Articles | Volume 25, issue 1
https://doi.org/10.5194/acp-25-685-2025
https://doi.org/10.5194/acp-25-685-2025
Technical note
 | 
17 Jan 2025
Technical note |  | 17 Jan 2025

Technical note: Towards atmospheric compound identification in chemical ionization mass spectrometry with pesticide standards and machine learning

Federica Bortolussi, Hilda Sandström, Fariba Partovi, Joona Mikkilä, Patrick Rinke, and Matti Rissanen

Related authors

Calibrating Interdependent Photochemistry, Nucleation, and Aerosol Microphysics in Chamber Experiments
Neil M. Donahue, Victoria Hofbauer, Henning Finkenzeller, Dominik Stolzenburg, Paulus S. Bauer, Randall Chiu, Lubna Dada, Jonathan Duplissy, Xu-Cheng He, Martin Heinritzi, Christopher R. Hoyle, Andreas Kürten, Aleksandr Kvashnin, Katrianne Lehtipalo, Naser Mahfouz, Vladimir Makhmutov, Roy L. Mauldin III, Ugo Molteni, Lauriane L. J. Quéléver, Matti Rissanen, Siegfried Schobesberger, Mario Simon, Andrea C. Wagner, Mingyi Wang, Chao Yan, Penglin Ye, Ilona Riipinen, Hamish Gordon, Joachim Curtius, Armin Hansel, Imad El Haddad, Markku Kulmala, Douglas R. Worsnop, Rainer Volkamer, Paul M. Winkler, Jasper Kirkby, and Richard Flagan
EGUsphere, https://doi.org/10.5194/egusphere-2025-2412,https://doi.org/10.5194/egusphere-2025-2412, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
VaPOrS v1.0.1: An automated model for estimating vapor pressure of organic compounds using SMILES notation
Mojtaba Bezaatpour, Miikka Dal Maso, and Matti Rissanen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2564,https://doi.org/10.5194/egusphere-2025-2564, 2025
Short summary
Similarity-based analysis of atmospheric organic compounds for machine learning applications
Hilda Sandström and Patrick Rinke
Geosci. Model Dev., 18, 2701–2724, https://doi.org/10.5194/gmd-18-2701-2025,https://doi.org/10.5194/gmd-18-2701-2025, 2025
Short summary
Multiphysical description of atmospheric pressure interface chemical ionisation in MION2 and Eisele type inlets
Henning Finkenzeller, Jyri Mikkilä, Cecilia Righi, Paxton Juuti, Mikko Sipilä, Matti Rissanen, Douglas Worsnop, Aleksei Shcherbinin, Nina Sarnela, and Juha Kangasluoma
Atmos. Meas. Tech., 17, 5989–6001, https://doi.org/10.5194/amt-17-5989-2024,https://doi.org/10.5194/amt-17-5989-2024, 2024
Short summary
The behaviour of charged particles (ions) during new particle formation events in urban Leipzig, Germany
Alex Rowell, James Brean, David C. S. Beddows, Zongbo Shi, Avinash Kumar, Matti Rissanen, Miikka Dal Maso, Peter Mettke, Kay Weinhold, Maik Merkel, and Roy M. Harrison
Atmos. Chem. Phys., 24, 10349–10361, https://doi.org/10.5194/acp-24-10349-2024,https://doi.org/10.5194/acp-24-10349-2024, 2024
Short summary

Cited articles

Besel, V., Todorović, M., Kurtén, T., Rinke, P., and Vehkamäki, H.: Atomic structures, conformers and thermodynamic properties of 32k atmospheric molecules, Scientific data, 10, 450, https://doi.org/10.1038/s41597-023-02366-x, 2023.​​​​​​​ a
Besel, V., Todorović, M., Kurtén, T., Vehkamäki, H., and Rinke, P.: The search for sparse data in molecular datasets: Application of active learning to identify extremely low volatile organic compounds, J. Aerosol Sci., 179, 106375, https://doi.org/10.1016/j.jaerosci.2024.106375, 2024. a
Bortolussi, F., Partovi, F., Joona, M., and Matti, R.: Organic pesticide database with 716 molecules analyzed with chemical ionization mass spectrometry. Reagent ions: bromide, protonated acetone, hydronium ion, dioxide, Zenodo [data set], https://doi.org/10.5281/zenodo.11208543, 2024a. a
Bortolussi, F., Sandström, H., and Rinke, P.: PesticidesMS, Gitlab [code], https://gitlab.com/cest-group/pesticidesms (last access: 15 January 2025), 2024b. a
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, 2001. a, b
Download
Short summary
Chemical ionization mass spectrometry (CIMS) is widely used in atmospheric chemistry studies. We still have a limited understanding of the complex functioning of the instrument; therefore, we applied machine learning to provide insights from CIMS analyses. We were able to predict both detection and signal intensity with a fair error, and we found out the most important structural fragments for negative ionization schemes (NH and OH) and positive ones (nitrogen-containing groups).
Share
Altmetrics
Final-revised paper
Preprint