

Supplement of

Technical note: Towards atmospheric compound identification in chemical ionization mass spectrometry with pesticide standards and machine learning

Federica Bortolussi et al.

Correspondence to: Federica Bortolussi (federica.bortolussi@helsinki.fi)

The copyright of individual parts of the supplement might differ from the article licence.

Contents

	S1 Description of S.I.	S2
	S2 Dataset: additional analysis, excluded molecules and tin molecules	S4
	S3 Molecular descriptors: properties info, MBTR comparison	S11
5	S4 Tuned hyperparameters	S13
	S5 Additional results: RF accuracy, recall, precision, f1 score; KRR MSE and R ² ; chemical ins PROP and MACCS descriptor	sight with RDkit- S25
	S6 Additional ML models: NB, SVC (classifiers); linear KRR and RF regressor (regression)	S35

S1 Description of S.I.

10 Section: S2

The dataset (Partovi et al., 2024) contains the measurements of 716 pesticides at 5 different sample concentrations. Figure S1 presents the number of molecules detected for each sample concentration for the four ionization schemes. Since the dataset size, we decided to focus the analysis in the main text on the highest concentration only (2,5 ng μ l⁻¹), to provide a relatively balanced dataset (in the case of the classification model) and the highest amount of instances (in case of the regression model).

- 15 Figure S2 presents the distribution of logarithmic signal intensities for the five different concentrations for each ionization scheme. Figure S3 presents the molecular weight distribution against the signal intensity. The pesticides giving a signal outside the red box were not considered for the analysis in the main text. Figure S4 presents the molecular weight distribution for both detected and undetected pesticides. Figure S5 presents the normalized distribution of different functional groups (with highlighted the frequency of occurrence), and the overall distribution of the number of functional groups for the dataset. To
- 20 calculate the functional groups we employed the Python library developed by Ruggeri and Takahama (2016). Tables S1 and S2 present the list of pesticides excluded from the analysis in the main text. Table S3 shows the three molecules containing tin. One of the molecules was excluded from the analysis, having a molecular weight above 600 u.

Section: S3

Table S4 presents all the properties present in the RDkitPROP model, with a description. All the properties are calculated with the class rdkit.Chem.rdMolDescriptors.Properties() from the library *rdkit* (Landrum, 2006). Figure S6 shows the learning curve of KRR for the four different ionization methods with MBTR as the molecular descriptor. The figure presents MBTR with three terms on the left (k1 = the atomic numbers, k2 = the distance and k3 = the angle) and MBTR with two terms on the right (k2 = the distance and k3 = the angle). The results obtained are comparative, so only two terms were used for all the ML models to decrease the computational costs.

Section: S4

Table S5 presents the tuning range list of the hyperparameters for both the ML models and the molecular descriptors (with additional information on the hyperparameter). The tuned hyperparameters for each ML model based on each ionization method

35 data can be found in the following tables for each molecular descriptor and each random re-shuffle of the data. Tables S6, S7, S8, S9, S10 present the hyperparameter tuning for RF classifier. Tables S11, S12, S13, S14, S15 present the hyperparameter tuning for KRR with Gaussian kernel.

Section: S5

40 In the main text, RF presents the accuracy of the prediction in a table form, here Figure S7 presents the learning curve of the accuracy over an increase of training size. The following features present similar performance metrics: recall (Fig. S8), precision (Fig. S9) and f1 score (Fig. S10). In the main text, the learning curve of KRR was based on the mean absolute error value (MAE), here we will show the learning curve of similar performance metrics: mean squared error (MSE, Fig. S11) and correlation coefficient (R², Fig. S12). Tables S16 and S17 present the complete RDkitPROP RF best estimator feature impor-

45 tances % for Br^- and O_2^- , and H_3O^+ and AceH⁺. Tables S18 and S19 present the complete MACCS-based RF best estimator feature importances% for Br^- and O_2^- , and H_3O^+ and AceH⁺.

Section: S6

55

In this work we trained in total 6 ML models: 3 classifiers (RF, naive Bayes (NB) and support vector classifier (SVC)),

50 3 regressors (KRR with Gaussian kernel, KRR with linear kernel and RF regressor). For each model, we will report the hyperparameters tuning and the learning curves with accuracy, recall, precision and f1 score (classifier), and MAE, MSE and R^2 (regressor).

Table S20 presents the tuning range list of the hyperparameters for the additional ML models (with additional information on the hyperparameter). The tuned hyperparameters for each ML model based on each ionization method data can be found in the following tables for each molecular descriptor and each random re-shuffle of the data.

- We run a NB classifier to show the performance of a simple classification model in comparison to the one reported in the main text (Tables S21, S22 and Fig. S13, S14, S15, S16). The NB model presents a poor performance compared to the RF classifier. We run SVC to show the performance of a similarly complicated classifier model as the one used in the main text (Tables S23,S24, S25, S26, S27 and Fig. S17, S18, S19, S20). The performance appears similar to the results found with KRR with
- 60 the Gaussian kernel.

We run KRR with a linear kernel to show the performance of a simple regression model in comparison to the one reported in the main text (Tables S28 S29 and Fig. S21, S22, S23). In fact, the linear kernel performs poorly compared to the Gaussian kernel.

We run a RF regressor to show the performance of a similarly complicated regression model as the one used in the main text

65 (Tables S30,S31, S32, S33, S34 and Fig. S24, S25, S26). The performance appears similar to the results found with KRR with the Gaussian kernel.

Figure S1. Number of detected pesticides for the experiments at five different concentrations and before filtering.

Figure S2. Detected molecules signal intensity distribution shown in a logarithmic scale for the four reagent ions studied for five different concentrations

Figure S3. Scatter plot of the dataset prior to outlier filtering. The data points outside the red square are excluded from the analysis.

Figure S4. Distribution of molecular weight: the detected count is red, while the undetected count is light blue.

Figure S5. Normalized functional groups distribution of the dataset, with the occurrence highlighted and total number of functional groups distribution.

Table S1. List of pesticides excluded from the analysis: name, CAS, molecular weight (Mw), signal intensities for the four ionization methods and reason of exclusion. Measurements at a sample concentration of 2,5 ng μ l⁻¹.

Name	CAS	Mw [u]	Br-	O ₂ -	H ₃ O ⁻	AceH ⁺	Reason
			[a.u.]	[a.u.]	[a.u.]	[a.u.]	
1-Naphthylacetamide (1)	86-86-2	185.08	0	0	17700	6460.0	Appears twice
1-Naphthylacetamide (2)	86-86-2	185.08	0	0	14300	18500.0	Appears twice
Abamectin B1a	65195-55-3	872.49	0	0	0	0	Mw > 600 u
Acibenzolar acid (1)	35272-27-6	180.00	0	0	0	0	Appears twice
Acibenzolar acid (2)	35272-27-6	180.00	0	0	0	0	Appears twice
Azadirachtin	11141-17-6	720.26	0	0	0	0	Mw > 600 u
Emamectin B1a	155569-91-8	885.52	0	0	0	0	Mw > 600 u
Ethylenethiourea	96-45-7	102.03	0	0	19700	16300.0	Mw < 120 u
Fenbutatin-oxide	13356-08-6	1054.41	0	0	0	0	Mw > 600 u
Fenpicoxamid	517875-34-2	614.25	0	0	0	0	Mw > 600 u
Fenpyrazamine (1)	473798-59-3	331.14	0	0	0	0	Appears twice
Fenpyrazamine (2)	473798-59-3	331.14	1070.0	2360	45100	21800.0	Appears twice
Flubendiamide	272451-65-7	682.02	10600.0	12500	0	189.0	Mw > 600 u
Hexadecyltrimethylammonium	112-02-7	319.30	0	0	0	0	Appears twice
chlorid (1)							
Hexadecyltrimethylammonium	112-02-7	319.30	0	0	0	0	Appears twice
chlorid (2)							
Hexaflumuron	86479-06-3	459.98	962000.0	134000	4600	6440.0	Br ⁻ signal > 900000 [a.u.]
Imazapyr (1)	81334-34-1	261.11	1780.0	13800	16600	17600.0	Appears twice
Imazapyr (2)	81334-34-1	261.11	4310.0	39900	93000	8500.0	Appears twice
Propylen Thiourea	2122-19-2	116.04	0	0	46000	19200.0	Mw < 120 u
Pyridafol (1)	40020-01-7	206.02	0	0	0	0	Appears twice
Pyridafol (2)	40020-01-7	206.02	34900.0	60600	15600	12600.0	Appears twice
Spinetoram J	187166-40-1	747.49	289.0	0	301	266.0	Mw > 600 u
Spinosad A	131929-60-7	731.46	0	0	0	0	Mw > 600 u

Table S2. List of pesticides excluded from the analysis: name and 2D molecular structure

Name	Structure	Name	Structure
1-Naphthylacetamide	HA LO	Flubendiamide	*
Abamectin B1a	के	Hexadecyltrimethylammonium chlorid	,
Acibenzolar acid	A A A A A A A A A A A A A A A A A A A	Hexaflumuron	,ou
Azadirachtin	- ACCO	Imazapyr	HN
Emamectin B1a	-	Propylen Thiourea	
Ethylenethiourea		Pyridafol	
Fenbutatin-oxide	of the	Spinetoram J	सम्पर
Fenpicoxamid	-1	Spinosyn A	- Harder
Fenpyrazamine		S 9	

Table S3. Molecules containing tin (Sn).

Target	CAS	Molecular weight [u]	Structure	Additional information
Fenbutatin-oxide	13356-08-6	1054.41		Excluded from the analysis
Cyhexatin	13121-70-5	387.17	Sn-CH20	Included in the analysis
	90 2 2 0 (251.02		
Triphenyltin hydride	892-20-6	351.02	×⁄	Included in the analysis

S3 Molecular descriptors: properties info, MBTR comparison

Table S4. List of properties calculated with *rdkit* for the RDKitPROP descriptor.

