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Abstract. Chemical ionization mass spectrometry (CIMS) is widely used in atmospheric chemistry studies.
However, due to the complex interactions between reagent ions and target compounds, chemical understanding
remains limited and compound identification difficult. In this study, we apply machine learning to a reference
dataset of pesticides in two standard solutions to build a model that can provide insights from CIMS analyses in
atmospheric science. The CIMS measurements were performed with an Orbitrap mass spectrometer coupled to a
thermal desorption multi-scheme chemical ionization inlet unit (TD-MION-MS) with both negative and positive
ionization modes utilizing Br−, O−2 , H3O+ and (CH3)2COH+ (AceH+) as reagent ions. We then trained two
machine learning methods on these data: (1) random forest (RF) for classifying if a pesticide can be detected
with CIMS and (2) kernel ridge regression (KRR) for predicting the expected CIMS signals. We compared their
performance on five different representations of the molecular structure: the topological fingerprint (TopFP),
the molecular access system keys (MACCS), a custom descriptor based on standard molecular properties (RD-
KitPROP), the Coulomb matrix (CM) and the many-body tensor representation (MBTR). The results indicate
that MACCS outperforms the other descriptors. Our best classification model reaches a prediction accuracy of
0.85± 0.02 and a receiver operating characteristic curve area of 0.91± 0.01. Our best regression model reaches
an accuracy of 0.44± 0.03 logarithmic units of the signal intensity. Subsequent feature importance analysis of
the classifiers reveals that the most important sub-structures are NH and OH for the negative ionization schemes
and nitrogen-containing groups for the positive ionization schemes.
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1 Introduction

Mass spectrometry is an analytical technique for molecular
compound identification and tracking in a variety of fields
(e.g., biochemistry, food control, forensic science, pollution
control, reaction physics and kinetics, thermodynamic pa-
rameters’ determination) (Griffiths and de Hoffmann, 2007).
In atmospheric science, chemical ionization mass spectrom-
etry (CIMS) has proliferated because it can detect gas-phase
compounds at atmospheric pressures (Sipilä et al., 2016;
Laskin et al., 2018; Huey, 2007; Eisele and Tanner, 1993;
Munson, 1971; Munson and Field, 1966; Riva et al., 2019;
Breitenlechner et al., 2017; de Gouw and Warneke, 2007).
CIMS’ low detection limit, good sensitivity, low probability
of fragmentation and ability to detect charged volatile com-
pounds make it an ideal compound tracking technique. In
proton-transfer-reaction mass spectrometry, properties like
proton affinity are utilized to determine the detectability of
compounds. Although this instrument is commonly used to
quantify volatile organic precursor molecules at relatively
high concentrations, more selective and sensitive techniques
are typically required for analyzing highly functionalized
aerosol precursors (e.g., NO−3 or I−; Lee et al., 2014; Ris-
sanen et al., 2014). Multi-scheme chemical ionization in-
lets (MIONs) (Rissanen et al., 2019) provide more infor-
mation than single ionization schemes. However, compound
identification remains challenging, as our understanding of
the complex interaction between reagent ions and sample
molecules is still too limited to routinely identify compounds
from CIMS spectra (Munson, 2006; Sandström et al., 2024).

To improve compound identification, quantum chemi-
cal calculations are used to model the interaction between
reagent ions and target molecules. Early breakthroughs re-
vealed a correlation between the binding energy (between
reagent ion and target molecule) and the experimental detec-
tion sensitivity (Partovi et al., 2023, 2024; Iyer et al., 2016;
Hyttinen et al., 2018). However, due to the high complexity
of the interaction, the large configuration space of possible
ion–molecule structures and the cost of the quantum chemi-
cal calculations, databases are challenging to produce. Thus
no compound identification workflow has emerged so far.

