Articles | Volume 11, issue 14
https://doi.org/10.5194/acp-11-7209-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-11-7209-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Yields of hydrogen peroxide from the reaction of hydroxyl radical with organic compounds in solution and ice
T. Hullar
Department of Land, Air and Water Resources, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
C. Anastasio
Department of Land, Air and Water Resources, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
Related subject area
Subject: Clouds and Precipitation | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Direct formation of HONO through aqueous-phase photolysis of organic nitrates
On the importance of multiphase photolysis of organic nitrates on their global atmospheric removal
Effects of pH and light exposure on the survival of bacteria and their ability to biodegrade organic compounds in clouds: implications for microbial activity in acidic cloud water
Towards a chemical mechanism of the oxidation of aqueous sulfur dioxide via isoprene hydroxyl hydroperoxides (ISOPOOH)
On the importance of atmospheric loss of organic nitrates by aqueous-phase ●OH oxidation
Lignin's ability to nucleate ice via immersion freezing and its stability towards physicochemical treatments and atmospheric processing
Biodegradation of phenol and catechol in cloud water: comparison to chemical oxidation in the atmospheric multiphase system
Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 2: Quartz and amorphous silica
Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 3: Aluminosilicates
Aqueous reactions of organic triplet excited states with atmospheric alkenes
The quasi-liquid layer of ice revisited: the role of temperature gradients and tip chemistry in AFM studies
Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 1: The K-feldspar microcline
Direct molecular-level characterization of different heterogeneous freezing modes on mica – Part 1
Chemistry of riming: the retention of organic and inorganic atmospheric trace constituents
Surface-charge-induced orientation of interfacial water suppresses heterogeneous ice nucleation on α-alumina (0001)
Screening of cloud microorganisms isolated at the Puy de Dôme (France) station for the production of biosurfactants
Comparing contact and immersion freezing from continuous flow diffusion chambers
A better understanding of hydroxyl radical photochemical sources in cloud waters collected at the puy de Dôme station – experimental versus modelled formation rates
Deposition and immersion-mode nucleation of ice by three distinct samples of volcanic ash
Organic matter matters for ice nuclei of agricultural soil origin
Effect of atmospheric organic complexation on iron-bearing dust solubility
Are sesquiterpenes a good source of secondary organic cloud condensation nuclei (CCN)? Revisiting β-caryophyllene CCN
Ice nucleation efficiency of clay minerals in the immersion mode
Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry
In-cloud processes of methacrolein under simulated conditions – Part 1: Aqueous phase photooxidation
In-cloud processes of methacrolein under simulated conditions – Part 2: Formation of secondary organic aerosol
Juan Miguel González-Sánchez, Miquel Huix-Rotllant, Nicolas Brun, Julien Morin, Carine Demelas, Amandine Durand, Sylvain Ravier, Jean-Louis Clément, and Anne Monod
Atmos. Chem. Phys., 23, 15135–15147, https://doi.org/10.5194/acp-23-15135-2023, https://doi.org/10.5194/acp-23-15135-2023, 2023
Short summary
Short summary
Organic nitrates play a crucial role in air pollution, as they are nitrogen oxide (NOx) reservoirs. This work investigated the reaction products and mechanisms of their reactivity with light in the aqueous phase (cloud and fog conditions and wet aerosol). Our findings reveal that this chemistry leads to the formation of atmospheric nitrous acid (HONO).
Juan Miguel González-Sánchez, Nicolas Brun, Junteng Wu, Sylvain Ravier, Jean-Louis Clément, and Anne Monod
Atmos. Chem. Phys., 23, 5851–5866, https://doi.org/10.5194/acp-23-5851-2023, https://doi.org/10.5194/acp-23-5851-2023, 2023
Short summary
Short summary
Organic nitrates play a crucial role in air pollution, as they are NOx reservoirs. This work investigated for the first time their reactivity with light in the aqueous phase (cloud and fog and wet aerosol), proving it slower than in the gas phase. Therefore, our findings reveal that partitioning of organic nitrates in the aqueous phase leads to longer atmospheric lifetimes of these compounds and thus a broader spatial distribution of their related pollution.
Yushuo Liu, Chee Kent Lim, Zhiyong Shen, Patrick K. H. Lee, and Theodora Nah
Atmos. Chem. Phys., 23, 1731–1747, https://doi.org/10.5194/acp-23-1731-2023, https://doi.org/10.5194/acp-23-1731-2023, 2023
Short summary
Short summary
We investigated how cloud water pH and solar radiation impact the survival and energetic metabolism of two neutrophilic bacteria species and their biodegradation of organic acids. Experiments were performed using artificial cloud water that mimicked the pH and composition of cloud water in South China. We found that there is a minimum cloud water pH threshold at which neutrophilic bacteria will survive and biodegrade organic compounds in cloud water during the daytime and/or nighttime.