ExactmwReturns the exact molecular weight for a molecule ("Mw" in the main text)AmwReturns the average molecular weight for a moleculeLipinskiHBACalculates the standard Lipinski HBA definition (number of N-H and O-H bonds)NumRotatableBondsNumber of rotatable Bonds.NumHBDCalculates the number of H-bond acceptors ("n HBD" in the main text).NumHBACalculates the number of H-bond acceptors ("n HBD" in the main text).NumHeteroatomsReturns the number of atoms.NumAtomsReturns the number of atoms.NumMeteroatomsReturns the number of atoms.NumMatifeBondsReturns the number of atoms.NumAtomsReturns the number of atoms.NumAnideBondsReturns the number of atoms.FractionCSP3Returns the fraction of C atoms that are sp ³ hybridized.NumAliphaticRingsReturns the number of atoms to ings.NumAliphaticRingsReturns the number of atoms to ings.NumAsturatedRingsReturns the number of atomatic rings for a molecule.NumAtifieterocyclesReturns the number of atomatic rings for a molecule.NumAtifieterocyclesReturns the number of atomatic rings for a molecule.NumSaturatedRingsReturns the number of atomatic deterocycles for a molecule.NumSpiroAtomsNumber of sitorated betrocycles for a started betreeo rings that share exactly one atom).NumBroidebendConteresRuturns the total number of atom stereo centersNumBroidebendConteresRuturns the number of atom stereo centersNumBroidebendConteresRuturns the total number of atom stereo centers	Property	Info
AmwReturns the average molecular weight for a moleculeLipinskiHBACalculates the standard Lipinski HBA definition (number of Ns and Os)LipinskiHBDCalculates the standard Lipinski HBD definition (number of N-H and O-H bonds)NumRotatableBondsNumber of rotatable Bonds.NumHBDCalculates the number of H-bond donors ("n HBD" in the main text).NumHBACalculates the number of H-bond acceptors ("n HBD" in the main text).NumHeavyAtomsNumber of heavy atoms a molecule.NumAtideBondsReturns the number of fatoms.NumAtideBondsReturns the number of fatoms.NumAtideBondsReturns the number of Calculates and the number of and the standard LipinskiNumAtideBondsReturns the number of and bonds.FractionCSP3Returns the fraction of C atoms that are sp ³ hybridized.NumAtingsReturns the number of and constit (containing at least one non-aromatic bond) rings for a molecule.NumAtingsReturns the number of saturated rings for a molecule.NumAtinteRerocyclesReturns the number of saturated rings for a molecule.NumAtinteHeterocyclesReturns the number of saturated heterocycles for a molecule.NumAtinteHeterocyclesReturns the number of atomatic heterocycles for a molecule.NumAtinteHeterocyclesReturns the number of atomatic containing at least one non-aromatic bond) heterocycles for a molecule.NumAtinteHeterocyclesReturns the number of atoma stereo centersNumAtingbaticHeterocyclesReturns the number of atom stereo centersNumAtingbaticHeterocyclesReturns the number of atom stereo centers <tr<< td=""><td>Exactmw</td><td>Returns the exact molecular weight for a molecule ("Mw" in the main text)</td></tr<<>	Exactmw	Returns the exact molecular weight for a molecule ("Mw" in the main text)
LipinskiHBACalculates the standard Lipinski HBA definition (number of Ns and Os)LipinskiHBDCalculates the standard Lipinski HBA definition (number of N-H and O-H bonds)NumRotatableBondsNumber of rotatable Bonds.NumHBDCalculates the number of H-bond acceptors ("n HBD" in the main text).NumHBACalculates the number of h-bond acceptors ("n HBD" in the main text).NumHeavyAtomsNumber of heavy atoms a molecule.NumAtomsReturns the number of atoms.NumAtingsReturns the number of atoms.NumAmideBondsReturns the number of amide bonds.FractionCSP3Returns the number of aromatic rings for a molecule.NumAtromaticRingsReturns the number of aromatic rings for a molecule.NumAtingsReturns the number of atoms.NumAtromaticRingsReturns the number of saturated rings for a molecule.NumAtromaticHeterocyclesReturns the number of saturated rings for a molecule.NumAtomsaturetdHingsReturns the number of atarted rings for a molecule.NumAtomaticHeterocyclesReturns the number of saturated heterocycles for a molecule.NumAtiphaticHeterocyclesReturns the number of atarted heterocycles for a molecule.NumAtomstereoCentersNumber of spiro atoms (atoms shared between rings that share exactly one atom).NumAtomStereoCentersNumber of spiro atoms (atoms shared between rings that share at least two bonds).Number of riggehead atomsCalculates the total number of atom stero centersNumbor of spiro atoms descheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen mupler arefac	Amw	Returns the average molecular weight for a molecule
LipinskiHBDCalculates the standard Lipinski HBD definition (number of N-H and O-H bonds)NumRotatableBondsNumber of rotatable Bonds.NumHBDCalculates the number of H-bond donors ("n HBD" in the main text).NumHBACalculates the number of H-bond acceptors ("n HBD" in the main text).NumHeavyAtomsNumber of heavy atoms a molecule.NumAtomsReturns the number of heteroatoms.NumAnideBondsReturns the number of fings.NumAniteRondsReturns the number of aromatic rings for a molecule.NumAromaticRingsReturns the number of aliphatic (containing at least one non-aromatic bond) rings for a molecule.NumAromaticHeterocyclesReturns the number of attrated rings for a molecule.NumAromaticHeterocyclesReturns the number of attrated rings for a molecule.NumAromaticHeterocyclesReturns the number of attrated heterocycles for a molecule.NumAturatedHeterocyclesReturns the number of attrated heterocycles for a molecule.NumSpiroAtomsNumber of spiro atoms (atoms shared between rings that share exactly one atom).NumBridgeheadAtomsNumber of sturate of atom stereo centersNumAtomStereoCentersCalculates the total number of atom stereo centersNumBridgeheadAtomsNumber of atom stereo centers when the molecule has unspecified stereochemistry.LabuteASACalculates Labute's Approximate Surface Area (Labute, 2000).CrippenClogPUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen partition coefficient (LogP) for a moleculeCrippenMRUses an atom-based scheme based on the v	LipinskiHBA	Calculates the standard Lipinski HBA definition (number of Ns and Os)
NumRotatableBondsNumber of rotatable Bonds.NumHBDCalculates the number of H-bond donors ("n HBD" in the main text).NumHBACalculates the number of H-bond acceptors ("n HBD" in the main text).NumHeavyAtomsNumber of heavy atoms a molecule.NumAromsReturns the number of atoms.NumArideBondsReturns the number of atoms.NumAringsReturns the number of atoms that are sp ³ hybridized.NumAromaticRingsReturns the number of rings.NumAromaticRingsReturns the number of atomatic (containing at least one non-aromatic bond) rings for a molecule.NumAromaticRingsReturns the number of aromatic rings for a molecule.NumAromaticHeterocyclesReturns the number of atomatic (containing at least one non-aromatic bond) rings for a molecule.NumAromaticHeterocyclesReturns the number of atomatic deterocycles for a molecule.NumAromaticHeterocyclesReturns the number of saturated rings for a molecule.NumAromaticHeterocyclesReturns the number of atomatic deterocycles for a molecule.NumSaturatedHeterocyclesReturns the number of atom stared between rings that share at least two bonds).NumBer of spiro atoms (atoms shared between rings that share at least two bonds).NumBer of spiro atoms (atoms shared between rings that share at least two bonds).NumBer of atom steroc centers <td>LipinskiHBD</td> <td>Calculates the standard Lipinski HBD definition (number of N-H and O-H bonds)</td>	LipinskiHBD	Calculates the standard Lipinski HBD definition (number of N-H and O-H bonds)
NumHBDCalculates the number of H-bond dorors ("n HBD" in the main text).NumHBACalculates the number of H-bond acceptors ("n HBD" in the main text).NumHeavyAtomsNumber of heavy atoms a molecule.NumAtomsReturns the number of atoms.NumHeteroatomsReturns the number of amide bonds.FractionCSP3Returns the number of arings for a molecule.NumAiningsReturns the number of atomatic rings for a molecule.NumAiningsReturns the number of atomatic rings for a molecule.NumAingsReturns the number of atomatic rings for a molecule.NumAingsReturns the number of atomatic rings for a molecule.NumAingsReturns the number of atomatic rings for a molecule.NumAindeBondsReturns the number of atomatic rings for a molecule.NumAingsReturns the number of atomatic rings for a molecule.NumAintaitedRingsReturns the number of atomatic heterocycles for a molecule.NumAintaitedHeterocyclesReturns the number of atomatic heterocycles for a molecule.NumAintaitedHeterocyclesReturns the number of aliphatic (containing at least one non-aromatic bond) heterocycles for a molecule.NumAintaitedHeterocyclesReturns the number of atoma (atoms shared between rings that share at least two bonds).NumBridgeheadAtomsNumber of bridgehead atoms (atoms shared between rings that share at least two bonds).NumBridgeheadAtomsNumber of atom stero centersNumMornStereoCentersReturns the opological Polar Surface Area (Ertl et al., 2000).CrippenClogPLabute's Approximate Surface Area (Ertl et al., 2000).Cripp	NumRotatableBonds	Number of rotatable Bonds.
NumHBACalculates the number of H-bond acceptors ("n HBD" in the main text).NumHeavyAtomsNumber of heavy atoms a molecule.NumAtomsReturns the number of atoms.NumAtionsReturns the number of atoms.NumAnideBondsReturns the number of atoms.FractionCSP3Returns the number of atoms that are sp ³ hybridized.NumAromaticRingsReturns the number of aromatic rings for a molecule.NumAliphaticRingsReturns the number of atomatic rings for a molecule.NumSaturatedRingsReturns the number of saturated rings for a molecule.NumSaturatedRingsReturns the number of atomatic heterocycles for a molecule.NumAromaticHeterocyclesReturns the number of atomatic heterocycles for a molecule.NumAliphaticHeterocyclesReturns the number of atomatic heterocycles for a molecule.NumAromaticHeterocyclesReturns the number of atomatic heterocycles for a molecule.NumBridgeheadAtomsNumber of spiro atoms (atoms shared between rings that share at least two bonds).NumBridgeheadAtomsNumber of stort atoms for a store centersNumUnspecifiedAtomStereoCentersReturns the number of atom stereo centersNumUnspecifiedAtomStereoCentersReturns the number of atom stereo centers when the molecule has unspecified stereochemistry.LabuteASACalculates the topological Polar Surface Area (Ertl et al., 2000).TPSACalculates the topological Polar Surface Area (Ertl et al., 2000).CrippenMRUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen partition coefficient (LogP) for a molecule <td>NumHBD</td> <td>Calculates the number of H-bond donors ("n HBD" in the main text).</td>	NumHBD	Calculates the number of H-bond donors ("n HBD" in the main text).
NumHeavyAtomsNumber of heavy atoms a molecule.NumAtomsReturns the number of atoms.NumHeteroatomsReturns the number of atoms.NumAtideBondsReturns the number of amide bonds.FractionCSP3Returns the fraction of C atoms that are sp ³ hybridized.NumAingsReturns the number of aromatic rings for a molecule.NumAromaticRingsReturns the number of atiphatic (containing at least one non-aromatic bond) rings for a molecule.NumAturatedRingsReturns the number of saturated rings for a molecule.NumAturatedRingsReturns the number of saturated rings for a molecule.NumAturatedHeterocyclesReturns the number of saturated rings for a molecule.NumAturatedHeterocyclesReturns the number of saturated heterocycles for a molecule.NumAturatedHeterocyclesReturns the number of saturated heterocycles for a molecule.NumAturatedHeterocyclesReturns the number of aliphatic (containing at least one non-aromatic bond) heterocycles for a molecule.NumAtinghaticHeterocyclesReturns the number of atomatic heterocycles for a molecule.NumAtinghaticHeterocyclesReturns the number of aliphatic (containing at least one non-aromatic bond) heterocycles for a molecule.NumBridgeheadAtomsNumber of spiro atoms (atoms shared between rings that share exactly one atom).NumBridgeheadAtomsNumber of atom stereo centersNumUnspecifiedAtomStereoCentersCalculates the total number of atom stereo centersNumUnspecifiedAtomStereoCentersReturns the number of alophasurface Area (Labute, 2000).TPSACalculates Labute's Approximate Surface Area (Labute, 2000	NumHBA	Calculates the number of H-bond acceptors ("n HBD" in the main text).
NumAtomsReturns the number of atoms.NumHeteroatomsReturns the number of amide bonds.FractionCSP3Returns the number of amide bonds.FractionCSP3Returns the number of rings.NumAromaticRingsReturns the number of aromatic rings for a molecule.NumAromaticRingsReturns the number of aliphatic (containing at least one non-aromatic bond) rings for a molecule.NumAtomstatratedRingsReturns the number of atomatic (containing at least one non-aromatic bond) rings for a molecule.NumAtomaticHeterocyclesReturns the number of atomatic heterocycles for a molecule.NumAtomaticHeterocyclesReturns the number of atomatic heterocycles for a molecule.NumAtomaticHeterocyclesReturns the number of atomatic heterocycles for a molecule.NumSaturatedHeterocyclesReturns the number of atomated heterocycles for a molecule.NumSpiroAtomsNumber of spiro atoms (atoms shared between rings that share exactly one atom).NumBridgeheadAtomsNumber of spiro atoms (atoms shared between rings that share at least two bonds).NumUnspecifiedAtomStereoCentersReturns the number of atom stereo centersNumUnspecifiedAtomStereoCentersReturns the number of atom stereo centers when the molecule has unspecified stereochemistry.LabuteASACalculates Labute's Approximate Surface Area (Labute, 2000).TPSAUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen partition coefficient (LogP) for a molecule (Wildman and Crippen, 1999).CrippenMRUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildm	NumHeavyAtoms	Number of heavy atoms a molecule.
NumHeteroatomsReturns the number of heteroatoms.NumAmideBondsReturns the number of amide bonds.FractionCSP3Returns the number of arings.NumRingsReturns the number of rings.NumAromaticRingsReturns the number of atomatic rings for a molecule.NumAtionAttratedRingsReturns the number of saturated rings for a molecule.NumAromaticHeterocyclesReturns the number of saturated rings for a molecule.NumAromaticHeterocyclesReturns the number of aromatic heterocycles for a molecule.NumAromaticHeterocyclesReturns the number of saturated heterocycles for a molecule.NumAromaticHeterocyclesReturns the number of atoms (atoms shared between rings that share exactly one atom).NumBridgeheadAtomsNumber of bridgehead atoms (atoms shared between rings that share at least two bonds).NumAromstereoCentersCalculates the total number of atom stereo centersNumUnspecifiedAtomStereoCentersReturns the number of atom stereo centers when the molecule has unspecified stereochemistry.LabuteASACalculates Labute's Approximate Surface Area (Labute, 2000).TPSACalculates Labute's Approximate Surface Area (Labute, 2000).CrippenflogPUses an atom-based scheme based on the values in (Wildman and Crippen,	NumAtoms	Returns the number of atoms.
NumAmideBondsReturns the number of amide bonds.FractionCSP3Returns the fraction of C atoms that are sp³ hybridized.NumAromaticRingsReturns the number of aromatic rings for a molecule.NumAromaticRingsReturns the number of aromatic rings for a molecule.NumAromaticRingsReturns the number of saturated rings for a molecule.NumAromaticHeterocyclesReturns the number of saturated rings for a molecule.NumAromaticHeterocyclesReturns the number of saturated heterocycles for a molecule.NumAromaticHeterocyclesReturns the number of aliphatic (containing at least one non-aromatic bond) heterocycles for a molecule.NumAromaticHeterocyclesReturns the number of aliphatic (containing at least one non-aromatic bond) heterocycles for a molecule.NumAromaticHeterocyclesReturns the number of aliphatic (containing at least one non-aromatic bond) heterocycles for a molecule.NumAromaticHeterocyclesReturns the number of aliphatic (containing at least one non-aromatic bond) heterocycles for a molecule.NumSpiroAtomsNumber of spiro atoms (atoms shared between rings that share at least two bonds).NumAromaticeAtomsNumber of atom stereo centersNumUnspecifiedAtomStereoCentersReturns the number of atom stereo centersNumUnspecifiedAtomStereoCentersReturns the topological Polar Surface Area (Labute, 2000).TPSACalculates Labute's Approximate Surface Area (Ertl et al., 2000).CrippenClogPUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen partition coefficient (LogP) for a molecule (Wildman and Crippen, 1999) to calculate the default Wildm	NumHeteroatoms	Returns the number of heteroatoms.
FractionCSP3Returns the fraction of C atoms that are sp³ hybridized. Returns the number of rings. Returns the number of aromatic rings for a molecule.NumAromaticRingsReturns the number of aromatic rings for a molecule. Returns the number of aliphatic (containing at least one non-aromatic bond) rings for a molecule.NumSaturatedRingsReturns the number of saturated rings for a molecule. Returns the number of aromatic heterocycles for a molecule.NumAromaticHeterocyclesReturns the number of saturated heterocycles for a molecule.NumAromaticHeterocyclesReturns the number of saturated heterocycles for a molecule.NumAliphaticHeterocyclesReturns the number of aliphatic (containing at least one non-aromatic bond) heterocycles for a molecule.NumSpiroAtomsNumber of prio atoms (atoms shared between rings that share exactly one atom).NumBridgeheadAtomsNumber of bridgehead atoms (atoms shared between rings that share at least two bonds).Calculates the total number of atom stereo centersCalculates the total number of atom stereo centersNumUnspecifiedAtomStereoCentersCalculates Labute's Approximate Surface Area (Labute, 2000).TPSACalculates Labute's Approximate Surface Area (Labute, 2000).TPSACalculates Labute's Approximate Surface Area (Ertl et al., 2000).CrippenClogPUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen partition coefficient (LogP) for a molecule (Wildman and Crippen, 1999).CrippenMRUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate	NumAmideBonds	Returns the number of amide bonds.