In this article, we explore if purely data-driven machine
learning (ML) can facilitate CIMS compound identifica-
tion. ML excels at pattern identification, data-driven clas-
sification and regression tasks. ML is proliferating in the
natural sciences and has started to emerge in atmospheric
science for, e.g., physicochemical property prediction and
characterization of compounds (Lumiaro et al., 2021; Sand-
ström et al., 2024; Besel et al., 2023, 2024; Hyttinen et al.,
2022, 2024; Franklin et al., 2022), detection of new parti-
cle formation events (Su et al., 2022), boundary layer height
estimation (Krishnamurthy et al., 2021), or aerosol classifi-
cation (Siomos et al., 2020). In other chemical domains, e.g.,
metabolomics, ML has successfully enabled chemical com-
pound identification from fragmentation mass spectrometry

(Erban et al., 2019; Heinonen et al., 2012; Dührkop et al.,
2015; Brouard et al., 2016; Nguyen et al., 2018, 2019). The
advantage of an ML-based method is twofold: it is compu-
tationally inexpensive, especially when compared to quan-
tum chemical calculations, and it can interpolate predic-
tions to novel compounds without requiring extensive ref-
erence data once trained. This is essential for atmospheric
chemistry, where thousands of large, highly oxidized organic
compounds lack reference datasets. In the short term, our
method could accelerate CIMS experimental optimization
and aid in reagent ion selection. However, successful identifi-
cation requires comprehensive collections of reference spec-
tra, which are needed both for traditional spectral compari-
son and for training ML-based methods. Currently, a lack of
data standards in atmospheric science hinders similar ML ad-
vancements for CIMS and fragmentation mass spectrometry
(Sandström et al., 2024; Thoma et al., 2022).

In this work, we address the scarcity of atmospheric com-
pound data standards by testing our methodology on a refer-
ence dataset of approximately 700 pesticides measured with
CIMS. While pesticides represent only a small subset of
atmospheric compounds (Brüggemann et al., 2024; Houde
et al., 2019), they are chemically complex, with diverse
molecular masses and functional groups that can interact in
distinct ways with various reagent ions and that cover an ex-
tended range of detection with CIMS. This structural diver-
sity provides a relevant test case that reaches and surpasses
the complexity of many atmospheric compounds, allowing
for an effective initial test of our methodology. Additionally,
pesticides are readily available as standard chemicals from
chemical suppliers at an accessible cost, and the dataset size
is comparable to those used to establish early ML compound
identification tools in metabolomics (Heinonen et al., 2012;
Dührkop et al., 2015; Brouard et al., 2016; Nguyen et al.,
2018, 2019). Thus, while limited to pesticides, this dataset
offers a valuable preliminary benchmark for developing ML-
based CIMS signal prediction. Once reference datasets for
atmospheric compounds become available, this methodology
can be directly applied or refined to encompass a broader
range of atmospheric chemical analyses.

Our objective in this work is to develop ML models that
learn the relation between CIMS spectra and their corre-
sponding compounds. Specifically, we will investigate if we
can predict a pesticide detection by CIMS and, further, if
we can predict the resulting signal intensity of different ion-
ization methods from the molecular structure of a pesticide.
Such predictions could be used prior to deployment (e.g., in
a field measurement campaign or for pesticide detection and
monitoring) to ensure that the detector is appropriate and sen-
sitive enough. The ML methods will also provide insight into
the interaction between reagent ions and molecules, which
will help us to develop future compound identification meth-
ods in atmospheric science.

Figure 1 presents the schematic ML workflow followed
in this work. The measurements were carried out with a
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Figure 1. Schematic of the machine learning workflow followed in this work: the sample is analyzed, and the two targets of our analyses
are defined. The preprocessing includes the filtering of the data and the creation of the molecular descriptors which will be fed into the ML
algorithms. The two ML models are divided into classification (to predict whether a molecule is detected or not) and regression (to predict the
CIMS sensitivity of a molecule). The performances of the models are evaluated, and chemical insight is extracted from the feature analysis.