Eleni Dovrou, Kelvin H. Bates, Jean C. Rivera-Rios, Joshua L. Cox, Joshua D. Shutter, and Frank N. Keutsch
Atmos. Chem. Phys., 21, 8999–9008, https://doi.org/10.5194/acp-21-8999-2021, https://doi.org/10.5194/acp-21-8999-2021, 2021
Short summary
Short summary
We examined the mechanism and products of oxidation of dissolved sulfur dioxide with the main isomers of isoprene hydroxyl hydroperoxides, via laboratory and model analysis. Two chemical mechanism pathways are proposed and the results provide an improved understanding of the broader atmospheric chemistry and role of multifunctional organic hydroperoxides, which should be the dominant VOC oxidation products under low-NO conditions, highlighting their significant contribution to sulfate formation.
Juan Miguel González-Sánchez, Nicolas Brun, Junteng Wu, Julien Morin, Brice Temime-Roussel, Sylvain Ravier, Camille Mouchel-Vallon, Jean-Louis Clément, and Anne Monod
Atmos. Chem. Phys., 21, 4915–4937, https://doi.org/10.5194/acp-21-4915-2021, https://doi.org/10.5194/acp-21-4915-2021, 2021
Short summary
Short summary
Organic nitrates play a crucial role in air pollution as they are considered NOx reservoirs. This work lights up the importance of their reactions with OH radicals in the aqueous phase (cloud/fog, wet aerosol), which is slower than in the gas phase. For compounds that significantly partition in water such as polyfunctional biogenic nitrates, these aqueous-phase reactions should drive their atmospheric removal, leading to a broader spatial distribution of NOx than previously accounted for.
Sophie Bogler and Nadine Borduas-Dedekind
Atmos. Chem. Phys., 20, 14509–14522, https://doi.org/10.5194/acp-20-14509-2020, https://doi.org/10.5194/acp-20-14509-2020, 2020
Short summary
Short summary
To study the role of organic matter in ice crystal formation, we investigated the ice nucleation ability of a subcomponent of organic aerosols, the biopolymer lignin, using a droplet-freezing technique. We found that lignin is an ice-active macromolecule with changing abilities based on dilutions. The effects of atmospheric processing and of physicochemical treatments on the ability of lignin solutions to freeze were negligible. Thus, lignin is a recalcitrant ice-nucleating macromolecule.
Saly Jaber, Audrey Lallement, Martine Sancelme, Martin Leremboure, Gilles Mailhot, Barbara Ervens, and Anne-Marie Delort
Atmos. Chem. Phys., 20, 4987–4997, https://doi.org/10.5194/acp-20-4987-2020, https://doi.org/10.5194/acp-20-4987-2020, 2020
Short summary
Short summary
Current atmospheric multiphase models do not include biotransformations of organic compounds by bacteria, although many previous studies of our and other research groups have shown microbial activity in cloud water. The current lab/model study shows that for water-soluble aromatic compounds, biodegradation by bacteria may be as efficient as chemical reactions in cloud water.
Anand Kumar, Claudia Marcolli, and Thomas Peter
Atmos. Chem. Phys., 19, 6035–6058, https://doi.org/10.5194/acp-19-6035-2019, https://doi.org/10.5194/acp-19-6035-2019, 2019
Short summary
Short summary
This paper not only interests the atmospheric science community but has a potential to cater to a broader audience. We discuss both long- and
short-term effects of various
atmospherically relevantchemical species on a fairly abundant mineral surface
Quartz. We of course discuss these chemical interactions from the perspective of fate of airborne mineral dust but the same interactions could be interesting for studies on minerals at the ground level.
Anand Kumar, Claudia Marcolli, and Thomas Peter
Atmos. Chem. Phys., 19, 6059–6084, https://doi.org/10.5194/acp-19-6059-2019, https://doi.org/10.5194/acp-19-6059-2019, 2019
Short summary
Short summary
This paper not only interests the Atmospheric Science community but has a potential to cater to a broader audience. We discuss both long- and short-term effects of various
atmospherically relevantchemical species on fairly abundant mineral surfaces like feldspars and clays. We of course discuss these chemical interactions from the perspective of fate of airborne mineral dust but the same interactions could be interesting for studies on minerals at the ground level.
Richie Kaur, Brandi M. Hudson, Joseph Draper, Dean J. Tantillo, and Cort Anastasio
Atmos. Chem. Phys., 19, 5021–5032, https://doi.org/10.5194/acp-19-5021-2019, https://doi.org/10.5194/acp-19-5021-2019, 2019
Short summary
Short summary
Organic triplets are an important class of aqueous photooxidants, but little is known about their reactions with most atmospheric organic compounds. We measured the reaction rate constants of a model triplet with 17 aliphatic alkenes; using their correlation with oxidation potential, we predicted rate constants for some atmospherically relevant alkenes. Depending on their reactivities, triplets can be minor to important sinks for isoprene- and limonene-derived alkenes in cloud or fog drops.