NumRingsReturns the number of rings.NumAromaticRingsReturns the number of aromatic rings for a molecule.NumAliphaticRingsReturns the number of aliphatic (containing at least one non-aromatic bond) rings for a molecule.NumSaturatedRingsReturns the number of saturated rings for a molecule.NumAromaticHeterocyclesReturns the number of saturated rings for a molecule.NumAromaticHeterocyclesReturns the number of saturated heterocycles for a molecule.NumSaturatedHeterocyclesReturns the number of saturated heterocycles for a molecule.NumSpiroAtomsReturns the number of aliphatic (containing at least one non-aromatic bond) heterocycles for a molecule.NumSpiroAtomsNumBridgeheadAtomsNumAtomStereoCentersNumber of spiro atoms (atoms shared between rings that share at least two bonds).Calculates Labute ASACalculates Labute's Approximate Surface Area (Labute, 2000).TPSACalculates Labute's Approximate Surface Area (Labute, 2000).CrippenClogPUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen polar cefficient (LogP) for a molecule (Wildman and Crippen, 1999).CrippenMRUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen polar cefficient (LogP) for a molecule (Wildman and Crippen, 1999).	FractionCSP3	Returns the fraction of C atoms that are sp^3 hybridized.
NumAromaticRingsReturns the number of aromatic rings for a molecule.NumAliphaticRingsReturns the number of aliphatic (containing at least one non-aromatic bond) rings for a molecule.NumSaturatedRingsReturns the number of saturated rings for a molecule.NumAromaticHeterocyclesReturns the number of heterocycles for a molecule.NumAtomaticHeterocyclesReturns the number of ataurated heterocycles for a molecule.NumAliphaticHeterocyclesReturns the number of aliphatic (containing at least one non-aromatic bond) heterocycles for a molecule.NumAliphaticHeterocyclesReturns the number of ataurated heterocycles for a molecule.NumSpiroAtomsNumber of spiro atoms (atoms shared between rings that share exactly one atom).NumBridgeheadAtomsNumber of bridgehead atoms (atoms shared between rings that share at least two bonds).Calculates the total number of atom stereo centersCalculates the total number of atom stereo centersNumUnspecifiedAtomStereoCentersCalculates Labute's Approximate Surface Area (Labute, 2000).TPSACalculates Labute's Approximate Surface Area (Ertl et al., 2000).CrippenClogPUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen partition coefficient (LogP) for a molecule (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen molar refrectivity (MP) estimate for a molecule.	NumRings	Returns the number of rings.
NumAliphaticRingsReturns the number of aliphatic (containing at least one non-aromatic bond) rings for a molecule.NumSaturatedRingsReturns the number of saturated rings for a molecule.NumHeterocyclesReturns the number of saturated rings for a molecule.NumAromaticHeterocyclesReturns the number of aromatic heterocycles for a molecule.NumSaturatedHeterocyclesReturns the number of aliphatic (containing at least one non-aromatic bond) heterocycles for a molecule.NumSpiroAtomsReturns the number of aliphatic (containing at least one non-aromatic bond) heterocycles for a molecule.NumSpiroAtomsNumber of spiro atoms (atoms shared between rings that share exactly one atom).NumBridgeheadAtomsNumber of bridgehead atoms (atoms shared between rings that share at least two bonds).Calculates the total number of atom stereo centersCalculates the total number of atom stereo centersNumUnspecifiedAtomStereoCentersReturns the topological Polar Surface Area (Labute, 2000).TPSACalculates Labute's Approximate Surface Area (Ertl et al., 2000).CrippenClogPUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen partition coefficient (LogP) for a molecule (Wildman and Crippen, 1999).CrippenMRUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen molar refractivity (MR) estimate for a molecule	NumAromaticRings	Returns the number of aromatic rings for a molecule.
NumSaturatedRingsmolecule.NumMeterocyclesReturns the number of saturated rings for a molecule.NumAromaticHeterocyclesReturns the number of anomatic heterocycles for a molecule.NumAromaticHeterocyclesReturns the number of saturated heterocycles for a molecule.NumAliphaticHeterocyclesReturns the number of aliphatic (containing at least one non-aromatic bond) heterocycles for a molecule.NumSpiroAtomsNumber of spiro atoms (atoms shared between rings that share exactly one atom).NumBridgeheadAtomsNumber of bridgehead atoms (atoms shared between rings that share at least two bonds).Calculates the total number of atom stereo centersCalculates the total number of atom stereo centersNumUnspecifiedAtomStereoCentersReturns the topological Polar Surface Area (Labute, 2000).CrippenClogPUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen partition coefficient (LogP) for a molecule (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen partition coefficient (LogP) for a molecule (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen partition coefficient (LogP) for a molecule (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen partition coefficient (LogP) for a molecule (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen partition coefficient (LogP) for a molecule (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen partition coefficient (LogP) for a molecule (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen malar refractivity (MP) estimate for a molecule	NumAliphaticRings	Returns the number of aliphatic (containing at least one non-aromatic bond) rings for a
NumSaturatedRingsReturns the number of saturated rings for a molecule.NumAromaticHeterocyclesReturns the number of heterocycles for a molecule.NumAromaticHeterocyclesReturns the number of aromatic heterocycles for a molecule.NumAliphaticHeterocyclesReturns the number of aliphatic (containing at least one non-aromatic bond) heterocycles for a molecule.NumSpiroAtomsNumber of spiro atoms (atoms shared between rings that share exactly one atom).NumBridgeheadAtomsNumber of bridgehead atoms (atoms shared between rings that share at least two bonds).Calculates the total number of atom stereo centersCalculates the total number of atom stereo centersNumUnspecifiedAtomStereoCentersReturns the number of atom stereo centers when the molecule has unspecified stereochemistry.LabuteASACalculates Labute's Approximate Surface Area (Labute, 2000).TPSAReturns the topological Polar Surface Area (Ertl et al., 2000).CrippenClogPUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen partition coefficient (LogP) for a molecule (Wildman and Crippen, 1999).CrippenMRUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen molar refractivity (MR) estimate for a molecule		molecule.
NumHeterocyclesReturns the number of heterocycles for a molecule.NumAromaticHeterocyclesReturns the number of aromatic heterocycles for a molecule.NumSaturatedHeterocyclesReturns the number of saturated heterocycles for a molecule.NumAliphaticHeterocyclesReturns the number of aliphatic (containing at least one non-aromatic bond) heterocycles for a molecule.NumSpiroAtomsNumBridgeheadAtomsNumAtomStereoCentersNumber of spiro atoms (atoms shared between rings that share at least two bonds).NumUnspecifiedAtomStereoCentersCalculates the total number of atom stereo centersNumUnspecifiedAtomStereoCentersReturns the number of atom stereo centersNumBridgeheadAtomStereoCentersCalculates Labute's Approximate Surface Area (Labute, 2000).TPSACalculates Labute's Approximate Surface Area (Ertl et al., 2000).CrippenClogPUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen partition coefficient (LogP) for a molecule (Wildman and Crippen, 1999).CrippenMRUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen molar refractivity (MR) estimate for a molecula	NumSaturatedRings	Returns the number of saturated rings for a molecule.
NumAromaticHeterocyclesReturns the number of aromatic heterocycles for a molecule.NumSaturatedHeterocyclesReturns the number of saturated heterocycles for a molecule.NumAliphaticHeterocyclesReturns the number of aliphatic (containing at least one non-aromatic bond) heterocycles for a molecule.NumSpiroAtomsNumber of saturated heterocycles for a molecule.NumBridgeheadAtomsNumber of bridgehead atoms (atoms shared between rings that share exactly one atom).NumMore of bridgehead atoms (atoms shared between rings that share at least two bonds).Calculates the total number of atom stereo centersNumUnspecifiedAtomStereoCentersNumUnspecifiedAtomStereoCentersCalculates Labute's Approximate Surface Area (Labute, 2000).TPSACrippenClogPCrippenMRCrippenMRUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen molar refractivity (MR) estimate for a molecule	NumHeterocycles	Returns the number of heterocycles for a molecule.
NumSaturatedHeterocyclesReturns the number of saturated heterocycles for a molecule.NumAliphaticHeterocyclesReturns the number of aliphatic (containing at least one non-aromatic bond) heterocycles for a molecule.NumSpiroAtomsNumBridgeheadAtomsNumAtomStereoCentersNumber of spiro atoms (atoms shared between rings that share exactly one atom).NumUnspecifiedAtomStereoCentersNumber of bridgehead atoms (atoms shared between rings that share at least two bonds).Calculates the total number of atom stereo centersReturns the number of atom stereo centersNumUnspecifiedAtomStereoCentersReturns the number of atom stereo centers when the molecule has unspecified stereochemistry.LabuteASACalculates Labute's Approximate Surface Area (Labute, 2000).TPSACalculates Labute's Approximate Surface Area (Ertl et al., 2000).Uses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen partition coefficient (LogP) for a molecule (Wildman and Crippen, 1999).CrippenMRUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen molar refractivity (MR) estimate for a molecule	NumAromaticHeterocycles	Returns the number of aromatic heterocycles for a molecule.
NumAliphaticHeterocyclesReturns the number of aliphatic (containing at least one non-aromatic bond) heterocycles for a molecule.NumSpiroAtomsNumBridgeheadAtomsNumAtomStereoCentersNumber of spiro atoms (atoms shared between rings that share at least two bonds).NumUnspecifiedAtomStereoCentersCalculates the total number of atom stereo centersNumUnspecifiedAtomStereoCentersReturns the number of atom stereo centersNumUnspecifiedAtomStereoCentersReturns the number of atom stereo centers when the molecule has unspecified stereochem- istry.LabuteASA TPSACalculates Labute's Approximate Surface Area (Labute, 2000). Returns the topological Polar Surface Area (Ertl et al., 2000). Uses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen partition coefficient (LogP) for a molecule (Wildman and Crippen, 1999).CrippenMRUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen molar refractivity (MR) estimate for a molecula	NumSaturatedHeterocycles	Returns the number of saturated heterocycles for a molecule.
NumSpiroAtomsa molecule.NumBridgeheadAtomsNumber of spiro atoms (atoms shared between rings that share exactly one atom).NumAtomStereoCentersNumber of bridgehead atoms (atoms shared between rings that share at least two bonds).NumUnspecifiedAtomStereoCentersCalculates the total number of atom stereo centersNumUnspecifiedAtomStereoCentersReturns the number of atom stereo centers when the molecule has unspecified stereochemistry.LabuteASACalculates Labute's Approximate Surface Area (Labute, 2000).TPSACalculates Labute's Approximate Surface Area (Ertl et al., 2000).CrippenClogPUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen partition coefficient (LogP) for a molecule (Wildman and Crippen, 1999).CrippenMRUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate	NumAliphaticHeterocycles	Returns the number of aliphatic (containing at least one non-aromatic bond) heterocycles for
NumSpiroAtomsNumber of spiro atoms (atoms shared between rings that share exactly one atom).NumBridgeheadAtomsNumber of spiro atoms (atoms shared between rings that share at least two bonds).NumAtomStereoCentersNumber of bridgehead atoms (atoms shared between rings that share at least two bonds).NumUnspecifiedAtomStereoCentersReturns the number of atom stereo centersLabuteASACalculates Labute's Approximate Surface Area (Labute, 2000).TPSACalculates Labute's Approximate Surface Area (Ertl et al., 2000).CrippenClogPUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen partition coefficient (LogP) for a molecule (Wildman and Crippen, 1999).CrippenMRUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen molar refractivity (MR) estimate for a molecula		a molecule.
NumBridgeheadAtomsNumber of bridgehead atoms (atoms shared between rings that share at least two bonds).NumAtomStereoCentersCalculates the total number of atom stereo centersNumUnspecifiedAtomStereoCentersReturns the number of atom stereo centers when the molecule has unspecified stereochem- istry.LabuteASACalculates Labute's Approximate Surface Area (Labute, 2000).TPSACalculates Labute's Approximate Surface Area (Ertl et al., 2000).CrippenClogPUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen partition coefficient (LogP) for a molecule (Wildman and Crippen, 1999).CrippenMRUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen molar refractivity (MR) estimate for a molecula	NumSpiroAtoms	Number of spiro atoms (atoms shared between rings that share exactly one atom).
NumAtomStereoCentersCalculates the total number of atom stereo centersNumUnspecifiedAtomStereoCentersReturns the number of atom stereo centers when the molecule has unspecified stereochem- istry.LabuteASACalculates Labute's Approximate Surface Area (Labute, 2000).TPSACalculates Labute's Approximate Surface Area (Ertl et al., 2000).CrippenClogPUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen partition coefficient (LogP) for a molecule (Wildman and Crippen, 1999).CrippenMRUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen molar refractivity (MR) estimate for a molecula	NumBridgeheadAtoms	Number of bridgehead atoms (atoms shared between rings that share at least two bonds).
NumUnspecifiedAtomStereoCentersReturns the number of atom stereo centers when the molecule has unspecified stereochemistry.LabuteASACalculates Labute's Approximate Surface Area (Labute, 2000).TPSAReturns the topological Polar Surface Area (Ertl et al., 2000).CrippenClogPUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen partition coefficient (LogP) for a molecule (Wildman and Crippen, 1999).CrippenMRUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen molar refractivity (MR) estimate for a molecula	NumAtomStereoCenters	Calculates the total number of atom stereo centers
LabuteASAIstry.LabuteASACalculates Labute's Approximate Surface Area (Labute, 2000).TPSAReturns the topological Polar Surface Area (Ertl et al., 2000).CrippenClogPUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen partition coefficient (LogP) for a molecule (Wildman and Crippen, 1999).CrippenMRUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen molar refractivity (MR) estimate for a molecula	NumUnspecifiedAtomStereoCenters	Returns the number of atom stereo centers when the molecule has unspecified stereochem-
LabuteASACalculates Labute's Approximate Surface Area (Labute, 2000).TPSAReturns the topological Polar Surface Area (Ertl et al., 2000).CrippenClogPUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen partition coefficient (LogP) for a molecule (Wildman and Crippen, 1999).CrippenMRUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen molar refractivity (MR) estimate for a molecula		
IPSAReturns the topological Polar Surface Area (Eff et al., 2000).CrippenClogPUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen partition coefficient (LogP) for a molecule (Wildman and Crippen, 1999).CrippenMRUses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen molar refractivity (MR) estimate for a molecula		Calculates Labute's Approximate Surface Area (Labute, 2000).
CrippenClogP Uses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calcu- late the default Wildman-Crippen partition coefficient (LogP) for a molecule (Wildman and Crippen, 1999). CrippenMR Uses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen molar refractivity (MR) estimate for a molecula	IPSA	Returns the topological Polar Surface Area (Ertl et al., 2000).
CrippenMR Crippen MR Crippen MR Crippen Date the default Wildman-Crippen molar refractivity (MR) estimate for a molecule (Wildman and Crippen, 1999).	CrippenClogP	Uses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calcu-
CrippenMR Uses an atom-based scheme based on the values in (Wildman and Crippen, 1999) to calculate the default Wildman-Crippen molar refractivity (MR) estimate for a molecula		ate the default wildman-Crippen partition coefficient (LogP) for a molecule (wildman and Crippen 1000)
Chippenivik Uses an atom-based scheme based on the values in (wildman and Chippen, 1999) to calculate the default Wildman-Crippen molar refractivity (MR) estimate for a molecule		Crippen, 1999).
	CrippenNik	Uses an atom-based scheme based on the values in (wildman and Crippen, 1999) to calculate the default Wildman Crippen, 1999) to calculate
aki0y aki1y aki2y aki2y aki4y	ability ability ability ability	the default which an -Oppen motar refractivity (MK) estimate for a molecule.
chiOy, chiTy, chiZy, chiXy, chiAy From equations (3),(9) and (10) of Hall and Kiel (1991).	cm0v, cm1v, cm2v, cm5v, cm4v	From equations (5), (9) and (10) of Hall and Kier (1991).
thou, cm in, cm in, cm in, cm in, cm in a more equations (5), (9) and (10) of main and Kiel (1991) with invariants and twice (1001).	Childh, Chilli, Childh, Childh HallKiar Alpha	From equations (5),(9) and (10) of rain and Kiet (1991) with invariants early of valence. Coloulet the Hell Kier alpha value for a molecule from equation (52) of Hell and Kier (1001).
kappal	kappa1	Calculate the Hall-Kiel alpha value for a molecule from equation (58) on (50) and (50) of Hall and
Kippar Kier (1001)	каррат	Via (1001)
kanna? Calculate the Hall-Kier kanna? value for a molecule from equations (58) and (60) of Hall and	kanna?	Calculate the Hall-Kier kanna? value for a molecule from equations (58) and (60) of Hall and
Kippuz Calculate the fran-file Kappuz value for a molecule from equations (56) and (60) of fran and Kippuz	Kuppu2	Kier (1991)
kappa3 Calculate the Hall-Kier kappa3 value for a molecule from equations (58) (61) and (62) of	kanna3	Calculate the Hall-Kier kanna3 value for a molecule from equations (58) (61) and (62) of
Hall and Kier (1991)	nuppus	Hall and Kier (1991)
calculate the Kier Phi value for a molecule from Kier (1989)	phi	Calculate the Kier Phi value for a molecule from Kier (1989)