thermal desorption (TD) MION-MS, and the experiments
were run sequentially with four different ionization schemes:
Br−, O−2 , H3O+ and (CH3)2COH+ (AceH+). The dataset is
then preprocessed and used for training two ML algorithms:
random forest (RF) (Breiman, 2001) for detection classifi-
cation and a kernel ridge regression (KRR) (Rupp, 2015)
models to predict CIMS signal intensities of a given pesti-
cide. The models are trained on molecular descriptors, which
are mathematical transformations of the molecular struc-
ture that make it suitable for data-driven analysis. Different
descriptors are tested and compared for both classification
and regression, as each molecular representation encodes
unique structural or chemical features and varies in complex-
ity and interpretability. We tested five different representa-
tions: properties obtained from the pesticides’ structure (RD-
KitPROP), the topological fingerprint (TopFP) (James et al.,
1995), the molecular access system keys (MACCS) (Durant
et al., 2002), the Coulomb matrix (CM) (Rupp et al., 2012)
and the many-body tensor representation (MBTR) (Huo and
Rupp, 2022). Using this range of molecular representations
and data from diverse ionization schemes, we evaluate the
models’ ability to predict CIMS detection and signal inten-
sity of the compounds, providing insights into how struc-
tural characteristics influence CIMS sensitivity across differ-
ent ionization methods.

The paper is organized as follows: Sect. 2 presents the
dataset used in this work. Sections 3 and 4 introduce the
molecular descriptors and ML methodology, respectively.
Section 5 presents the results of the classification (Sect. 5.1)
and regression (Sect. 5.2) models, as well as a discussion on
the chemical insight gained from the ML models (Sect. 5.3).

2 Dataset

Our dataset is generated from two standard mixtures received
from GALAB (2025) Laboratories, containing 404 and 312
organic pesticides. The CIMS experiments were conducted
at Karsa Oy laboratory (Karsa, 2025) with a TD-MION in-

let operating at atmospheric pressure coupled to a linear
trap quadrupole Orbitrap mass spectrometer. A sample was
placed on a custom-made filter (Karsa, 2025) and heated in
the desorber from 30 to 250 °C; different pesticides evapo-
rate from the filter at various temperatures. A schematic of
the instrument as well as the sampling methodology is pre-
sented in Partovi et al. (2023, 2024). The mixtures were in-
dividually measured at five different concentrations, but for
this work, only measurements at the highest concentration
(2.5 ng µL−1) were considered. The measurements from the
two mixtures were combined into a single dataset for a total
of 716 pesticide observations, where each observation cor-
responds to the parent ion’s signal intensity. Due to CIMS’
soft ionization, the parent ion is expected to have the high-
est intensity, quantitatively, and qualitatively provides a one-
to-one correspondence to the target compound. Each pesti-
cide was measured with the following ionization schemes:
bromide (Br−) ionization (produced from dibromomethane,
CH2Br2), protonated acetone ((CH3)2COH+, AceH+) ion-
ization (produced from acetone, (CH3)2CO), proton-transfer
(H+) ionization by hydronium ions (H3O+, produced from
trace amounts of water, H2O+) and electron transfer (–) ion-
ization by dioxide (O−2 ). The first two ions were obtained by
feeding the neutral reagents into the ion source, while the two
latter ions were obtained by feeding dopant-free air instead.
The pesticides were detected as protonated ions (AceH+,
H3O+), as deprotonated ions (O−2 ) or as adduct ions (Br−).

From the 716 measured pesticides, we removed 23 from
the dataset (Fig. S3, Tables S1 and S2 in the Supplement)
for the following reasons. A total of 12 instances correspond
to six pesticides that appeared twice (once in each mixture)
but were measured with different signal intensities. Next,
we excluded 10 pesticides with a molecular weight outside
the ideal mass spectrometer transmission window, i.e., lower
than 120 u and higher than 600 u, which suffered from the
corresponding significant signal loss. Another pesticide was
excluded due to its out-of-range Br− intensity value. Several
isomers are present in the dataset (e.g., prometryn and ter-
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butryn or phoxim and quinalphos). Across 38 molecular for-
mulas, there are 81 isomers in total. In CIMS, isomers pro-
duce peaks at the same mass-to-charge ratio and cannot be
distinguished with a single ionization method, as they can in,
e.g., fragmentation mass spectrometry. To retain dataset size,
we included all isomers, assigning the same signal intensity
to each if detected by an ionization method and labeling all
as undetected if no signal was present. This approach adds
uncertainty to the ML model; can affect the evaluated model
performance, depending on the structural difference of the
isomers; and can limit the model validity for real-world ap-
plications requiring isomer distinction. This tradeoff allows
for a larger dataset but reduces predictive accuracy at the
structural level. In the following, dataset refers to the 693
pesticides remaining after removing the aforementioned 23
pesticides.