Julián Gelman Constantin, Melisa M. Gianetti, María P. Longinotti, and Horacio R. Corti
Atmos. Chem. Phys., 18, 14965–14978, https://doi.org/10.5194/acp-18-14965-2018, https://doi.org/10.5194/acp-18-14965-2018, 2018
Short summary
Short summary
Numerous studies have shown that ice surface is actually coated by a thin layer of water even for temperatures below melting temperature. This quasi-liquid layer is relevant in the atmospheric chemistry of clouds, polar regions, glaciers, and other cold regions. We present new results of atomic force microscopy on pure ice, which suggests a thickness for this layer below 1 nm between -7 ºC and -2 ºC. We propose that in many cases previous authors have overestimated this thickness.
Anand Kumar, Claudia Marcolli, Beiping Luo, and Thomas Peter
Atmos. Chem. Phys., 18, 7057–7079, https://doi.org/10.5194/acp-18-7057-2018, https://doi.org/10.5194/acp-18-7057-2018, 2018
Short summary
Short summary
We have performed immersion freezing experiments with microcline (most active ice nucleation, IN, K-feldspar polymorph) and investigated the effect of ammonium and non-ammonium solutes on its IN efficiency. We report increased IN efficiency of microcline in dilute ammonia- or ammonium-containing solutions, which opens up a pathway for condensation freezing occurring at a warmer temperature than immersion freezing.
Ahmed Abdelmonem
Atmos. Chem. Phys., 17, 10733–10741, https://doi.org/10.5194/acp-17-10733-2017, https://doi.org/10.5194/acp-17-10733-2017, 2017
Short summary
Short summary
On the basis of supercooled SHG spectroscopy, I report molecular-level evidence for the existence of one- and two-step deposition freezing depending on the surface type and the supersaturation conditions. In addition, immersion freezing shows a transient ice phase with a lifetime of c. 1 min. This study provides new insights into atmospheric processes and can impact various industrial and research branches, particularly climate change, weather modification, and tracing water in the hydrosphere.
Alexander Jost, Miklós Szakáll, Karoline Diehl, Subir K. Mitra, and Stephan Borrmann
Atmos. Chem. Phys., 17, 9717–9732, https://doi.org/10.5194/acp-17-9717-2017, https://doi.org/10.5194/acp-17-9717-2017, 2017
Short summary
Short summary
During riming of graupel and hail, soluble chemical trace constituents contained in the liquid droplets could be retained while freezing onto the glaciated particle, or released back to the air potentially at other altitudes as retained. Quantification of retention constitutes a major uncertainty in numerical models for atmospheric chemistry and improvements hinge upon experimental determination of retention for carboxylic acids, aldehydes, SO2, H2O2, NH2, and others, as presented in this paper.
Ahmed Abdelmonem, Ellen H. G. Backus, Nadine Hoffmann, M. Alejandra Sánchez, Jenée D. Cyran, Alexei Kiselev, and Mischa Bonn
Atmos. Chem. Phys., 17, 7827–7837, https://doi.org/10.5194/acp-17-7827-2017, https://doi.org/10.5194/acp-17-7827-2017, 2017
Short summary
Short summary
We report the effect of surface charge on heterogeneous immersion freezing for the atmospherically relevant sapphire surface. Combining linear and nonlinear optical techniques and investigating isolated drops, we find that charge-induced surface templating is detrimental for ice nucleation on α-alumina surface. This study provides new insights into atmospheric processes and can impact various industrial and research branches, particularly climate change and tracing of water in the hydrosphere.
Pascal Renard, Isabelle Canet, Martine Sancelme, Nolwenn Wirgot, Laurent Deguillaume, and Anne-Marie Delort
Atmos. Chem. Phys., 16, 12347–12358, https://doi.org/10.5194/acp-16-12347-2016, https://doi.org/10.5194/acp-16-12347-2016, 2016
Short summary
Short summary
A total of 480 microorganisms collected from 39 clouds sampled in France were isolated and identified. This unique collection was screened for biosurfactant production by measuring the surface tension. 41 % of the tested strains were active producers. Pseudomonas, the most frequently detected genus in clouds, was the dominant group for the production of biosurfactants. Further, the potential impact of the production of biosurfactants by cloud microorganisms on atmospheric processes is discussed.