Figure S6. Comparison between MBTR results with terms k1,k2,k3 and k2,k3

S4 Tuned hyperparameters

Model	Hyperparameters	Tuning range	Info
RDKitPROP	None		
TopFP	Fp size	[716,2048,4096,8192]	Final bit length of the fingerprint
	Max path	[7,8,9,10]	Maximum path considered for each bit
	N bits per hash	[2, 4, 8, 16]	Number of bit which are hashed together
MACCS	None		
СМ	None		
MBTR	σ_2	[0.3, 0.1, 0.01, 0.001, 0.0001]	Broadening parameter for k=2
	w ₂	[0.2, 0.4, 0.8, 1.2, 1.4]	Weighting parameter for k=2
	σ_3	[0.3, 0.1, 0.01, 0.001, 0.0001]	Broadening parameter for k=3
	W ₃	[0.2, 0.4, 0.8, 1.2, 1.4]	Weighting parameter for $k=3$
KRR with Gaussian kernel	λ	np.logspace(-10, -1, 10)	Regularization strength
	σ	np.logspace(-10, 0, 10)	Length scale
RF classifier	Max depth	[20, 40, 60, 80, 100, None]	The length of each tree, from the root to the
			leaves
	Min samples leaf	[1, 2, 4]	Minimum number of samples per leaf
	Min samples split	[2, 5, 10]	Minimum number of samples per split
	N estimators	[100, 500, 1000, 1500, 2000]	Maximum number of estimators

 Table S5. Hyperparameters tuning range list for each ML model and each molecular descriptor.

Table S6. Hyperparameters tuned for RF classifier model with PROP as the molecular descriptor.

			Hyperparameters						
Reagent ion	Training size	Random seed							
			N estimators	Max depth	Min samples leaf	Min samples split			
Br ⁻	554	555	500	None	4	5			
		8	1500	40	2	10			
		52	2000	20	1	5			
		1066	2000	20	2	2			
		324	500	80	2	5			
O ₂ -	554	555	1000	None	1	5			
		8	2000	None	1	2			
		52	1000	80	1	2			
		1066	2000	20	1	5			
		324	100	60	1	10			
H_3O^+	554	555	1000	100	2	5			
		8	2000	60	1	5			
		52	500	60	2	5			
		1066	1500	40	2	2			
		324	2000	40	1	5			
AceH ⁺	554	555	1000	None	1	5			
		8	100	40	4	5			
		52	1500	100	2	5			
		1066	2000	20	1	5			
		324	500	40	2	10			

			Hyperparameters						
Reagent ion	Training size	Random seed		TopFP		RF classifier			
			Fp size	Max path	N bits per hash	N estimators	Max depth	Min samples leaf	Min samples split
Br ⁻	554	555	2048	7	4	1500	40	1	10
		8	8192	7	8	2000	None	2	2
		52	4096	7	4	1000	20	1	5
		1066	8192	8	8	2000	100	2	2
		324	8192	9	8	1000	20	1	5
O2 ⁻	554	555	8192	8	8	500	20	2	2
		8	4096	9	2	500	None	4	10
		52	2048	7	2	1000	40	2	5
		1066	8192	9	2	100	None	4	5
		324	4096	7	8	1500	None	4	10
H_3O^+	554	555	4096	7	8	100	60	2	2
		8	8192	7	4	1000	None	4	5
		52	4096	7	4	1500	100	2	2
		1066	8192	8	8	100	80	2	5
		324	8192	7	4	1000	100	1	5
AceH ⁺	554	555	8192	7	16	1500	20	4	5
		8	2048	8	4	1500	60	1	2
		52	8192	9	4	500	80	1	2
		1066	8192	7	8	100	40	4	10
		324	8192	8	4	100	80	4	10

Table S7. Hyperparameters tuned for RF classifier model with TopFP as the molecular descriptor.

				Hyperparameters					
Reagent ion	Training size	Random seed		1	RF classifier				
			N estimators	Max depth	Min samples leaf	Min samples split			
Br ⁻	554	555	1000	100	2	2			
		8	100	80	4	10			
		52	100	20	2	5			
		1066	100	40	1	5			
		324	100	None	2	5			
O2 ⁻	554	555	500	100	1	2			
		8	1000	40	2	2			
		52	100	80	1	2			
		1066	500	60	1	2			
		324	500	40	1	2			
H ₃ O ⁺	554	555	100	20	1	2			
		8	1500	80	1	2			
		52	100	100	1	10			
		1066	500	100	1	10			
		324	500	20	1	5			
AceH ⁺	554	555	500	40	1	2			
		8	100	100	1	2			
		52	100	40	1	2			
		1066	100	60	2	2			
		324	100	20	2	10			

 Table S8. Hyperparameters tuned for RF classifier model with MACCS as the molecular descriptor.

 Table S9. Hyperparameters tuned for RF classifier model with CM as the molecular descriptor.

			Hyperparameters						
Reagent ion	Training size	Random seed]	RF classifier				
			N estimators	Max depth	Min samples leaf	Min samples split			
Br ⁻	554	555	100	100	1	2			
		8	100	80	2	2			
		52	100	80	2	5			
		1066	500	100	1	2			
		324	100	100	1	2			
O2 ⁻	554	555	500	60	1	2			
		8	500	40	2	5			
		52	100	60	2	2			
		1066	100	40	2	10			
		324	500	20	1	2			
H_3O^+	554	555	500	40	1	2			
		8	100	60	2	5			
		52	100	100	2	5			
		1066	1000	60	1	10			
		324	100	40	1	2			
AceH ⁺	554	555	500	60	1	5			
		8	100	100	1	5			
		52	500	80	1	2			
		1066	100	20	2	2			
		324	100	60	1	2			

							Нуре	rparameters		
Reagent ion	Training size	Random seed		ME	BTR]	RF classifier	
			σ_2	w ₂	σ_3	W3	N estimators	Max depth	Min samples leaf	Min samples split
Br ⁻	554	555	0.0001	0.6	0.005	1.2	1000	100	1	2
		8	0.0005	0.4	0.1	1	500	40	1	10
		52	0.01	0.4	0.005	0.6	1500	60	2	10
		1066	0.005	1	0.1	1	2000	40	1	10
		324	0.005	0.6	0.1	0.8	2000	80	1	10
O2 ⁻	554	555	0.0001	1.2	0.1	0.8	1500	20	2	2
		8	0.001	0.8	0.1	1.2	100	None	2	2
		52	0.1	0.4	0.1	1	1500	60	2	10
		1066	0.01	0.6	0.1	1.2	2000	60	1	2
		324	0.01	0.6	0.0005	0.6	1000	40	1	5
H_3O^+	554	555	0.1	1.2	0.005	0.6	1500	40	4	10
		8	0.0001	0.2	0.005	0.8	500	100	1	5
		52	0.001	0.6	0.1	1	2000	None	1	2
		1066	0.001	1	0.1	1	1500	40	2	5
		324	0.1	0.8	0.0001	0.2	500	80	2	2
AceH ⁺	554	555	0.01	0.4	0.001	0.2	500	None	1	2
		8	0.001	1.2	0.01	0.6	1500	100	1	10
		52	0.1	1.2	0.1	1.2	2000	20	1	10
		1066	0.1	1	0.0005	1	1000	20	1	2
		324	0.01	0.8	0.0005	1	1500	20	1	10

Table S10. Hyperparameters tuned for RF classifier model with MBTR as the molecular descriptor.

Table S11. Hyperparameters tuned for KRR with Gaussian kernel model with PROP as the molecular descriptor.

			Нуре	rparameters
Reagent ion	Training size	Random seed	KRR with	Gaussian kernel
			λ	σ
Br ⁻	240	555	1e-10	1.29e-09
		8	1e-08	1e-10
		52	1e-07	1.67e-08
		1066	0.001	2.78e-06
		324	1e-08	1.67e-08
O ₂ -	174	555	1e-07	1.29e-09
		8	1e-08	1.67e-08
		52	0.001	2.15e-07
		1066	0.001	2.78e-06
		324	0.001	1.29e-09
H ₃ O ⁺	376	555	0.0001	2.15e-07
		8	1e-05	1.67e-08
		52	1e-05	2.78e-06
		1066	1e-08	1.29e-09
		324	1e-06	2.15e-07
AceH ⁺	379	555	1e-08	1e-10
		8	0.0001	2.15e-07
		52	0.0001	2.15e-07
		1066	1e-07	1.29e-09
		324	1e-07	1.67e-08

					Hyperparamet	ers		
Reagent ion	Training size	Random seed		TopFl	р	KRR with Gaussian kernel		
			Fp size	Max path	N bits per hash	λ	σ	
Br ⁻	240	555	4096	7	4	1e-08	1.29e-09	
		8	2048	7	16	0.0001	1.67e-08	
		52	8192	8	4	0.0001	2.78e-06	
		1066	8192	8	4	1e-05	2.78e-06	
		324	8192	9	4	1e-06	1.67e-08	
O ₂ -	174	555	4096	7	8	1e-05	2.78e-06	
		8	8192	8	2	0.01	3.59e-05	
		52	8192	7	8	1e-05	0.000464	
		1066	8192	7	16	1e-07	1e-10	
		324	8192	7	2	1e-06	1.29e-09	
H_3O^+	376	555	8192	7	16	1e-07	2.78e-06	
		8	4096	7	2	1e-06	3.59e-05	
		52	8192	9	4	1e-05	3.59e-05	
		1066	8192	8	16	1e-09	1.29e-09	
		324	8192	7	8	1e-06	0.000464	
AceH ⁺	379	555	4096	7	8	1e-05	3.59e-05	
		8	4096	8	8	1e-08	3.59e-05	
		52	716	9	8	0.01	3.59e-05	
		1066	8192	10	4	0.001	0.000464	
		324	8192	7	4	0.001	2.15e-07	

Table S12. Hyperparameters tuned for KRR with Gaussian kernel model with TopFP as the molecular descriptor.

Table S13 Hyperparameters tuned for KRR with Gaussian kernel model with MACCS as the molecular descent	rintor
Table 515. Hyperparameters tuned for Kitk with Gaussian kennel model with with CC5 as the molecular desc	mpton.

			Нуро	erparameters
Reagent ion	Training size	Random seed	KRR with	n Gaussian kernel
			λ	σ
Br ⁻	240	555	0.01	0.00599
		8	0.1	0.00599
		52	0.01	0.00599
		1066	0.1	0.00599
		324	0.01	0.00599
O2 ⁻	174	555	0.1	0.00599
		8	0.1	0.00599
		52	0.1	0.00599
		1066	0.1	0.00599
		324	0.1	0.00599
H_3O^+	376	555	0.1	0.00599
		8	0.1	0.00599
		52	1e-07	1.29e-09
		1066	0.1	0.00599
		324	0.1	0.00599
AceH ⁺	379	555	1e-07	1.29e-09
		8	0.1	0.00599
		52	0.1	0.00599
		1066	0.1	0.00599
		324	0.1	0.00599

Table S14. Hyperparameters tuned for KRR with	Gaussian kernel model with CM as the molecular descriptor.
Tuble of a h ipperputation to the first with	Guussium kerner moder with entra us the morecular desemptor.