Figure 2 presents basic dataset statistics (molecular size,
element composition and detection by ionization method).
In Fig. 2a and b, we distinguish between detected, when
a molecule presents a signal with at least one ionization
method, and undetected otherwise. In Fig. 2c, detected refers
to when a molecule presents a signal for a specified ion-
ization method and undetected otherwise. The number of
non-hydrogen atoms per molecule (Fig. 2a) is normally dis-
tributed for detected and undetected pesticides with an av-
erage of 20 atoms per pesticide (dashed vertical line). The
smallest molecule, methamidophos, contains 7 atoms, while
the largest one, acrinathrin, contains 38 atoms. In total, we
find 572 pesticides, for which at least one ionization method
gives a signal, and 121 undetected pesticides, for which no
ionization method triggers.

Figure 2b shows a histogram of the chemical elements
present in the dataset. The pesticides in our dataset are or-
ganic molecules and therefore have a prevalence for hydro-
gen, carbon, nitrogen and oxygen. In addition, chlorine, flu-
orine, sulfur and phosphorus are present in over a hundred
pesticides, whereas bromine, iodine, silicon and tin occur
less frequently. Tin is the only element present only in un-
detected molecules (Table S3 in the Supplement presents a
list of tin compounds).

In Fig. 2c the total count of detected and undetected pes-
ticides for each ionization method is shown. Differing from
Fig. 2a, where a large number of pesticides appear to be de-
tected, Fig. 2c reveals that in contrast to the positive reagent
ions, the two negative reagent ions exhibit a higher number of
undetected molecules than detected ones. Most pesticides are
detected with AceH+ and fewest with O−2 . The figure high-
lights that, for this specific dataset, negative reagent ions are
more selective than positive ones for the detection of parent
ions.

Table 1 presents six examples of chemical diversity in
our dataset. The first two entries correspond to the small-
est and the largest pesticides (methamidophos (7 atoms)
and acrinathrin (38 atoms)). Subsequent entries highlight
the diversity in functional groups. The molecular complexity

ranges from 1-naphthaleneacetic acid (containing naphtha-
lene with acetic acid substituent) to trichlorfon (containing
oxygen, nitrogen, fluorine, sulfur and aromatic rings), alpha-
HCH (cyclohexane with 6 chlorine substituents) or tritosul-
furon (containing 3 chlorine, 4 oxygens and a phosphorus
atom over 12 total atoms).

Figure 3 presents the logarithmic signal intensity distribu-
tion (Fig. 3a) and the scatter matrix of the logarithmic sig-
nal intensity (Fig. 3b) for each reagent ion. In Fig. 3a, both
AceH+ and H3O+ are normally distributed. The distribution
for O−2 is flatter (probably due to the small number of de-
tected molecules), and Br− is almost homogeneously dis-
tributed across the intensity range. Figure 3b visualizes the
bivariate relationship between logarithmic signal intensities
for the pesticides detected with all four reagent ions. Only the
two positive polarity ionization schemes AceH+ and H3O+

exhibit a clear correlation (R2
= 0.6). The negative ionization

schemes O−2 and Br− are not as well correlated (R2
= 0.2).

Meanwhile, the inter-correlation between positive and nega-
tive reagent ions is below 0.07. The general lack of correla-
tion between opposite polarity ionization schemes indicates
that different reagent ions interact with the target molecules
in distinct ways, possibly engaging with different functional
groups.