Baban Nagare, Claudia Marcolli, André Welti, Olaf Stetzer, and Ulrike Lohmann
Atmos. Chem. Phys., 16, 8899–8914, https://doi.org/10.5194/acp-16-8899-2016, https://doi.org/10.5194/acp-16-8899-2016, 2016
Short summary
Short summary
The relative importance of contact freezing and immersion freezing at mixed-phase cloud temperatures is the subject of debate. We performed experiments using continuous-flow diffusion chambers to compare the freezing efficiency of ice-nucleating particles for both these nucleation modes. Silver iodide, kaolinite and Arizona Test Dust were used as ice-nucleating particles. We could not confirm the dominance of contact freezing over immersion freezing for our experimental conditions.
A. Bianco, M. Passananti, H. Perroux, G. Voyard, C. Mouchel-Vallon, N. Chaumerliac, G. Mailhot, L. Deguillaume, and M. Brigante
Atmos. Chem. Phys., 15, 9191–9202, https://doi.org/10.5194/acp-15-9191-2015, https://doi.org/10.5194/acp-15-9191-2015, 2015
G. P. Schill, K. Genareau, and M. A. Tolbert
Atmos. Chem. Phys., 15, 7523–7536, https://doi.org/10.5194/acp-15-7523-2015, https://doi.org/10.5194/acp-15-7523-2015, 2015
Short summary
Short summary
Fine volcanic ash can influence cloud glaciation and, therefore, global climate. In this work we examined the heterogeneous ice nucleation properties of three distinct types of volcanic ash. We find that, in contrast to previous studies, these volcanic ash samples have different ice nucleation properties in the immersion mode. In the deposition mode, however, they nucleate ice with similar efficiency. We show that this behavior may be due to their mineralogy.
Y. Tobo, P. J. DeMott, T. C. J. Hill, A. J. Prenni, N. G. Swoboda-Colberg, G. D. Franc, and S. M. Kreidenweis
Atmos. Chem. Phys., 14, 8521–8531, https://doi.org/10.5194/acp-14-8521-2014, https://doi.org/10.5194/acp-14-8521-2014, 2014
R. Paris and K. V. Desboeufs
Atmos. Chem. Phys., 13, 4895–4905, https://doi.org/10.5194/acp-13-4895-2013, https://doi.org/10.5194/acp-13-4895-2013, 2013
X. Tang, D. R. Cocker III, and A. Asa-Awuku
Atmos. Chem. Phys., 12, 8377–8388, https://doi.org/10.5194/acp-12-8377-2012, https://doi.org/10.5194/acp-12-8377-2012, 2012
V. Pinti, C. Marcolli, B. Zobrist, C. R. Hoyle, and T. Peter
Atmos. Chem. Phys., 12, 5859–5878, https://doi.org/10.5194/acp-12-5859-2012, https://doi.org/10.5194/acp-12-5859-2012, 2012
M. Vaïtilingom, T. Charbouillot, L. Deguillaume, R. Maisonobe, M. Parazols, P. Amato, M. Sancelme, and A.-M. Delort
Atmos. Chem. Phys., 11, 8721–8733, https://doi.org/10.5194/acp-11-8721-2011, https://doi.org/10.5194/acp-11-8721-2011, 2011
Yao Liu, I. El Haddad, M. Scarfogliero, L. Nieto-Gligorovski, B. Temime-Roussel, E. Quivet, N. Marchand, B. Picquet-Varrault, and A. Monod
Atmos. Chem. Phys., 9, 5093–5105, https://doi.org/10.5194/acp-9-5093-2009, https://doi.org/10.5194/acp-9-5093-2009, 2009
I. El Haddad, Yao Liu, L. Nieto-Gligorovski, V. Michaud, B. Temime-Roussel, E. Quivet, N. Marchand, K. Sellegri, and A. Monod
Atmos. Chem. Phys., 9, 5107–5117, https://doi.org/10.5194/acp-9-5107-2009, https://doi.org/10.5194/acp-9-5107-2009, 2009
Cited articles
Altieri, K. E., Turpin, B. J., and Seitzinger, S. P.: Oligomers, organosulfates, and nitrooxy organosulfates in rainwater identified by ultra-high resolution electrospray ionization FT-ICR mass spectrometry, Atmos. Chem. Phys., 9, 2533–2542, https://doi.org/10.5194/acp-9-2533-2009, 2009.
Anastasio, C. and McGregor, K. G.: Chemistry of fog waters in California's Central Valley: 1. In situ photoformation of hydroxyl radical and singlet molecular oxygen, Atmos. Environ., 35, 1079–1089, 2001.
Anastasio, C., Faust, B. C., and Allen, J. M.: Aqueous-phase photochemical formation of hydrogen-peroxide in authentic cloud waters, J. Geophys. Res.-Atmos., 99, 8231–8248, 1994.