			Нуре	rparameters
Reagent ion	Training size	Random seed	KRR with	Gaussian kernel
			λ	σ
Br ⁻	240	555	0.01	2.15e-07
		8	0.001	1.67e-08
		52	1e-05	1e-10
		1066	0.01	2.15e-07
		324	0.01	2.15e-07
O2 ⁻	174	555	0.0001	1e-10
		8	0.01	1.67e-08
		52	0.01	2.15e-07
		1066	0.0001	1.29e-09
		324	0.01	1.67e-08
H_3O^+	376	555	1e-05	1e-10
		8	0.0001	1.29e-09
		52	1e-05	1e-10
		1066	1e-05	1e-10
		324	0.1	2.15e-07
AceH ⁺	379	555	0.01	1.67e-08
		8	0.001	1.29e-09
		52	1e-05	1e-10
		1066	0.0001	1e-10
		324	1e-05	1e-10

					Hyp	perpara	meters	
Reagent ion	Training size	Random seed		MBTR			KRR with	n Gaussian kernel
			σ_2	w ₂	σ_3	W3	λ	σ
Br ⁻	240	555	0.0001	1	0.01	0.2	1e-07	2.15e-07
		8	0.005	0.2	0.1	0.4	1e-09	1
		52	0.01	0.2	0.005	0.8	0.1	1
		1066	0.1	1	0.01	0.2	1e-06	2.78e-06
		324	0.01	0.4	0.0005	1.2	1e-08	1.29e-09
O ₂ -	174	555	0.1	0.8	0.01	0.2	1e-09	1.67e-08
		8	0.01	1	0.0005	0.6	0.01	0.0774
		52	0.01	0.4	0.001	1	0.1	0.0774
		1066	0.001	0.8	0.1	1.2	0.0001	0.000464
		324	0.01	0.2	0.1	1	1e-07	2.15e-07
H_3O^+	376	555	0.1	0.4	0.1	1.2	1e-07	2.78e-06
		8	0.0001	1	0.0005	0.8	1e-07	2.15e-07
		52	0.005	0.4	0.0005	0.2	1e-05	2.78e-06
		1066	0.1	1	0.1	0.8	1e-10	1.29e-09
		324	0.01	0.2	0.005	0.4	0.0001	3.59e-05
AceH ⁺	379	555	0.0005	0.8	0.005	0.8	0.001	0.000464
		8	0.01	0.8	0.01	0.6	1e-07	2.15e-07
		52	0.005	0.6	0.005	0.2	1e-08	2.15e-07
		1066	0.0001	0.6	0.001	0.2	0.001	0.000464
		324	0.1	0.2	0.1	0.4	0.001	0.00599

	Table S15. Hyperparameters t	uned for KRR with	Gaussian kernel model	l with MBTR as the molecular	descriptor.
--	------------------------------	-------------------	-----------------------	------------------------------	-------------

70 S5 Additional results: RF accuracy, recall, precision, f1 score; KRR MSE and R²; chemical insight with RDkitPROP and MACCS descriptor

Figure S7. Learning curve of the RF with the accuracy of the classification of Br^- , O_2^- , H_3O^+ and AceH⁺ datasets, based on the TopFP, MACCS, CM, MBTR and properties as the descriptors. The x-axis reports the training set size, the y-axis reports the classification accuracy. We selected the largest training size (80% of the dataset) and obtained the mean value and standard deviation by repeating the training with five different random re-shuffling of the dataset.

RF classifier

Figure S8. Learning curve of the ML with the recall of the classification of Br^- , O_2^- , H_3O^+ and AceH⁺ datasets, based on the TopFP, MACCS, CM, MBTR and properties as the descriptors. The x-axis reports the training set size, the y-axis reports the classification recall. The mean value and standard deviation are obtained by repeating the training with five different random re-shuffling of the dataset.

RF classifier

Figure S9. Learning curve of the ML with the precision of the classification of Br^- , O_2^- , H_3O^+ and AceH⁺ datasets, based on the TopFP, MACCS, CM, MBTR and properties as the descriptors. The x-axis reports the training set size, the y-axis reports the classification precision. The mean value and standard deviation are obtained by repeating the training with five different random re-shuffling of the dataset.

RF classifier

Figure S10. Learning curve of the ML with the F1 score of the classification of Br^- , O_2^- , H_3O^+ and AceH⁺ datasets, based on the TopFP, MACCS, CM, MBTR and properties as the descriptors. The x-axis reports the training set size, the y-axis reports the classification F1 score. The mean value and standard deviation are obtained by repeating the training with five different random re-shuffling of the dataset.

KRR with gaussian kernel

Figure S11. Learning curve with mean squared error (MSE) of the signal intensity values in logarithmic scale of Br^- , O_2^- , H_3O^+ and AceH⁺ datasets, based on the TopFP, MACCS, CM, MBTR and properties as the descriptors. The x-axis reports the training set size, the y-axis reports the MSE of the logarithmic signal intensity. The mean value and standard deviation are obtained by repeating the training with five different random re-shuffling of the dataset.

KRR with gaussian kernel

Figure S12. Learning curve with correlation coefficient (R^2) of the signal intensity values in logarithmic scale of Br^- , O_2^- , H_3O^+ and AceH⁺ datasets, based on the TopFP, MACCS, CM, MBTR and properties as the descriptors. The x-axis reports the training set size, the y-axis reports the R^2 of the logarithmic signal intensity. The mean value and standard deviation are obtained by repeating the training with five different random re-shuffling of the dataset.

Reagent ions Property Br⁻ O_2^{-} ND_{avg} ND_{avg} IMP (%) IMP (%) D_{avg} D_{ava} TPSA 69.11 64.93 3.44 69.62 63.68 3.08 0.42 NumHBD (n HBD) 6.55 0.86 0.44 10.0 1.06 3.94 3.78 3.92 NumHBA (n HBA) 1.58 1.68 3.68 3.24 3.39 3.44 CrippenClogP 3.12 3.65 3.08 FractionCSP3 3.06 0.37 0.43 3.73 0.33 0.44 299.6 Exact Mw (Mw) 3.66 319.99 3.04 307.2 308.99 320.72 amw 3.53 300.33 3.16 307.87 309.75 2.15 lipinskiHBA 4.58 3.96 1.45 4.57 4.07 lipinskiHBD 6.41 0.91 0.49 9.25 1.12 0.46 1.85 4.04 NumRotatableBonds 4.61 1.16 3.78 4.63 2.0 20.57 19.94 NumHeavyAtoms 18.86 1.78 19.44 2.44 35.2 2.39 33.74 35.56 NumAtoms 34.83 NumHeteroatoms 3.32 7.05 6.01 2.17 6.92 6.25 **NumAmideBonds** 1.02 0.67 0.4 1.32 0.75 0.41 NumRings 0.77 1.82 1.61 0.47 1.72 1.69 0.9 NumAromaticRings 1.46 1.19 0.52 1.45 1.24 0.32 0.36 0.45 NumAliphaticRings 0.42 0.45 0.27 NumSaturatedRings 0.28 0.23 0.28 0.23 0.17 0.3 NumHeterocycles 0.79 0.63 0.49 0.43 0.59 0.53 1.01 0.48 0.49 0.32 NumAromaticHeterocycles 0.3 0.51 NumSaturatedHeterocycles 0.1 0.08 0.11 0.09 0.05 0.12 NumAliphaticHeterocycles 0.23 0.15 0.19 0.28 0.1 0.21 NumSpiroAtoms 0.06 0.02 0.01 0.05 0.01 0.01 NumBridgeheadAtoms 0.01 0.05 0.09 0.02 0.02 0.1 **NumAtomStereoCenters** 0.53 0.61 0.56 0.53 0.45 0.64 NumUnspecifiedAtomStereoCenters 0.71 0.52 0.44 0.48 0.41 0.5 labuteASA 3.08 126.05 118.74 2.65 120.96 122.34 CrippenMR 2.46 78.11 75.71 2.91 74.75 77.67 chi0v 2.61 12.67 12.36 2.83 12.05 12.7 chi1v 2.83 7.36 7.36 2.99 6.92 7.56 chi2v 3.43 4.13 4.32 3.28 3.75 4.47 3.29 4.32 chi3v 4.13 3.3 3.75 4.47 chi4v 2.92 2.8 3.01 3.12 2.45 3.14 chi0n 3.29 11.36 10.88 2.7810.94 11.15 2.98 chi1n 6.18 5.93 2.715.93 6.09 2.75 2.48 2.91 2.24 2.77 2.85 chi2n 2.49 2.91 2.75 2.32 2.77 2.85 chi3n 3.1 1.88 2.52 1.76 1.88 chi4n 1.82 hallKierAlpha 4.11-1.58-1.11 3.94 -1.69-1.14 3.14 15.75 14.96 2.67 15.17 15.36 kappa1 2.62 kappa2 6.48 6.54 2.57 6.17 6.67 2.66 3.94 4.13 2.55 3.75 4.19 kappa3 Phi 2.685.06 5.36 2.69 4.78 5.43

Table S16. RDKitPROP RF best estimator feature importances % for Br^- and O_2^- . For each property, the importance value (IMP %) and the average value (avg) for detected molecules (D) and undetected molecules (ND) are reported.

	Reagent ions								
Property		H_3O^+		AceH ⁺					
	IMP (%)	D_{avg}	ND_{avg}	IMP (%)	D_{avg}	ND_{avg}			
TPSA	7.29	70.5	57.29	8.51	69.66	58.87			
n HBD	1.01	0.68	0.49	1.16	0.68	0.5			
n HBA	3.8	4.2	3.11	4.57	4.15	3.18			
CrippenClogP	4.1	3.15	3.69	4.05	3.22	3.54			
FractionCSP3	3.91	0.43	0.36	2.4	0.41	0.4			
Mw	3.31	302.17	321.61	3.22	304.33	317.3			
amw	3.44	302.69	322.8	3.08	304.86	318.45			
lipinskiHBA	7.03	4.59	3.48	7.05	4.55	3.54			
lipinskiHBD	0.92	0.73	0.55	1.08	0.72	0.55			
NumRotatableBonds	2.72	4.53	4.0	1.72	4.47	4.13			
NumHeavyAtoms	1.28	19.87	19.02	1.35	20.03	18.67			
NumAtoms	4.81	36.29	32.24	4.35	36.26	32.24			
NumHeteroatoms	1.76	6.47	6.45	1.81	6.44	6.5			
NumAmideBonds	1.97	0.61	0.32	1.82	0.61	0.32			
NumRings	0.59	1.67	1.75	0.51	1.73	1.64			
NumAromaticRings	0.59	1.35	1.2	0.54	1.4	1.09			
NumAliphaticRings	0.31	0.32	0.55	0.34	0.32	0.55			
NumSaturatedRings	0.17	0.2	0.37	0.3	0.19	0.4			
NumHeterocycles	1.87	0.66	0.32	1.7	0.66	0.32			
NumAromaticHeterocycles	2.71	0.47	0.17	2.25	0.47	0.18			
NumSaturatedHeterocycles	0.15	0.11	0.08	0.13	0.1	0.09			
NumAliphaticHeterocycles	0.23	0.19	0.14	0.14	0.19	0.14			
NumSpiroAtoms	0.01	0.01	0.0	0.01	0.01	0.01			
NumBridgeheadAtoms	0.16	0.01	0.22	0.23	0.01	0.22			
NumAtomStereoCenters	0.59	0.49	0.78	0.57	0.51	0.74			
NumUnspecifiedAtomStereoCenters	0.46	0.46	0.5	0.37	0.45	0.52			
labuteASA	2.49	121.28	123.23	2.47	122.23	121.21			
CrippenMR	2.1	77.09	76.02	2.34	77.63	74.85			
chilov	2.11	12.47	12.54	2.13	12.52	12.44			
chi1v	2.61	7.37	7.34	3.04	7.37	7.33			
chi2v	2.47	4.05	4.64	2.46	4.03	4.69			
chi3v	2.46	4.05	4.64	2.47	4.03	4.69			
chi4v	2.39	2.75	3.29	2.36	2.74	3.32			
chi0n	3.23	11.41	10.4	3.66	11.45	10.3			
chiln	2.61	6.19	5.73	2.93	6.22	5.65			
chi2n	2.51	2.82	2.82	2.71	2.85	2.76			
chi3n	2.45	2.82	2.82	2.6	2.85	2.76			
chi4n	2.25	1.83	1.88	2.13	1.84	1.84			
hallKierAlpha	3.58	-1.51	-0.88	5.41	-1.55	-0.78			
kappa1	2.28	15.37	15.16	2.29	15.39	15.1			
kappa2	3.08	6.58	6.37	2.66	6.56	6.4			
kappa3	3.64	4.04	4.08	2.64	4.0	4.16			
Phi	2.51	5.21	5.27	2.45	5.16	5.37			

Table S17. RDKitPROP RF best estimator feature importances % for H_3O^+ and AceH⁺. For each property, the importance value (IMP %) and the average value (avg) for detected molecules (D) and undetected molecules (ND) are reported.

Table S18. MACCS-based RF best estimator feature importances % of a subset of structural keys (groups) for Br^- and O_2^- . The subset contains the keys that reach 1% of importance for at least one ionization scheme (either positive or negative). For each key, the structure, the importance value (IMP %) and the proportion of presence (PP%) with, in addition, the average group count per molecule (Avg) for detected (D) and undetected (ND) molecules are stated. In the name of the structures, the special characters stand for: "A": any element, "X": halogen, "!": chain or non-ring bond, "\$": ring bond, "%": aromatic query bond, and "not%": atom is at an aromatic/nonaromatic boundary.