Figure 4 shows the t-stochastic neighbor embedding (t-
SNE; van der Maaten and Hinton, 2008) of the logarithmic
signal intensity values for each compound. t-SNE visualizes
high-dimensional data in lower dimensions preserving the
local similarity of data points. We used the scikit-learn im-
plementation of t-SNE (sklearn.manifold.TSNE; Pedregosa
et al., 2011) with a random state of 42, a perplexity of 50
and a maximum number of iterations of 5000. We then as-
signed different colors and symbols to the ionization method
combinations that detected a given pesticide.

Clear clusters of the same color and the same symbol
emerge in the t-SNE plot in Fig. 4. Only one cluster is
composed of molecules detected with both Br− and AceH+

(yellow squares); Br− and H3O+ (yellow circles); and Br−,
AceH+ and H3O+ (blue squares). From this we conclude
that Br− delivers the most information for these pesticides,
and the positive polarity ionization method is of lesser im-
portance. The situation is similar for H3O+ and AceH+ that
appear in two clusters where blue triangles (H3O+, AceH+,
Br−) come close to yellow crosses (H3O+, O−2 ) and blue
stars (AceH+, Br−, O−2 ) close to yellow diamonds (AceH+,
Br−) and squares (AceH+, O−2 ). The presence of clear clus-
ters suggests that, collectively, the reagent ions have the po-
tential to differentiate between molecular structures.

3 Molecular descriptors

A molecular representation is a transformation of a molec-
ular structure that simplifies the structural information into
a readable input for data-driven methods. Depending on the
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Figure 2. Distribution of (a) heavy atoms, (b) element types in logarithmic scale and (c) detection rate of the four reagent ions (Br−,
O−2 , H3O+ and AceH+). Detected pesticides are shown in red and undetected pesticides in light blue. In panels (a) and (b), a molecule
is considered detected if at least one ionization method presents a signal (full color). In panel (c) the detection status is determined per
ionization method individually (striped color).

Figure 3. (a) Distribution of logarithmic signal intensities for molecules detected by each of the four ionization methods and (b) scatter
matrix of logarithmic signal intensities for molecules detected by all reagent ions, illustrating correlations between different ionization
signals.

application, they can provide a valuable cost-efficient alter-
native to computationally expensive quantum chemical com-
putations. These descriptors are numerical representations
of atomistic systems that should fulfill certain requirements,
such as being invariant to spatial and rotational transforma-
tions, invariant to permutation of atomic indices, unique,
continuous, compact, and computationally efficient (Hima-
nen et al., 2020; Huo and Rupp, 2022; Rupp, 2015; Xue
and Bajorath, 2000; Langer et al., 2022). Molecular descrip-
tors may vary in complexity and interpretability; some reflect
tangible properties that are easy for humans to understand,
while others are calculated through mathematical means and
may lack intuitive interpretation. However, a universal de-
scriptor able to perform well for every chemical system and
task does not exist. For this reason, being a first-of-a-kind

study, we tested five different descriptors (Fig. 1a) for our
classification task (prediction of the detection) and regres-
sion task (prediction of the CIMS signal intensity). We in-
vestigated a property-based descriptor (RDKitPROP), two
structure-based descriptors (TopFP and MACCS) derived
from SMILES (Simplified Molecular-Input Line-Entry Sys-
tem) strings, and two structure-based descriptors obtained
from the Cartesian coordinates of the atoms in the molecules
(CM and MBTR) (Landrum, 2006; Durant et al., 2002; Rupp
et al., 2012; Huo and Rupp, 2022). The Cartesian coordi-
nates were obtained from the SMILES string of each pes-
ticide through geometry optimization with a universal force
field implemented in RDKit (Landrum, 2006). Figure 5 de-
picts visual examples of four descriptors. The representations
are discussed in more detail in the following sections.
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Table 1. Example of the chemical diversity of the dataset.