Arakaki, T. and Faust, B. C.: Sources, sinks, and mechanisms of hydroxyl radical (OH) photoproduction and consumption in authentic acidic continental cloud waters from Whiteface Mountain, New York: The role of the Fe(r) (r = II, III) photochemical cycle, J. Geophys. Res.-Atmos., 103, 3487–3504, 1998.
Barrie, L. A., Gregor, D., Hargrave, B., Lake, R., Muir, D., Shearer, R., Tracey, B., and Bidleman, T.: Arctic contaminants – sources, occurrence, and pathways, Sci. Total Environ., 122, 1–74, 1992.
Beine, H. and Anastasio, C.: The Photolysis of Flash – Frozen Dilute Hydrogen Peroxide Solutions, J. Geophys. Res., in press, https://doi.org/10.1029/2010JD015531, 2011.
Bell, R. P., Rand, M. H., and Wynnejones, K. M. A.: Kinetics of the hydration of acetaldehyde, T. Faraday. Soc., 52, 1093–1102, 1956.
Bielski, B. H. J., Cabelli, D. E., Arudi, R. L., and Ross, A. B.: Reactivity of HO$_{2}^{\put(2.0,2.0){\circle*{1.5}}}$/$^{\put(2.0,2.0){\circle*{1.5}}}$ O2- radicals in aqueous-solution, J. Phys. Chem. Ref. Data, 14, 1041–1100, 1985.
Carlton, A. G., Turpin, B. J., Lim, H. J., Altieri, K. E., and Seitzinger, S.: Link between isoprene and secondary organic aerosol (SOA): Pyruvic acid oxidation yields low volatility organic acids in clouds, Geophys. Res. Lett., 33, L06822 https://doi.org/10.1029/2005gl025374, 2006.
Chameides, W. L. and Davis, D. D.: The free-radical chemistry of cloud droplets and its impact upon the composition of rain, J. Geophys. Res.-Ocean. Atmos., 87, 4863–4877, 1982.
Chameides, W. L. and Davis, D. D.: Aqueous-phase source of formic acid in clouds, Nature, 304, 427–429, 1983.
Christensen, H. C. and Gustafsson, R.: Radiolysis of aqueous toluene solutions, Acta. Chem. Scand., 26, 937–946, 1972.
Chu, L. and Anastasio, C.: Quantum yields of hydroxyl radical and nitrogen dioxide from the photolysis of nitrate on ice, J. Phys. Chem. A, 107, 9594–9602, https://doi.org/10.1021/jp0349132, 2003.
Chu, L. and Anastasio, C.: Formation of hydroxyl radical from the photolysis of frozen hydrogen peroxide, J. Phys. Chem. A, 109, 6264–6271, https://doi.org/10.1021/jp051415f, 2005.
Chu, L. and Anastasio, C.: Temperature and wavelength dependence of nitrite photolysis in frozen and aqueous solutions, Environ. Sci. Technol., 41, 3626–3632, https://doi.org/10.1021/es062731q, 2007.
Collett, J. L., Herckes, P., Youngster, S., and Lee, T.: Processing of atmospheric organic matter by California radiation fogs, Atmos. Res., 87, 232–241, https://doi.org/10.1016/j.atmosres.2007.11.005, 2008.
Deguillaume, L., Leriche, M., Monod, A., and Chaumerliac, N.: The role of transition metal ions on HOx radicals in clouds: a numerical evaluation of its impact on multiphase chemistry, Atmos. Chem. Phys., 4, 95–110, https://doi.org/10.5194/acp-4-95-2004, 2004.
Desideri, P. G., Lepri, L., Checchini, L., and Santianni, D.: Organic compounds in surface and deep antarctic snow, Int. J. Environ. Anal. Chem., 55, 33–46, 1994.
Dibb, J. E. and Arsenault, M.: Should not snowpacks be sources of monocarboxylic acids?, Atmos. Environ., 36, 2513–2522, 2002.
Dubowski, Y., Colussi, A. J., and Hoffmann, M. R.: Nitrogen dioxide release in the 302 nm band photolysis of spray-frozen aqueous nitrate solutions. Atmospheric implications, J. Phys. Chem. A, 105, 4928–4932, 2001.
Ervens, B., George, C., Williams, J. E., Buxton, G. V., Salmon, G. A., Bydder, M., Wilkinson, F., Dentener, F., Mirabel, P., Wolke, R., and Herrmann, H.: CAPRAM 2.4 (MODAC mechanism): An extended and condensed tropospheric aqueous phase mechanism and its application, J. Geophys. Res.-Atmos., 108, 4426, https://doi.org/10.1029/2002jd002202, 2003.