		Br ⁻							O ₂ ⁻		
			D)	NI	D		D)	NI	D
Structure	Key	IMP %	PP %	Avg	PP %	Avg	IMP %	PP %	Avg	PP %	Avg
NH OH N NA(A)A X XA(A)A X!A\$A Cl F C=O CH ₃ CH ₃ > 1 CH ₃ > 2 (&)	151 139 161 156 134 107 87 103 42 154 160 149 141	$\begin{array}{c} 3.56 \\ 2.29 \\ 0.66 \\ 0.5 \\ 1.7 \\ 1.87 \\ 1.59 \\ 1.18 \\ 1.56 \\ 1.8 \\ 0.76 \\ 1.39 \\ 0.94 \end{array}$	50.33 21.0 83.67 77.33 66.67 64.33 54.0 53.33 25.67 68.33 74.67 56.0 35.0	$\begin{array}{c} 1.28\\ 1.02\\ 2.39\\ 3.1\\ 2.9\\ 3.43\\ 4.13\\ 1.94\\ 3.34\\ 1.34\\ 2.58\\ 3.1\\ 3.76\end{array}$	$\begin{array}{c} 25.95 \\ 6.11 \\ 71.5 \\ 64.12 \\ 48.09 \\ 43.0 \\ 36.39 \\ 40.2 \\ 10.43 \\ 50.38 \\ 82.7 \\ 71.5 \\ 43.77 \end{array}$	1.38 1.25 2.05 2.83 2.68 3.6 4.94 2.37 2.56 1.32 2.87 3.16 3.9	$5.64 \\ 3.19 \\ 0.57 \\ 0.53 \\ 1.19 \\ 1.38 \\ 1.19 \\ 0.99 \\ 1.81 \\ 1.52 \\ 1.16 \\ 1.14 \\ 1.21 \\ $	64.22 24.77 87.16 79.36 67.43 64.68 53.67 50.46 28.9 72.48 70.18 53.21 29.82	1.26 1.02 2.41 3.32 2.86 3.33 3.79 1.72 3.48 1.31 2.55 3.04 3.86	23.79 6.95 72.0 65.47 50.95 46.53 39.58 43.79 11.58 51.58 83.37 70.11 44.63	$\begin{array}{c} 1.41\\ 1.18\\ 2.1\\ 2.76\\ 2.75\\ 3.63\\ 4.95\\ 2.38\\ 2.6\\ 1.34\\ 2.83\\ 3.17\\ 3.84 \end{array}$
NC(O)N NC(C)N Charge NN C%N NAN NAAN CN(C)C QHAACH ₂ A QHAACH ₂ A OC(N)C QCH ₃ NAAO NAAAO QHACH ₂ A ACH ₂ O NCO NAO Heterocyclic atom > 1 (&) N heterocycle OCO Aromatic ring > 1 A!O!A ACH ₂ AAACH ₂ A ACH ₂ AAACH ₂ A A\$A!N Nnot%A%A O=A > 1 Heterocycle	$\begin{array}{c} 37\\ 38\\ 49\\ 52\\ 65\\ 77\\ 79\\ 85\\ 90\\ 91\\ 92\\ 93\\ 95\\ 97\\ 104\\ 109\\ 110\\ 117\\ 120\\ 121\\ 123\\ 125\\ 126\\ 128\\ 133\\ 135\\ 136\\ 137\\ \end{array}$	$\begin{array}{c} 1.13\\ 0.58\\ 0.4\\ 1.24\\ 0.9\\ 1.02\\ 1.1\\ 1.02\\ 1.09\\ 1\\ 0.89\\ 0.85\\ 1.05\\ 1.77\\ 0.92\\ 0.78\\ 0.81\\ 1.02\\ 0.62\\ 0.49\\ 0.91\\ 1.44\\ 0.66\\ 0.71\\ 0.68\\ 0.75\\ 1.22\\ 0.61\\ \end{array}$	$\begin{array}{c} 17.0\\ 10.33\\ 3.0\\ 23.33\\ 42.33\\ 41.67\\ 28.33\\ 16.33\\ 13.67\\ 15.0\\ 35.0\\ 37.33\\ 34.33\\ 49.0\\ 14.0\\ 26.33\\ 53.0\\ 57.67\\ 40.67\\ 47.67\\ 30.67\\ 49.33\\ 56.0\\ 20.0\\ 38.0\\ 35.67\\ 35.33\\ 53.0 \end{array}$	$\begin{array}{c} 1.2\\ 1.16\\ 2.33\\ 1.04\\ 3.33\\ 1.99\\ 1.87\\ 1.14\\ 1.17\\ 1.04\\ 1.14\\ 1.63\\ 1.45\\ 2.58\\ 1.19\\ 1.34\\ 2.01\\ 2.32\\ 2.71\\ 2.14\\ 1.11\\ nan\\ 1.58\\ 3.13\\ 2.47\\ 2.41\\ 2.51\\ 2.31\\ \end{array}$	$\begin{array}{c} 6.36\\ 3.31\\ 10.43\\ 7.63\\ 25.95\\ 23.16\\ 12.98\\ 25.95\\ 4.07\\ 4.33\\ 25.45\\ 39.44\\ 20.87\\ 26.97\\ 5.34\\ 29.77\\ 40.46\\ 42.75\\ 29.52\\ 35.37\\ 31.04\\ 32.06\\ 59.29\\ 29.26\\ 33.59\\ 32.57\\ 25.19\\ 42.75\\ \end{array}$	$\begin{array}{c} 1.24\\ 1.08\\ 2.66\\ 1.2\\ 3.87\\ 3.04\\ 1.75\\ 1.41\\ 1.31\\ 1.29\\ 1.26\\ 1.85\\ 1.51\\ 2.94\\ 1.33\\ 1.56\\ 1.82\\ 2.1\\ 2.57\\ 1.98\\ 1.14\\ nan\\ 2.0\\ 4.46\\ 2.92\\ 2.86\\ 2.36\\ 2.08\\ \end{array}$	$\begin{array}{c} 0.71\\ 1.12\\ 0.17\\ 0.41\\ 0.71\\ 0.76\\ 0.73\\ 0.69\\ 0.71\\ 1.98\\ 1.05\\ 1.1\\ 0.7\\ 0.92\\ 1.53\\ 1.02\\ 0.89\\ 0.93\\ 0.62\\ 0.65\\ 1.22\\ 1.05\\ 0.9\\ 1.02\\ 1.04\\ 1.04\\ 0.81\\ 0.56\end{array}$	$\begin{array}{c} 19.72\\ 13.3\\ 5.96\\ 17.89\\ 42.2\\ 42.66\\ 25.69\\ 16.06\\ 13.76\\ 19.27\\ 38.07\\ 37.16\\ 28.44\\ 48.17\\ 16.51\\ 18.35\\ 54.13\\ 59.17\\ 35.32\\ 46.33\\ 26.61\\ 46.33\\ 48.62\\ 12.84\\ 47.71\\ 46.33\\ 34.86\\ 50.46\end{array}$	1.16 1.14 2.69 1.08 3.36 2.08 1.91 1.06 1.17 1.07 1.18 1.63 1.44 2.76 1.22 1.23 1.97 2.32 2.56 2.01 1.05 nan 1.45 3.39 2.54 2.57 2.09	$\begin{array}{c} 6.95\\ 3.16\\ 7.79\\ 12.84\\ 28.84\\ 25.89\\ 16.84\\ 24.42\\ 5.68\\ 4.21\\ 25.68\\ 39.16\\ 25.89\\ 31.16\\ 5.68\\ 32.84\\ 42.11\\ 44.63\\ 33.89\\ 38.11\\ 32.84\\ 36.42\\ 62.11\\ 30.95\\ 29.89\\ 28.21\\ 27.16\\ 45.68\\ \end{array}$	$\begin{array}{c} 1.27\\ 1.13\\ 2.57\\ 1.1\\ 3.72\\ 2.71\\ 1.76\\ 1.41\\ 1.26\\ 1.2\\ 1.21\\ 1.81\\ 1.5\\ 2.71\\ 1.26\\ 1.54\\ 1.88\\ 2.15\\ 2.68\\ 2.09\\ 1.15\\ nan\\ 1.96\\ 4.12\\ 2.85\\ 2.76\\ 2.36\\ 2.25\\ \end{array}$
$QCH_2A > 1$ (&) O > 3 (&) N > 1 Anot%A%Anot%A 6M RING > 1 O > 2 A!A\$A!A QCH_2A C-N	138 140 142 144 145 146 150 153 158	$\begin{array}{c} 0.54 \\ 0.83 \\ 1.34 \\ 1.01 \\ 0.87 \\ 1.09 \\ 1.04 \\ 0.66 \\ 0.94 \end{array}$	22.0 27.33 58.0 59.33 38.67 51.0 70.0 44.67 70.33	2.59 4.59 3.01 1.98 2.19 3.85 2.43 1.78 2.73	30.03 29.77 36.13 45.29 33.33 48.85 54.45 50.89 57.0	2.53 4.62 3.08 2.01 2.24 3.99 2.87 1.9 2.97	$ \begin{array}{r} 1.17 \\ 1.09 \\ 0.9 \\ 1.36 \\ 1.09 \\ 0.74 \\ 0.98 \\ 1.37 \\ 0.75 \\ \end{array} $	12.84 24.31 60.09 61.01 38.53 46.79 69.27 33.94 72.02	2.61 4.6 3.04 2.1 2.17 3.83 2.43 1.61 2.87	32.84 30.74 38.95 46.95 34.32 51.16 57.47 54.74 58.53	2.54 4.61 3.04 1.94 2.25 3.97 2.78 1.92 2.84

Table S19. MACCS-based RF best estimator feature importances % of a subset of structural keys (groups) for H_3O^+ and AceH⁺. The subset contains the keys that reach 1% of importance for at least one ionization scheme (either positive or negative). For each key, the structure, the importance value (IMP %) and the proportion of presence (PP%) with, in addition, the average group count per molecule (Avg) for detected (D) and undetected (ND) molecules are stated. In the name of the structures, the special characters stand for: "A": any element, "X": halogen, "!": chain or non-ring bond, "\$": ring bond, "%": aromatic query bond, and "not%": atom is at an aromatic/nonaromatic boundary.

		H ₃ O ⁺					A	AceH ⁺			
			D)	N	D		D)	N	D
Structure	Key	IMP %	PP %	Avg	PP %	Avg	IMP %	PP %	Avg	PP %	Avg
NH OH N NA(A)A X XA(A)A X!A A Cl F C=O CH ₃ CH ₃ > 1 CH ₃ > 2 (&)	151 139 161 156 134 107 87 103 42 154 160 149 141	$\begin{array}{c} 1.44\\ 0.81\\ 3.65\\ 3.8\\ 1.33\\ 1.27\\ 2.07\\ 1.81\\ 0.63\\ 0.82\\ 1.44\\ 2.28\\ 1.85\end{array}$	44.68 10.43 88.3 82.98 49.15 45.53 37.02 38.51 19.15 63.62 85.96 72.55 47.66	1.29 1.0 2.28 2.87 2.41 2.79 3.23 1.5 3.04 1.31 2.9 3.25 3.9	$\begin{array}{c} 19.28\\ 17.04\\ 52.47\\ 42.15\\ 70.85\\ 66.37\\ 58.74\\ 61.43\\ 12.56\\ 46.64\\ 65.02\\ 48.43\\ 23.77\end{array}$	1.49 1.18 1.97 3.31 3.36 4.55 6.21 3.01 3.14 1.39 2.34 2.8 3.62	$\begin{array}{c} 1.82\\ 0.82\\ 4.0\\ 3.93\\ 1.27\\ 1.35\\ 1.24\\ 1.34\\ 0.48\\ 1.57\\ 1.15\\ 1.69\\ 1.34\end{array}$	44.94 10.34 88.19 82.91 50.42 47.05 39.66 40.51 18.99 64.77 84.81 70.68 45.36	1.28 1.0 2.26 2.88 2.44 2.81 3.26 1.51 3.1 1.32 2.86 3.23 3.92	$18.26 \\ 17.35 \\ 52.05 \\ 41.55 \\ 68.49 \\ 63.47 \\ 53.42 \\ 57.53 \\ 12.79 \\ 43.84 \\ 67.12 \\ 52.05 \\ 28.31 \\ 10.05 \\ 10.0$	1.58 1.18 2.04 3.29 3.36 4.64 6.52 3.13 2.96 1.38 2.44 2.86 3.58
NC(O)N NC(C)N Charge NN C%N NAN NAAN C%N NAAN CN(C)C QHAACH ₂ A QHAACH ₂ A OC(N)C QCH ₃ NAAO QHACH ₂ A ACH ₂ O NCO NAO Heterocyclic atom > 1 (&) N heterocycle OCO Aromatic ring > 1 A!O!A ACH ₂ AAACH ₂ A ACH ₂ AAACH ₂ A A\$A!N Nnot%A%A O=A > 1 Heterocycle QCH ₂ A > 1 (&) O > 3 (&) N > 1 Anot%A%Anot%A 6M RING > 1	$\begin{array}{c} 37\\ 38\\ 49\\ 52\\ 65\\ 77\\ 79\\ 85\\ 90\\ 91\\ 92\\ 93\\ 95\\ 97\\ 104\\ 109\\ 110\\ 117\\ 120\\ 121\\ 123\\ 125\\ 126\\ 128\\ 133\\ 135\\ 136\\ 137\\ 138\\ 140\\ 142\\ 144\\ 145 \end{array}$	$\begin{array}{c} 0.3\\ 0.21\\ 1.14\\ 0.27\\ 1.8\\ 1.12\\ 0.64\\ 0.59\\ 0.18\\ 0.23\\ 0.77\\ 0.97\\ 0.94\\ 1.2\\ 0.25\\ 0.52\\ 1.78\\ 2.5\\ 1.01\\ 2.2\\ 0.65\\ 0.73\\ 0.88\\ 0.46\\ 0.55\\ 0.62\\ 0.85\\ 1.58\\ 0.44\\ 1.53\\ 1.94\\ 0.73\\ 0.73\\ 0.73\end{array}$	$\begin{array}{c} 12.77\\ 7.23\\ 3.83\\ 18.51\\ 41.91\\ 38.51\\ 25.11\\ 25.74\\ 10.43\\ 10.64\\ 35.53\\ 43.4\\ 32.98\\ 44.89\\ 10.0\\ 31.28\\ 55.96\\ 60.21\\ 42.13\\ 50.21\\ 30.0\\ 42.77\\ 61.28\\ 27.45\\ 38.09\\ 35.74\\ 29.36\\ 56.17\\ 29.36\\ 56.53\\ 50.43\\ 35.32\\ \end{array}$	1.18 1.15 2.83 1.1 3.52 2.45 1.83 1.13 1.18 1.12 1.14 1.78 1.45 2.54 1.28 1.46 1.82 2.03 2.65 2.08 1.13 nan 1.85 3.37 2.76 2.69 2.37 2.23 2.59 4.51 3.03 1.95 2.2	$\begin{array}{c} 7.17\\ 4.48\\ 14.35\\ 5.83\\ 14.35\\ 15.7\\ 8.07\\ 13.45\\ 3.59\\ 5.38\\ 17.04\\ 28.25\\ 13.45\\ 18.83\\ 7.17\\ 21.97\\ 24.66\\ 26.01\\ 17.94\\ 20.63\\ 32.74\\ 32.74\\ 50.67\\ 20.63\\ 30.04\\ 30.04\\ 30.04\\ 30.04\\ 30.04\\ 28.25\\ 20.63\\ 30.04\\ 30.04\\ 30.04\\ 30.04\\ 28.25\\ 20.63\\ 30.04\\ 30.$	$\begin{array}{c} 1.31\\ 1.1\\ 2.47\\ 1.0\\ 3.88\\ 2.37\\ 1.78\\ 2.1\\ 1.38\\ 1.08\\ 1.45\\ 1.67\\ 1.63\\ 3.69\\ 1.12\\ 1.53\\ 2.36\\ 3.1\\ 2.62\\ 1.96\\ 1.11\\ nan\\ 1.77\\ 5.78\\ 2.6\\ 2.57\\ 2.58\\ 2.03\\ 2.41\\ 4.82\\ 3.07\\ 2.09\\ 2.25\\ \end{array}$	$\begin{array}{c} 0.33\\ 0.15\\ 0.99\\ 0.36\\ 1.38\\ 0.98\\ 0.54\\ 0.44\\ 0.27\\ 0.27\\ 1.16\\ 0.9\\ 1.53\\ 1.02\\ 0.33\\ 0.65\\ 1.54\\ 2.36\\ 0.74\\ 1.56\\ 0.74\\ 1.56\\ 0.75\\ 1.03\\ 1.01\\ 0.55\\ 0.64\\ 0.57\\ 0.77\\ 1.34\\ 0.5\\ 1.44\\ 1.64\\ 0.88\\ 1.03\\ \end{array}$	$\begin{array}{c} 12.24\\ 7.59\\ 3.8\\ 18.99\\ 41.35\\ 38.4\\ 24.68\\ 23.84\\ 10.34\\ 10.76\\ 36.92\\ 41.77\\ 33.76\\ 44.09\\ 10.34\\ 31.22\\ 55.7\\ 59.92\\ 41.14\\ 49.79\\ 31.01\\ 44.73\\ 61.6\\ 26.79\\ 39.03\\ 36.71\\ 29.75\\ 55.91\\ 27.85\\ 28.48\\ 55.06\\ 51.27\\ 37.97\end{array}$	$\begin{array}{c} 1.12\\ 1.17\\ 2.72\\ 1.1\\ 3.48\\ 2.36\\ 1.84\\ 1.14\\ 1.18\\ 1.1\\ 1.15\\ 1.76\\ 1.46\\ 2.45\\ 1.22\\ 1.43\\ 1.8\\ 2.0\\ 2.66\\ 2.07\\ 1.14\\ nan\\ 1.82\\ 3.24\\ 2.75\\ 2.68\\ 2.3\\ 2.22\\ 2.57\\ 4.47\\ 3.02\\ 1.95\\ 2.21\\ \end{array}$	$\begin{array}{c} 8.22\\ 3.65\\ 14.61\\ 4.57\\ 15.07\\ 15.53\\ 8.68\\ 17.35\\ 3.65\\ 5.02\\ 13.7\\ 31.51\\ 11.42\\ 20.09\\ 6.39\\ 21.92\\ 24.66\\ 26.03\\ 19.63\\ 21.0\\ 30.59\\ 28.31\\ 49.77\\ 21.92\\ 27.85\\ 29.22\\ 28.31\\ 23.74\\ 29.22\\ 28.31\\ 23.74\\ 29.22\\ 25.11\\ 51.6\\ 30.59\end{array}$	1.5 1.0 2.53 1.0 4.09 2.85 1.74 1.87 1.38 1.18 1.47 1.75 1.6 4.07 1.29 1.6 2.48 3.3 2.56 2.0 1.1 nan 1.83 6.02 2.62 2.59 2.75 2.08 2.5 4.89 3.15 2.1 2.25
0 > 2 A!A\$A!A QCH ₂ A C-N	146 150 153 158	0.79 0.66 0.79 1.4	50.85 57.66 54.47 72.13	3.87 2.26 1.86 2.9	47.53 68.61 34.98 43.05	4.05 3.35 1.83 2.68	1.32 0.69 0.64 1.03	51.27 58.65 52.11 71.73	3.82 2.32 1.84 2.86	46.58 66.67 39.73 43.38	4.19 3.29 1.9 2.8