3.1 Property-based descriptor (RDKitPROP)

RDKitPROP includes 43 properties computed from
the molecular structure of the pesticides (represented
by a SMILES string), by applying the function rd-
kit.Chem.rdMolDescriptors.Properties (Landrum, 2006).
This descriptor was included in the analysis to evaluate the
models’ performance based on known properties that are
computationally inexpensive to obtain. In the Supplement,
we describe these properties in more detail (Table S4).
In Sect. 5, we will discuss only a subset of the five most
important properties for the best classifier (see Sect. 4.1).
These properties are the topological polar surface area
(TPSA; Ertl et al., 2000), the number of hydrogen bond
donors (HBDs), the number of hydrogen bond acceptors

(HBAs), the Wildman–Crippen logarithm of the partition
coefficient (CrippenClogP; Wildman and Crippen, 1999),
the fraction of sp3 carbons (FractionCSP3), the Hall–Kier
alpha value (HallKierAlpha; Hall and Kier, 1991) and the
molecular weight. TPSA calculates the polar surface area
by summing the contribution of individual sub-structures
containing nitrogen, oxygen, phosphorus and sulfur. The
HallKierAlpha value is the sum of the scaled measures of
each atom’s covalent radius, adjusted for its hybridization
state and electronegativity. The scaling is relative to the
covalent radius of a sp3 hybridized carbon atom. Crippen-
ClogP measures the hydrophobicity of a molecule, while
FractionCSP3 indicates the saturation of carbon atoms in
the molecule. The number of HBAs counts the oxygen
and nitrogen atoms in the molecule. In the descriptor, two
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Figure 4. Similarity between the signal intensity of the molecules
by using t-SNE clustering. The comparison was based on the loga-
rithmic signal intensity, and each cluster follows a color code based
on the detection type (all the possible combinations between the
four reagent ions).

distinct properties address this value (LipinskiHBA and
NumHBA). The number of HBDs calculates the number of
hydrogen atoms attached to oxygen and nitrogen atoms in
the molecule (addressed by LipinskiHBD and NumHBD).
Lastly, the molecular weight is addressed as well by two
distinct properties: the average molecular weight (AMw)
and the exact molecular weight (ExactMw).

3.2 Topological fingerprint (TopFP)

TopFP (Fig. 5a) implemented in RDKit (Landrum, 2006) is
a molecular descriptor inspired by the Daylight fingerprint
(James et al., 1995). This fingerprint extracts molecular sub-
structures of a certain size by starting from one atom and fol-
lowing the bond topology. A mathematical function converts
each sub-structure into a bit string (hashing), and all strings
are concatenated into the final fingerprint. In the implemen-
tation, the length of the sub-structure, the number of bits per
hash and the final size of the fingerprint are called hyperpa-
rameters and can be optimized to improve the performance of
the descriptor. TopFP is easily implemented at a reasonable
computational cost. However, the hash function makes inter-
pretation difficult as there is no one-to-one correspondence
between sub-structures and bits.

3.3 Molecular access system keys (MACCS)

MACCS also encodes molecular features as binary string
(Durant et al., 2002) (Fig. 5b). Unlike TopFP, however, bits
correspond to the one-hot encoding of specific predefined
questions, such as the following: “does the molecule contain
a carbonyl group?” (yes: 1, no: 0). In this work we used the
RDKit MACCS implementation, which encompasses a to-
tal of 166 keys (Landrum, 2006), making this descriptor fast
to run. However, MACCS is limited in the number of imple-

mented questions, and any structural or chemical information
not captured by these questions is lost.

3.4 Coulomb matrix (CM)

The Coulomb matrix (M, Fig. 5c) encodes both the Carte-
sian coordinates and the nuclear charges of each atom in the
molecule as a n× n matrix, where n is the number of atoms
in the molecule:

MIJ =


0.5Z2.4

I ∀ I = J

ZIZJ

|RI −RJ |
∀ I 6= J.

(1)

ZI is the atomic number of atom I and |RI −RJ | the Eu-
clidean distance between the atoms I and J . The elements
on the diagonal were fitted to atomic energies, while the
off-diagonal elements encode a Coulomb repulsion between
each atom pair in the molecule (Rupp et al., 2012). Com-
pared to other three-dimensional representations, the CM is
straightforward to interpret, easy to implement and fast to
compute. This simplicity, however, comes with a loss of de-
tail, e.g., bond connectivity, which may be relevant for repre-
senting larger molecules such as pesticides.

In this work, we used the DScribe (Himanen et al., 2020)
implementation of the CM. The CM has no hyperparameters
to optimize, which adds to its appeal.

