vincent, R. A.: Empirical wind model for the upper, middle and lower atmosphere, J. Atmos. Sol.-Terr. Phy., 58, 1421–1447, 1996.
Hines, C. O.: Internal atmospheric gravity waves, Can. J. Phys., 38, 1441–1481, 1960.
Hines, C. O., Adams, G. W., Brosnahan, J. W., Djuth, F. T., Sulzer, M. P., Tepley, C., A., and Van Baelen, J. S.: Multi-instrument observations of mesospheric motions over Arecibo: comparisons and interpretations, J. Atmos. Terr. Phys., 55, 241–287, 1993.
Holton, J. R.: The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere, J. Atmos. Sci., 39, 791–799, 1982.
Holton, J. R.: The influence of gravity wave breaking on the general circulation of the middle atmosphere, J. Atmos. Sci., 40, 2497–2507, 1983.
Holton, J. R. and Alexander, M. J.: Gravity waves in the mesosphere generated by tropospheric convection, Tellus B, 51, 45–58, 1999.
Jensen, E. J. and Thomas, G. E.: Numerical simulation of the effects of gravity waves on noctilucent clouds, J. Geophys. Res., 99, 3421–3430, 1994.
Lindzen, R. S.: Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res., 86, 9707–9714, 1981.
Lübken, F.-J., Jarvis, M. J., and Jones, G. O. L.: First in situ temperature measurements at the Antarctic summer mesopause, Geophys. Res. Lett., 26, 3581–3584, 1999.
Luo, Z. G., Fritts, D. C., Portmann, R. W., and Thomas, G. E.: Dynamical and radiative forcing of the summer mesopause circulation and thermal structure: 2. Seasonal-variations, J. Geophys. Res., 100, 3129–3137, 1995.
Marks, C. J., and S. D. Eckermann: A Three-Dimensional Nonhydrostatic Ray-Tracing Model for Gravity Waves: Formulation and Preliminary Results for the Middle Atmosphere., J. Atmos. Sci., 52, 1959–1984, 1995.
Nakamura, T. A., Tsuda, T., Admiranto, T., Achmad, A. G., and Suranto, E.: Mesospheric gravity waves over a tropical convective region observed by OH airglow imaging in Indonesia, Geophys. Res. Lett., 30, 1882, https://doi.org/10.1029/2003GL017619, 2003.
Nielsen, K., Taylor, M. J., Pautet, P.-D., Fritts, D. C., Mitchell, N., Beldon, C., Williams, B. P., Singer, W., Schmidlin, F. J., and Goldberg, R. A.: Propagation of short-period gravity waves at high-latitudes during the MaCWAVE winter campaign, Ann. Geophys., 24, 1227–1243, https://doi.org/10.5194/angeo-24-1227-2006, 2006.
Nielsen, K., Taylor, M. J., Hibbins, R. E., and Jarvis, M. J.: Climatology of short-period mesospheric gravity waves over Halley, Antarctica (76° S, 27° W), J. Atmos. Sol.-Terr. Phy., 71, 991–1000, 2009.
Pautet, D. and Moreels, G.: Ground-based satellite-type images of the upper-atmosphere emissive layer, Appl. Optics, 41, 823–831, https://doi.org/10.1364/AO.41.000823, 2002.
Pautet, P.-D., Taylor, M. J., Liu, A. Z., and Swenson, G. R.: Climatology of short-period gravity waves observed over northern Australia during the Darwin area wave experiment (DAWEX) and their dominant source regions, J. Geophys. Res., 110, D03S90, https://doi.org/10.1029/2004JD004954, 2005.
Pautet, P.-D., Stegman, J., Wrasse, C. M., Takahashi, H., and Taylor, M. J.: Analysis of gravity waves structures visible in noctilucent cloud images, global perspectives on the aeronomy of the summer mesopause region, 8th international workshop on layered phenomena in the mesopause region, J. Atmos. Sol.-Terr. Phy., 73, 2082–2090, https://doi.org/10.1016/j.jastp.2010.06.001, 2011.