S6 Additional ML models: NB, SVC (classifiers); linear KRR and RF regressor (regression)

Model	Hyperparameters	Tuning range	Info
RF regressor	Max depth	[20, 40, 60, 80, 100, None]	The length of each tree, from the root to the
			leaves
	Min samples leaf	[1, 2, 4]	Minimum number of samples per leaf
	Min samples split	[2, 5, 10]	Minimum number of samples per split
	N estimators	[100, 500, 1000, 1500, 2000]	Maximum number of estimators
SVC	С	[0.1, 1, 10, 100]	Regularization parameter
	Kernel	['rbf','poly','sigmoid']	Kernel type
	γ	['scale','auto']	Kernel coefficient
KRR with Linear kernel	None		
NB	None		

 Table S20. Hyperparameters tuning range list for each ML model and each molecular descriptor.

Table S21. Hyperparameters tuned for NB model with TopFP as the molecular descriptor.

				Hyperpara	neters
Reagent ion	Training size	Random seed		TopFl	2
			Fp size	Max path	N bits per hash
Br ⁻	554	555	8192	7	2
		8	4096	8	2
		52	8192	7	2
		1066	4096	7	4
		324	8192	7	2
O2 ⁻	554	555	4096	7	4
		8	8192	9	2
		52	8192	8	2
		1066	2048	7	2
		324	8192	7	2
H ₃ O ⁺	554	555	8192	8	2
		8	716	9	8
		52	2048	10	16
		1066	716	10	16
		324	8192	10	2
AceH ⁺	554	555	2048	10	16
		8	8192	7	4
		52	716	10	8
		1066	8192	7	2
		324	2048	10	16

Table S22. Hyperparameters tuned for NB model with MBTR as the molecular descriptor.

			Hyperparameters				
Reagent ion	Training size	Random seed		ME	BTR		
			σ_2	w ₂	σ_3	W 3	
Br ⁻	554	555	0.1	0.4	0.0001	0.8	
		8	0.0005	0.4	0.01	0.8	
		52	0.0005	0.6	0.001	0.6	
		1066	0.005	1	0.0001	0.4	
		324	0.0001	1.2	0.005	0.8	
O2 ⁻	554	555	0.1	0.6	0.0005	1	
		8	0.005	0.2	0.0005	1	
		52	0.001	0.6	0.0005	0.8	
		1066	0.001	0.6	0.001	0.8	
		324	0.01	0.4	0.0005	0.8	
H_3O^+	554	555	0.1	0.8	0.005	1	
		8	0.0005	1.2	0.001	0.8	
		52	0.001	0.2	0.005	0.8	
		1066	0.001	1.2	0.0001	0.8	
		324	0.0005	0.6	0.005	0.8	
AceH ⁺	554	555	0.0005	0.8	0.0001	1	
		8	0.001	0.6	0.0001	1	
		52	0.01	0.4	0.1	0.8	
		1066	0.001	0.8	0.005	1	
		324	0.001	0.6	0.1	0.2	

Naive bayes classifier

Figure S13. Learning curve of the naive bayes with the accuracy of the classification of Br^- , O_2^- , H_3O^+ and $AceH^+$ datasets, based on the TopFP, MACCS, CM, MBTR and properties as the descriptors. The x-axis reports the training set size, the y-axis reports the classification accuracy. The mean value and standard deviation are obtained by repeating the training with five different random re-shuffling of the dataset.

Naive bayes classifier

Figure S14. Learning curve of the naive bayes with the recall of the classification of Br^- , O_2^- , H_3O^+ and AceH⁺ datasets, based on the TopFP, MACCS, CM, MBTR and properties as the descriptors. The x-axis reports the training set size, the y-axis reports the classification recall. The mean value and standard deviation are obtained by repeating the training with five different random re-shuffling of the dataset.

Naive bayes classifier

Figure S15. Learning curve of the naive bayes with the precision of the classification of Br^- , O_2^- , H_3O^+ and AceH⁺ datasets, based on the TopFP, MACCS, CM, MBTR and properties as the descriptors. The x-axis reports the training set size, the y-axis reports the classification precision. The mean value and standard deviation are obtained by repeating the training with five different random re-shuffling of the dataset.

Naive bayes classifier

Figure S16. Learning curve of the naive bayes with the F1 score of the classification of Br^- , O_2^- , H_3O^+ and AceH⁺ datasets, based on the TopFP, MACCS, CM, MBTR and properties as the descriptors. The x-axis reports the training set size, the y-axis reports the classification F1 score. The mean value and standard deviation are obtained by repeating the training with five different random re-shuffling of the dataset.

Table S23. Hyperparameters tuned for SVC model with RDKitPROP as the molecular descriptor.

			Ну	perparame	eters
Reagent ion	Training size	Random seed		SVC	
			С	Kernel	γ
Br ⁻	554	555	100	rbf	auto
		8	100	rbf	auto
		52	1	rbf	auto
		1066	10	rbf	auto
		324	100	rbf	auto
O ₂ -	554	555	100	rbf	auto
		8	10	rbf	auto
		52	10	rbf	auto
		1066	100	rbf	auto
		324	10	rbf	auto
H_3O^+	554	555	10	rbf	scale
		8	100	rbf	scale
		52	10	rbf	scale
		1066	1	rbf	auto
		324	10	rbf	scale
AceH ⁺	554	555	100	rbf	scale
		8	100	rbf	scale
		52	100	rbf	scale
		1066	100	rbf	scale
		324	100	rbf	scale

Table S24. Hyperparameters tuned for SVC model with TopFP as the molecular descriptor.

			Hyperparameters					
Reagent ion	Training size	Random seed		TopFl	Р		SVC	
			Fp size	Max path	N bits per hash	С	Kernel	γ
Br ⁻	554	555	4096	9	8	1	poly	scale
		8	8192	7	4	10	rbf	scale
		52	8192	7	16	100	poly	auto
		1066	8192	8	8	10	rbf	auto
		324	4096	7	16	0.1	poly	scale
O2 ⁻	554	555	2048	9	2	10	rbf	auto
		8	2048	7	2	100	rbf	scale
		52	2048	7	2	10	rbf	auto
		1066	4096	10	4	100	rbf	scale
		324	2048	9	4	1	poly	scale
H_3O^+	554	555	8192	8	4	100	rbf	scale
		8	2048	9	2	1	poly	scale
		52	8192	9	4	10	sigmoid	auto
		1066	4096	9	4	100	rbf	auto
		324	8192	7	8	10	poly	scale
AceH ⁺	554	555	4096	8	8	10	poly	scale
		8	8192	7	2	1	rbf	scale
		52	4096	7	4	100	rbf	scale
		1066	4096	9	2	100	rbf	auto
		324	2048	9	4	10	poly	auto

Table S25. Hyperparameters tuned for SVC model with MACCS as the molecular descriptor.

			Н	yperparame	ters
Reagent ion	Training size	Random seed		SVC	
			С	Kernel	γ
Br ⁻	554	555	10	rbf	scale
		8	10	rbf	scale
		52	1	rbf	scale
		1066	1	poly	scale
		324	100	rbf	scale
O2 ⁻	554	555	10	rbf	auto
		8	100	rbf	scale
		52	10	rbf	auto
		1066	100	rbf	scale
		324	100	rbf	scale
H ₃ O ⁺	554	555	10	rbf	scale
		8	10	sigmoid	auto
		52	10	rbf	auto
		1066	10	rbf	auto
		324	10	rbf	auto
AceH ⁺	554	555	10	sigmoid	auto
		8	10	rbf	auto
		52	10	rbf	scale
		1066	100	poly	auto
		324	1	poly	scale

Table S26. Hyperparameters tuned for SVC model with CM as the molecular descriptor.

			H	yperparame	ters
Reagent ion	Training size	Random seed		SVC	
			С	Kernel	γ
Br ⁻	554	555	100	rbf	auto
		8	100	rbf	auto
		52	10	rbf	auto
		1066	100	rbf	scale
		324	100	rbf	scale
O2 ⁻	554	555	1	rbf	auto
		8	1	rbf	auto
		52	1	rbf	auto
		1066	10	rbf	auto
		324	10	rbf	auto
H_3O^+	554	555	1	rbf	scale
		8	100	rbf	scale
		52	1	poly	scale
		1066	100	rbf	auto
		324	10	rbf	scale
AceH ⁺	554	555	0.1	poly	scale
		8	10	rbf	scale
		52	10	poly	scale
		1066	100	rbf	scale
		324	1	sigmoid	scale

Table S27. Hyperparameters tuned for SVC model with MBTR as the molecular descriptor.

			Hyperparameters							
Reagent ion	Training size	Random seed		ME	BTR			SVC		
			σ_2	w ₂	σ_3	W3	С	Kernel	γ	
Br ⁻	554	555	0.1	0.4	0.005	0.6	10	rbf	scale	
		8	0.1	0.2	0.1	1.2	10	poly	scale	
		52	0.1	1.2	0.001	0.6	10	poly	scale	
		1066	0.001	0.2	0.1	0.6	10	rbf	scale	
		324	0.01	0.8	0.0001	0.6	100	rbf	scale	
O_2^-	554	555	0.0001	0.4	0.01	1.2	10	rbf	scale	
		8	0.1	0.6	0.0005	0.6	100	rbf	scale	
		52	0.0001	0.2	0.01	1	1	sigmoid	scale	
		1066	0.01	0.4	0.1	1.2	100	rbf	scale	
_		324	0.001	1.2	0.1	1.2	10	rbf	scale	
H_3O^+	554	555	0.005	0.4	0.0001	1.2	1	poly	scale	
		8	0.1	1.2	0.0005	0.6	1	poly	scale	
		52	0.1	0.8	0.01	0.8	100	rbf	scale	
		1066	0.1	0.4	0.005	0.2	10	poly	scale	
		324	0.001	1.2	0.001	0.8	100	rbf	scale	
AceH ⁺	554	555	0.001	0.8	0.005	0.8	10	rbf	scale	
		8	0.01	1.2	0.01	0.2	1	poly	scale	
		52	0.005	1	0.001	1.2	10	poly	scale	
		1066	0.005	0.2	0.001	1	100	rbf	scale	
		324	0.01	1.2	0.1	0.4	0.1	sigmoid	scale	

Support vector classifier

Figure S17. Learning curve of the support vector classifier with the accuracy of the classification of Br^- , O_2^- , H_3O^+ and AceH⁺ datasets, based on the TopFP, MACCS, CM, MBTR and properties as the descriptors. The x-axis reports the training set size, the y-axis reports the classification accuracy. The mean value and standard deviation are obtained by repeating the training with five different random re-shuffling of the dataset.