3.5 Many-body tensor representation (MBTR)

The MBTR (fK , Fig. 5d) captures the 3D structure of a
molecule in a continuous way (Huo and Rupp, 2022):

fK (x)=
1

σK
√

2π
e
−

(x−gK (K))2

2σ2
K . (2)

Here σK is the standard deviation of the Gaussian kernel,
and gK is a geometry function with input K for many-body
rank k. The first term (k = 1) encodes only elemental features
(K = Zi). The second term (k = 2) records inverse or di-
rect distances between atomsK = 1

|Ri−Rm|
orK = |Ri−Rm|

and the third term (k = 3) angles between three atoms K =
6 (Ri −Rm,Rn−Rm) (or K = cos(Ri −Rm,Rn−Rm)). Be-
cause the three terms are tabulated on a grid, this descriptor
is the largest one we tested.

In this work, we used the DScribe (Himanen et al., 2020;
Laakso et al., 2023) implementation of the MBTR. We used
only the k = 2 and k = 3 terms, since including the first term
did not improve the performance but increased the computa-
tion time (see Fig. S6 in the Supplement). We used inverse
distances and the cosine for K = 2 and K = 3, respectively,
and applied exponential weighting to determine the relative
importance of each term. The tuned hyperparameters are the
Gaussian broadening parameter σ2 and σ3 and the scale of the
weighting referred to as w2 and w3 (Himanen et al., 2020).
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Figure 5. Visual example of 1-naphthaleneacetic acid molecular representations. On the left are descriptors computed from SMILES:
(a) topological fingerprint (TopFP) and (b) molecular access system keys (MACCS). On the right are descriptors computed from Carte-
sian coordinates: (c) Coulomb matrix (CM) and (d) many-body tensor representation (MBTR).

4 Machine learning methods

In this section, we briefly introduce the two ML methods that
we use in this work. Figure 2c presented a potential prob-
lem for the direct training of a regression model: for indi-
vidual ionization methods, the data are imbalanced with a
relatively high number of undetected pesticides. This im-
balance suggests that there might not be enough instances
to train a model able to generalize patterns and signals of
the molecules, potentially leading to poor predictive perfor-
mance. To tackle this problem, we decided to divide the
CIMS signal prediction into a classification task and a re-
gression task. To classify whether a pesticide is detectable
or not with a specific ionization method, we will train a RF
classifier. Subsequently, we will investigate whether we can
predict the corresponding CIMS intensity with KRR.

4.1 Random forest classifier (RF)

RF (Breiman, 2001) is a ML method that combines dif-
ferent decision trees, each of which learns the relation be-
tween input and output features in terms of simple deci-
sion rules. Each tree is trained on a subset of the data and
input features. Additional bootstrapping decreases the vari-
ance of the prediction by resampling the training set obser-
vations. In this work, we used a scikit-learn RF classifier
(sklearn.ensemble.RandomForestClassifier). Each tree gives
a class probability prediction (detected or undetected), and
the final prediction is an average of the probability given by

each tree. We optimized the following hyperparameters: the
maximum number of estimators (the trees creating the for-
est) and the maximum depth of each tree (the length from the
starting point, “root”, to the final points, “leaves”); the mini-
mum number of samples per leaf, to ensure that each leaf has
an adequate number of data points to avoid overfitting and
underfitting; and the minimum number of sample splits, to
ensure that each internal node (which can branch again) has
an adequate number of samples.

4.2 Kernel ridge regression (KRR)

Regression is a statistical process that determines the strength
and character of the relationship between one dependent vari-
able and a series of other variables. In this work, we perform
KRR to include non-linearities (kernel) and prevent over-
fitting (ridge regression; Hoerl and Kennard, 1970).

The kernel model (f ) is expressed as a linear sum over
kernel functions k over the training samples xi

f (̃x)=
n∑
i=1

αik (xi, x̃) . (3)

The expansion coefficients αi follow from the minimization
of the ridge loss function

arg min
α ∈ Rn

n∑
i=1

(f (xi)− yi)2
+ λ‖f ‖2H → α = (K+ λI)−1y.