Faust, B. C.: Generation and use of simulated sunlight in photochemical studies of liquid solutions, Rev. Sci. Instrum., 64, 577–578, 1993.
Faust, B. C.: Photochemistry of clouds, fogs, and aerosols, Environ. Sci. Technol., 28, A217–A222, 1994.
Faust, B. C. and Allen, J. M.: Aqueous-phase photochemical formation of hydroxyl radical in authentic cloudwaters and fogwaters, Environ. Sci. Technol., 27, 1221–1224, 1993.
Finlayson-Pitts, B. J. and Pitts, J. N.: Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications, Academic Press, San Diego, 969 pp., 2000.
Fries, E., Sieg, K., Puttmann, W., Jaeschke, W., Winterhalter, R., Williams, J., and Moortgat, G. K.: Benzene, alkylated benzenes, chlorinated hydrocarbons and monoterpenes in snow/ice at Jungfraujoch (46.6° N, 8.0° E) during CLACE 4 and 5, Sci. Total Environ., 391, 269–277, https://doi.org/10.1016/j.scitotenv.2007.10.006, 2008.
Galbavy, E. S., Anastasio, C., Lefer, B. L., and Hall, S. R.: Light penetration in the snowpack at Summit, Greenland: Part I – Nitrite and hydrogen peroxide photolysis, Atmos. Environ., 41, 5077–5090, https://doi.org/10.1016/j.atmosenv.2006.04.072, 2007.
Galbavy, E. S., Ram, K., and Anastasio, C.: 2-Nitrobenzaldehyde as a chemical actinometer for solution and ice photochemistry, J. Photochem. Photobiol. A-Chem., 209, 186–192, https://doi.org/10.1016/j.jphotochem.2009.11.013, 2010.
Grannas, A. M., Shepson, P. B., and Filley, T. R.: Photochemistry and nature of organic matter in Arctic and Antarctic snow, Global Biogeochem. Cy., 18, GB1006, https://doi.org/Gb1006 10.1029/2003gb002133, 2004.
Grannas, A. M., Hockaday, W. C., Hatcher, P. G., Thompson, L. G., and Mosley-Thompson, E.: New revelations on the nature of organic matter in ice cores, J. Geophys. Res.-Atmos., 111, D04304 https://doi.org/10.1029/2005jd006251, 2006.
Grollert, C. and Puxbaum, H.: Lipid organic aerosol and snow composition at a high alpine site in the fall and the spring season and scavenging ratios for single compounds, Water Air Soil Poll., 117, 157–173, 2000.
Herrmann, H., Tilgner, A., Barzaghi, P., Majdik, Z., Gligorovski, S., Poulain, L., and Monod, A.: Towards a more detailed description of tropospheric aqueous phase organic chemistry: CAPRAM 3.0, Atmos. Environ., 39, 4351–4363, https://doi.org/10.1016/j.atmosenv.2005.02.016, 2005.
Howard, P. H. and Meylan, W. M.: Handbook of Physical Properties of Organic Chemicals, Lewis Publishers, Boca Raton, Fla., 1997.
Hutterli, M. A., McConnell, J. R., Bales, R. C., and Stewart, R. W.: Sensitivity of hydrogen peroxide (H2O2) and formaldehyde (HCHO) preservation in snow to changing environmental conditions: Implications for ice core records, J. Geophys. Res.-Atmos., 108, 4023, https://doi.org/10.1029/2002jd002528, 2003.
Hutterli, M. A., McConnell, J. R., Chen, G., Bales, R. C., Davis, D. D., and Lenschow, D. H.: Formaldehyde and hydrogen peroxide in air, snow and interstitial air at South Pole, Atmos. Environ., 38, 5439–5450, https://doi.org/10.1016/j.atmosenv.2004.06.003, 2004.
Jacobi, H. W., Annor, T., and Quansah, E.: Investigation of the photochemical decomposition of nitrate, hydrogen peroxide, and formaldehyde in artificial snow, J. Photochem. Photobiol. A-Chem., 179, 330–338, https://doi.org/10.1016/j.jphotochem.2005.09.001, 2006.
Kok, G. L., McLaren, S. E., and Staffelbach, T. A.: HPLC determination of atmospheric organic hydroperoxides, J. Atmos. Ocean. Tech., 12, 282–289, 1995.
Laniewski, K., Boren, H., and Grimvall, A.: Identification of volatile and extractable chloroorganics in rain and snow, Environ. Sci. Technol., 32, 3935–3940, 1998.
Legrand, M. and Deangelis, M.: Origin and variations of light carboxylic acids in polar precipitation, J. Geophys. Res.-Atmos., 100, 1445–1462, 1995.
Legrand, M. and Mayewski, P.: Glaciochemistry of polar ice cores: A review, Rev. Geophys., 35, 219–243, 1997.