Support vector classifier

Figure S18. Learning curve of the support vector classifier with the recall of the classification of Br^- , O_2^- , H_3O^+ and AceH⁺ datasets, based on the TopFP, MACCS, CM, MBTR and properties as the descriptors. The x-axis reports the training set size, the y-axis reports the classification recall. The mean value and standard deviation are obtained by repeating the training with five different random re-shuffling of the dataset.

Figure S19. Learning curve of the support vector classifier with the precision of the classification of Br^- , O_2^- , H_3O^+ and AceH⁺ datasets, based on the TopFP, MACCS, CM, MBTR and properties as the descriptors. The x-axis reports the training set size, the y-axis reports the classification precision. The mean value and standard deviation are obtained by repeating the training with five different random re-shuffling of the dataset.

Support vector classifier

Figure S20. Learning curve of the support vector classifier with the F1 score of the classification of Br^- , O_2^- , H_3O^+ and AceH⁺ datasets, based on the TopFP, MACCS, CM, MBTR and properties as the descriptors. The x-axis reports the training set size, the y-axis reports the classification F1 score. The mean value and standard deviation are obtained by repeating the training with five different random re-shuffling of the dataset.

Table S28. Hyperparameters tuned for KRR with Linear kernel model with TopFP as the molecular descriptor.

				Hyperpara	meters
Reagent ion	Training size	Random seed		TopFI	P
			Fp size	Max path	N bits per hash
Br ⁻	240	555	716	8	2
		8	2048	9	2
		52	2048	7	8
		1066	2048	7	4
		324	8192	7	16
O2 ⁻	174	555	716	8	16
		8	2048	8	4
		52	2048	9	16
		1066	716	9	16
		324	716	7	16
H ₃ O ⁺	376	555	4096	7	16
		8	716	9	16
		52	8192	7	16
		1066	716	8	16
		324	2048	7	16
AceH ⁺	379	555	8192	8	16
		8	4096	8	8
		52	716	8	16
		1066	4096	7	16
		324	4096	7	8

Table S29.	Hy	perparameters 1	tuned for	KRR	with I	Linear	kernel	model	l with	MBTR	as the	e molecul	ar deso	criptor.
------------	----	-----------------	-----------	-----	--------	--------	--------	-------	--------	------	--------	-----------	---------	----------

			Hyperparameters				
Reagent ion	Training size	Random seed		ME	BTR		
			σ_2	w ₂	σ_3	w3	
Br ⁻	240	555	0.01	0.2	0.001	0.4	
		8	0.001	0.2	0.01	0.8	
		52	0.0001	0.4	0.1	0.4	
		1066	0.0001	0.2	0.1	1.2	
		324	0.01	0.4	0.001	0.2	
O ₂ -	174	555	0.1	0.2	0.001	0.2	
		8	0.001	0.2	0.01	0.2	
		52	0.01	0.4	0.3	0.4	
		1066	0.01	0.4	0.0001	0.8	
		324	0.01	0.2	0.3	1.4	
H_3O^+	376	555	0.0001	0.4	0.3	0.2	
		8	0.3	0.2	0.01	0.2	
		52	0.1	0.2	0.0001	0.2	
		1066	0.1	0.4	0.01	0.2	
		324	0.3	0.4	0.001	0.2	
AceH ⁺	379	555	0.01	0.2	0.001	0.2	
		8	0.01	0.2	0.0001	0.4	
		52	0.01	0.2	0.0001	0.2	
		1066	0.01	0.2	0.01	0.4	
		324	0.01	0.2	0.001	0.8	

KRR with linear kernel

Figure S21. Linear KRR learning curve with mean absolute error (MAE) of the signal intensity values in logarithmic scale of Br^- , O_2^- , H_3O^+ and AceH⁺ datasets, based on the TopFP, MACCS, CM, MBTR and properties as the descriptors. The x-axis reports the training set size, the y-axis reports the MAE of the logarithmic signal intensity. The mean value and standard deviation are obtained by repeating the training with five different random re-shuffling of the dataset.

Figure S22. Linear KRR learning curve with correlation coefficient (R^2) of the signal intensity values in logarithmic scale of Br^- , O_2^- , H_3O^+ and AceH⁺ datasets, based on the TopFP, MACCS, CM, MBTR and properties as the descriptors. The x-axis reports the training set size, the y-axis reports the R^2 of the logarithmic signal intensity. The mean value and standard deviation are obtained by repeating the training with five different random re-shuffling of the dataset.

KRR with linear kernel

Figure S23. Linear KRR learning curve with mean squared error (MSE) of the signal intensity values in logarithmic scale of Br^- , O_2^- , H_3O^+ and AceH⁺ datasets, based on the TopFP, MACCS, CM, MBTR and properties as the descriptors. The x-axis reports the training set size, the y-axis reports the MSE of the logarithmic signal intensity. The mean value and standard deviation are obtained by repeating the training with five different random re-shuffling of the dataset.

Table S30. Hyperparameters tuned for RF regressor model with PROP as the molecular descriptor.

			Hyperparameters							
Reagent ion	Training size	Random seed]	RF regressor					
			N estimators	Max depth	Min samples leaf	Min samples split				
Br ⁻	240	555	2000	60	2	5				
		8	1500	None	1	5				
		52	1000	100	1	5				
		1066	500	60	1	2				
		324	2000	None	1	5				
O2 ⁻	174	555	1000	40	1	2				
		8	1500	100	1	2				
		52	1500	20	1	2				
		1066	100	40	4	5				
		324	500	40	2	2				
H_3O^+	376	555	2000	60	2	2				
		8	1000	None	4	5				
		52	1000	60	4	10				
		1066	100	80	4	2				
		324	500	80	2	5				
AceH ⁺	379	555	500	20	4	5				
		8	1500	40	1	2				
		52	2000	80	4	2				
		1066	1000	20	2	2				
		324	1500	40	1	2				

			Hyperparameters							
Reagent ion	Training size	Random seed		TopFl	2		RF regressor			
			Fp size	Max path	N bits per hash	N estimators	Max depth	Min samples leaf	Min samples split	
Br ⁻	240	555	4096	7	2	100	80	4	5	
		8	8192	7	16	100	40	1	2	
		52	8192	10	2	100	None	1	2	
		1066	4096	7	16	1000	80	1	2	
		324	2048	8	2	2000	100	2	10	
O2 ⁻	174	555	4096	7	4	1000	20	1	10	
		8	4096	8	4	500	80	4	10	
		52	8192	7	2	1000	40	1	5	
		1066	8192	7	8	1500	20	4	5	
		324	716	7	2	100	60	4	5	
H ₃ O ⁺	376	555	8192	8	2	1500	60	2	2	
		8	4096	7	2	100	20	1	10	
		52	716	7	2	1000	None	2	2	
		1066	8192	9	4	100	60	1	5	
		324	4096	9	4	500	40	2	5	
AceH ⁺	379	555	8192	7	2	1500	60	4	5	
		8	4096	8	4	1000	80	4	2	
		52	4096	7	4	2000	80	4	10	
		1066	8192	7	4	100	None	2	10	
		324	8192	7	4	1500	40	1	2	

 Table S31. Hyperparameters tuned for RF regressor model with TopFP as the molecular descriptor.

Table	S32.	Hyper	parameters	tuned for H	RF regresson	model	with MA	ACCS	as the	molecular	descriptor.

					Hyperparameters					
Reagent ion	Training size	Random seed	RF regressor							
			N estimators	Max depth	Min samples leaf	Min samples split				
Br ⁻	240	555	100	60	1	2				
		8	1500	None	1	2				
		52	1500	20	1	2				
		1066	500	None	2	2				
		324	500	80	1	5				
O ₂ -	174	555	1000	60	1	5				
		8	1500	20	1	2				
		52	2000	20	1	2				
		1066	100	40	1	2				
		324	100	None	1	2				
H ₃ O ⁺	376	555	2000	20	1	2				
		8	500	100	1	2				
		52	500	None	1	2				
		1066	1500	80	2	5				
		324	1000	40	2	2				
AceH ⁺	379	555	2000	None	1	2				
		8	100	40	1	2				
		52	2000	20	1	2				
		1066	500	60	2	2				
		324	1000	80	1	2				

 Table S33. Hyperparameters tuned for RF regressor model with CM as the molecular descriptor.

			Ну	Hyperparameters						
Reagent ion	Training size	Random seed	RF regressor							
			N estimators	Max depth	Min samples leaf	Min samples split				
Br ⁻	240	555	1500 20		2	2				
		8	1500	None	1	2				
		52	2000	40	1	5				
		1066	100	None	2	2				
		324	100	80	1	10				
O2 ⁻	174	555	1500	60	1	2				
		8	500	40	1	10				
		52	100	None	4	10				
		1066	500	100	1	2				
		324	500	None	1	5				
H_3O^+	376	555	100	80	2	5				
		8	100	20	4	5				
		52	1000	80	1	5				
		1066	100	60	1	5				
		324	1000	None	4	10				
AceH ⁺	379	555	1500	80	4	2				
		8	100	60	2	5				
		52	1000	80	1	2				
		1066	2000	40	2	2				
		324	500	40	4	2				

Table	S34. Hyper	parameters tuned	l for RF reg	ressor model	with MB'	TR as the	molecular	descriptor.
	~							

			Hyperparameters							
Reagent ion	Training size	Random seed	MBTR							
			σ_2	w ₂	σ_3	W3	N estimators	Max depth	Min samples leaf	Min samples split
Br ⁻	240	555	0.1	0.4	0.1	0.8	500	None	1	5
		8	0.1	0.4	0.3	1.2	1000	20	4	5
		52	0.3	0.2	0.1	0.8	500	100	2	5
		1066	0.01	0.8	0.01	1.2	1000	40	4	2
		324	0.01	0.2	0.1	1.2	100	20	1	2
O2 ⁻	174	555	0.01	0.8	0.3	0.4	500	None	4	2
		8	0.1	0.4	0.3	0.4	1500	80	2	5
		52	0.01	0.4	0.1	1.4	500	40	1	2
		1066	0.1	0.2	0.1	0.8	100	100	2	5
		324	0.1	0.2	0.01	0.8	1000	40	2	10
H_3O^+	376	555	0.1	1.4	0.3	1.2	2000	80	1	5
		8	0.001	0.8	0.001	1.2	1000	40	1	2
		52	0.01	1.4	0.1	0.4	500	80	4	2
		1066	0.1	1.2	0.3	0.2	2000	40	1	5
		324	0.01	0.8	0.1	0.8	100	None	2	10
AceH ⁺	379	555	0.01	1.2	0.3	1.4	2000	80	2	2
		8	0.1	0.4	0.1	0.2	1500	None	1	10
		52	0.3	0.2	0.3	1.2	500	40	1	2
		1066	0.1	0.2	0.1	0.4	2000	60	2	5
		324	0.01	0.8	0.1	1.2	100	80	1	5

RF regressor

Figure S24. RF regressor learning curve with mean absolute error (MAE) of the signal intensity values in logarithmic scale of Br^- , O_2^- , H_3O^+ and AceH⁺ datasets, based on the TopFP, MACCS, CM, MBTR and properties as the descriptors. The x-axis reports the training set size, the y-axis reports the MAE of the logarithmic signal intensity. The mean value and standard deviation are obtained by repeating the training with five different random re-shuffling of the dataset.

RF regressor

Figure S25. RF regressor learning curve with correlation coefficient (R^2) of the signal intensity values in logarithmic scale of Br⁻, O₂⁻, H₃O⁺ and AceH⁺ datasets, based on the TopFP, MACCS, CM, MBTR and properties as the descriptors. The x-axis reports the training set size, the y-axis reports the R² of the logarithmic signal intensity. The mean value and standard deviation are obtained by repeating the training with five different random re-shuffling of the dataset.

RF regressor

Figure S26. RF regressor learning curve with mean squared error (MSE) of the signal intensity values in logarithmic scale of Br^- , O_2^- , H_3O^+ and AceH⁺ datasets, based on the TopFP, MACCS, CM, MBTR and properties as the descriptors. The x-axis reports the training set size, the y-axis reports the MSE of the logarithmic signal intensity. The mean value and standard deviation are obtained by repeating the training with five different random re-shuffling of the dataset.

References

Ertl, P., Rohde, B., and Selzer, P.: Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its Appli-

- 75 cation to the Prediction of Drug Transport Properties, Journal of Medicinal Chemistry, 43, 3714–3717, https://doi.org/10.1021/jm000942e, 2000.
 - Hall, L. H. and Kier, L. B.: The Molecular Connectivity Chi Indexes and Kappa Shape Indexes in Structure-Property Modeling, chap. 9, pp. 367–422, Wiley-VCH, Inc., New York, 1991.

Kier, L. B.: An Index of Molecular Flexibility from Kappa Shape Attributes, Quantitative Structure-Activity Relationships, 8, 218-221,

80 https://doi.org/10.1002/qsar.19890080307, 1989.

Labute, P.: A Widely Applicable Set of Descriptors, Journal of Molecular Graphics and Modelling, 18, 464–477, https://doi.org/10.1016/S1093-3263(00)00068-1, 2000.

Landrum, G.: RDKit: Open-Source Cheminformatics Software, http://www.rdkit.org, accessed: 2024-06-04, 2006.

Partovi, F., Bortolussi, F., Mikkilä, J., and Rissanen, M.: Organic pesticide database with 716 molecules analyzed with chemical ionization

- 85 mass spectrometry. Reagent ions: bromide, protonated acetone, hydronium ion, dioxide., https://doi.org/10.5281/zenodo.11208543, 2024. Ruggeri, G. and Takahama, S.: Technical Note: Development of chemoinformatic tools to enumerate functional groups in molecules for organic aerosol characterization, Atmospheric Chemistry and Physics, 16, 4401–4422, https://doi.org/10.5194/acp-16-4401-2016, 2016.
 - Wildman, S. A. and Crippen, G. M.: Prediction of Physicochemical Parameters by Atomic Contributions, Journal of Chemical Information and Computer Sciences, 39, 868–873, https://doi.org/10.1021/ci9903071, 1999.