Rapp, M., Lübken, F.-J., Müllemann, A., Thomas, G., and Jensen, E.: Smallscale temperature variations in the vicinity of NLC: experimental and model results, J. Geophys. Res., 107, 4392, https://doi.org/10.1029/2001JD001241, 2002.
Rind, D., Suozzo, R., Balachandran, N. K., Lacis, A., and Russell, G.: The GISS global climate-middle atmosphere model: Part I: Model structure and climatology, J. Atmos. Sci., 45, 329–370, 1988.
Suzuki, S., Shiokawa, K., Hosokawa, K., Nakamura, K., and Hocking, W. K.: Statistical characteristics of polar cap mesospheric gravity waves observed by an all-sky airglow imager at Resolute Bay, Canada, J. Geophys. Res., 114, A01311, https://doi.org/10.1029/2008JA013652, 2009.
Suzuki, S., Lübken, F.-J., Baumgarten, G, Kaifler, N., Eixmann, R., Williams, B. P., and Nakamura, T.: Vertical propagation of a mesoscale gravity wave from the lower to the upper atmosphere, J. Atmos. Sol.-Terr. Phys., 97, 29–36, https://doi.org/10.1016/j.jastp.2013.01.012, 2013.
Taylor, M. J. and Henriksen, K.: Gravity wave studies at polar latitudes, in: Electromagnetic Coupling in the Polar Clefts and Caps, edited by: Sandholt, P. E. and Egeland, A., Kluwer Academic Publications, Dordrecht, the Netherlands, 421–434, 1989.
Taylor, M. J., Pendleton Jr., W. R., Clark, S., Takahashi, H., Gobbi, D., and Goldberg, R. A.: Image measurements of short-period gravity waves at equatorial latitudes, J. Geophys. Res., 102, 26283–26299, 1997.
Taylor, M. J., Seo, S. H., Nakamura, T., Tsuda, T., Fukunishi, H., and Takahashi, Y.: Long base-line measurements of short-period mesospheric gravity waves during the SEEK campaign, Geophys. Res. Lett., 25, 1797–1800, 1998.
Taylor, M. J., Pautet, P.-D., Zhao, Y., Randall, C. E., Lumpe, J., Bailey, S. M., Carstens, J., Nielsen, K., Russell III, James M., and Stegman, J.: High-latitude gravity wave measurements in noctilucent clouds and polar mesospheric clouds, in Aeronomy of the Earth's Atmosphere and Ionosphere, IAGA Special Sopron Book Series, Volume 2, Part 1, 93–105, https://doi.org/10.1007/978-94-007-0326-1_7, 2011.
Thomas, G. E.: Mesospheric clouds and the physics of the mesopause region, Rev. Geophys., 29, 553–575, 1991.
Vadas, S. L., Fritts, D. C., and Alexander, M. J.: Mechanisms for the generation of secondary waves in wave breaking regions, J. Atmos. Sci., 60, 194–214, 2003.
Vincent, R. A.: Gravity-wave motions in the mesosphere, J. Atmos. Terr. Phys., 46, 119–128, 1984.
Witt, G.: Height, structure and displacements of noctilucent clouds, Tellus, 14, 1–18, 1962.
Short summary
Summertime gravity waves detected in noctilucent clouds (NLCs) between 64◦ and 74◦N are found to have a similar climatology to those observed between 60◦ and 64◦N, and their direction of propagation is to the north and northeast as observed south of 64◦N. However, a unique population of fast, short wavelength waves propagating towards the SW is observed in the NLC. The sources of the prominent wave structures observed in the NLC are likely to be from waves propagating from near the tropopause.
Summertime gravity waves detected in noctilucent clouds (NLCs) between 64◦ and 74◦N are...
Altmetrics
Final-revised paper
Preprint