Lelieveld, J. and Crutzen, P. J.: Influences of cloud photochemical processes on tropospheric ozone, Nature, 343, 227–233, 1990.
Lelieveld, J. and Crutzen, P. J.: The role of clouds in tropospheric photochemistry, J. Atmos. Chem., 12, 229–267, 1991.
Mazzoleni, L. R., Ehrmann, B. M., Shen, X. H., Marshall, A. G., and Collett, J. L.: Water-Soluble Atmospheric Organic Matter in Fog: Exact Masses and Chemical Formula Identification by Ultrahigh-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, Environ. Sci. Technol., 44, 3690–3697, https://doi.org/10.1021/es903409k, 2010.
Moller, D.: Atmospheric hydrogen peroxide: Evidence for aqueous-phase formation from a historic perspective and a one-year measurement campaign, Atmos. Environ., 43, 5923–5936, https://doi.org/10.1016/j.atmosenv.2009.08.013, 2009.
Nese, C., Schuchmann, M. N., Steenken, S., and von Sonntag, C.: Oxidation vs. fragmentation in radiosensitization. Reactions of alpha-alkoxylalkyl radicals with 4-nitrobenzonitrile and oxygen. A pulse radiolysis and product analysis study, J. Chem. Soc. Perk. T 2, 1037–1044, 1995.
Pan, X.-M., Schuchmann, M. N., and von Sonntag, C.: Hydroxyl-radical-induced oxidation of cyclohexa-1,4-diene by O2 in aqueous solution. A pulse radiolysis and product study, J. Chem. Soc. Perk. T 2, 1021–1028, 1993a.
Pan, X.-M., Schuchmann, M. N., and von Sonntag, C.: Oxidation of benzene by the OH radical. A product and pulse radiolysis story in oxygenated aqueous solution, J. Chem. Soc. Perk. T 2, 289–197, 1993b.
Perrier, S., Houdier, S., Domine, F., Cabanes, A., Legagneux, L., Sumner, A. L., and Shepson, P. B.: Formaldehyde in Arctic snow. Incorporation into ice particles and evolution in the snowpack, Atmos. Environ., 36, 2695–2705, 2002.
Piesiak, A., Schuchmann, M. N., Zegota, H., and von Sonntag, C.: beta-hydroyethylperoxyl radicals: a study of the gamma-radiolysis and pulse radiolysis of ethylene in oxygenated aqueous solutions, Z. Naturforsch, 39B, 1262–1267, 1984.
Qiu, R., Green, S. A., Honrath, R. E., Peterson, M. C., Lu, Y., and Dziobak, M.: Measurements of J(NO$_{3}^{-})$ in snow by nitrate-based actinometry, Atmos. Environ., 36, 2563–2571, 2002.
Ram, K. and Anastasio, C.: Photochemistry of phenanthrene, pyrene, and fluoranthene in ice and snow, Atmos. Environ., 43, 2252–2259, https://doi.org/10.1016/j.atmosenv.2009.01.044, 2009.
Satsumabayashi, H., Nishizawa, H., Yokouchi, Y., and Ueda, H.: Pinonaldehyde and some other organics in rain and snow in central Japan, Chemosphere, 45, 887–891, 2001.
Schuchmann, H. P. and von Sonntag, C.: Methylperoxyl radicals: a study of the gamma-radiolysis of methane in oxygenated aqueous solutions, Z. Naturforsch, 39B, 217–221, 1984.
Schuchmann, M. N. and von Sonntag, C.: Radiation chemistry of carbohydrates. Part 14. Hydroxyl-radical induced oxidation of d-glucose in oxygenated aqueous solution, J. Chem. Soc. Perk. T 2, 1958–1963, 1977.
Schuchmann, M. N. and von Sonntag, C.: Radiation chemistry of alcohols 22. Hydroxyl radical-induced oxidation of 2-methyl-2-propanol in oxygenated aqueous solution. A product and pulse radiolysis study J. Phys. Chem., 83, 780–784, 1979.
Schuchmann, M. N. and von Sonntag, C.: Hydroxyl radical induced oxidation of diethyl ether in oxygenated aqueous solution. A product and pulse radiolysis study, J. Phys. Chem., 86, 1995–2000, 1982.
Schuchmann, M. N. and von Sonntag, C.: The radiolysis of uracil on oxygenated aqueous solutions. A study by product analysis and pulse radiolysis, J. Chem. Soc. Perk T 2, 1525–1531, 1983.
Schuchmann, M. N., Zegota, H., and von Sonntag, C.: Acetate peroxyl radicals, OOCH2CO2-: a study on the gamma-radiolysis and pulse radiolysis or acetate in oxygenated aqeous solutions, Z. Naturforsch, 40B, 215–221, 1985.
Schuchmann, M. N. and von Sonntag, C.: The rapid hydration of the acetyl radical. A pulse radiolysis study of acetaldehyde in aqueous solution, J. Am. Chem. Soc., 110, 5698–5701, 1988.
Schuchmann, M. N., Schuchmann, H. P., and von Sonntag, C.: Hydroxyl radical induced oxidation of acetaldehyde dimethyl acetal in oxygenated aqueous solution. Rapid °O2- release from the CH3C(OCH3)2O2 radical, J. Am. Chem. Soc., 112, 403–407, 1990.
Schuchmann, M. N., Schuchmann, H. P., and von Sonntag, C.: Oxidation of hydromalonic acid by OH radicals in the presence and in the absence of molecular oxygen. A pulse-radiolysis and product study, J. Phys. Chem., 99, 9122–9129, 1995.
Sigg, A. and Neftel, A.: Evidence for a 50-percent increase in H2O2 over the past 200 years from a Greenland ice core, Nature, 351, 557–559, 1991.
Sigma-Aldrich: http://www.sigmaaldrich.com/etc/medialib/docs/Sigma-Aldrich/Product_Information_Sheet/p6148pis.Par.0001.File.tmp/p6148pis.pdf (last access: 30 January 2011), 2010.
Stefanic, I., Bonifacic, M., Asmus, K. D., and Armstrong, D. A.: Absolute rate constants and yields of transients from hydroxyl radical and H atom attack on glycine and methyl-substituted glycine anions, J. Phys. Chem. A, 105, 8681–8690, 2001.
Stemmler, K. and von Gunten, U.: OH radical-initiated oxidation of organic compounds in atmospheric water phases: part 1. Reactions of peroxyl radicals derived from 2-butoxyethanol in water, Atmos. Environ., 34, 4241–4252, 2000.
Tan, Y., Perri, M. J., Seitzinger, S. P., and Turpin, B. J.: Effects of Precursor Concentration and Acidic Sulfate in Aqueous Glyoxal-OH Radical Oxidation and Implications for Secondary Organic Aerosol, Environ. Sci. Technol., 43, 8105–8112, https://doi.org/10.1021/es901742f, 2009.
Ulanski, P., Bothe, E., Rosiak, J., and von Sonntag, C.: Radiolysis of the poly(acrylic acid) model 2,4-dimethylglutaric acid: a pulse radiolysis and product study, J. Chem. Soc. Perk. T 2, 5–12, 1996.
von Sonntag, C. and Schuchmann, H.-P.: Peroxyl Radicals in Aqueous Solutions, in: Peroxyl Radicals, edited by: Alfassi, Z. B., John Wiley and Sons, Chichester, 1997.
Warneck, P. and Wurzinger, C.: Product quantum yields for the 305-nm photodecomposition of NO3- in aqueous solution, J. Phys. Chem., 92, 6278–6283, 1988.
Zegota, H., Schuchmann, M. N., and von Sonntag, C.: Cyclopentylperoxyl and cyclohexylperoxyl radicals in aqueous solution. A study by product analysis and pulse radiolysis, J. Phys. Chem., 88, 5589–5593, 1984.
Zellner, R., Exner, M., and Herrmann, H.: Absolute OH quantum yields in the laser photolysis of nitrate, nitrite, and dissolved H2O2 at 308 and 351 nm in the temperature range 278–353 K, J. Atmos. Chem., 10, 411–425, 1990.
Zhang, Q. and Anastasio, C.: Chemistry of fog waters in California's Central Valley – Part 3: concentrations and speciation of organic and inorganic nitrogen, Atmos. Environ., 35, 5629–5643, 2001.
Zhang, Q. and Anastasio, C.: Free and combined amino compounds in atmospheric fine particles (PM2.5) and fog waters from Northern California, Atmos. Environ., 37, 2247–2258, https://doi.org/10.1016/s1352-2310(03)00127-4, 2003.
Zhao, J., Levitt, N. P., and Zhang, R. Y.: Heterogeneous chemistry of octanal and 2,4-hexadienal with sulfuric acid, Geophys. Res. Lett., 32, L09802, https://doi.org/10.1029/2004gl022200, 2005.
Zhou, X. L., Davis, A. J., Kieber, D. J., Keene, W. C., Maben, J. R., Maring, H., Dahl, E. E., Izaguirre, M. A., Sander, R., and Smoydzyn, L.: Photochemical production of hydroxyl radical and hydroperoxides in water extracts of nascent marine aerosols produced by bursting bubbles from Sargasso seawater, Geophys. Res. Lett., 35, L20803, https://doi.org/10.1029/2008gl035418, 2008.
Altmetrics
Final-revised paper
Preprint