(4)
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Here K is the kernel matrix, I is the identity matrix and ‖f ‖H
is the norm of f in the feature space. We use the Gaussian
kernel

k(xi,xj )= exp

(
−
‖xi − xj‖

2
2

2σ 2

)
, (5)

where σ is the length-scale hyperparameter. In
this work, we applied the KRR implementation
(sklearn.kernel_ridge.KernelRidge) from scikit-learn.

4.3 Performance metrics

Different performance metrics will be adopted to evaluate the
performance of the classifier and the regressor methods. For
the classification task, the performance will be evaluated us-
ing two metrics: accuracy and the receiver operating charac-
teristic (ROC) curve. The accuracy score is the fraction of
correct predictions compared to the total number of observa-
tions present in a test set:

accuracy(y, ŷ)=
1
n

n−1∑
i=0

1(ŷi = yi), (6)

where ŷi is the ith predicted class, yi is its reference class
and n is the number of samples in the test set.

In the case of the RF classifier, the model outputs proba-
bility scores for each class, and then a threshold is applied
to determine the final class label, the predicted class. The
ROC curve provides us with an additional performance as-
sessment. The curve puts the correctly classified pesticides
(true positive rate, vertical axis) in relation to the incorrectly
classified ones (false positive rate, horizontal axis), across a
range of different threshold levels. By varying the threshold
used to convert probability scores into class labels, we can
observe the model’s performance across different operating
points. The area under the curve (AUC) quantifies the overall
ability of the classifier to distinguish between the two given
classes (Géron, 2022). The more the curve shifts towards the
top-left corner (with an AUC corresponding to 1), the better
the classification. A random classifier would correspond to a
diagonal line with an AUC of 0.5.

The regression performance will be assessed with the
mean absolute error (MAE), a metric commonly used to mea-
sure the average absolute difference between a variable’s pre-
dicted and reference values. Unlike other metrics, MAE does
not penalize outliers as it assigns equal weight to all errors
(Rupp, 2015). The MAE is defined as

MAE(y, ŷ)=
1
n

n−1∑
i=0

∣∣yi − ŷi∣∣ , (7)

where ŷi is the predicted value of the ith sample, yi is the
corresponding true value in the dataset and n is the number
of observations.

4.4 Computational details

We train a separate classification and regression model
for each ionization method. The datasets were ran-
domly split into test (20 %) and training (80 %) sets,
ensuring that the trained model’s performance is eval-
uated with an out-of-sample subset of data. The train-
ing set is further split into six subsets to create a learn-
ing curve. Each model was trained with five different
random splits (i.e., different random seeds) to average
out data variability and to collect statistics. Addition-
ally, we optimized the hyperparameters with 5-fold cross-
validation using random search implemented by scikit-learn
(sklearn.model_selection.RandomizedSearchCV), which is
efficient in higher dimensions (Stuke et al., 2021).

We trained binary classifiers that distinguish only be-
tween two classes (class 1: detected, class 0: undetected),
for which we have a maximum of 554 training points (80 %
of the data). The regressors were trained on the logarithmic
CIMS intensity of the detected pesticides. Before training,
we log-transformed the non-zero CIMS intensities to create
a normal-like distribution, reducing outliers’ impact and sta-
bilizing variance. MAE is then reported on this log scale,
showing the model’s error in terms of order-of-magnitude ac-
curacy. This gives us a maximum of 240 training data points
for Br−, 174 for O−2 , 376 for H3O+ and 379 for AceH+.

In Sect. S4 of the Supplement, we provide the optimized
hyperparameters for each model and each random seed. Ta-
bles S6, S7, S8, S9 and S10 report the RF hyperparameters
and Tables S11, S12, S13, S14 and S15 the KRR hyperpa-
rameters for each molecular descriptor.

5 Results and discussion

In this section, we present and evaluate the performance of
our trained models. For the classification, we examine the
ability of our RF models to predict the detected or undetected
compounds in the test set. For the regression, we investigate
whether our KRR models can accurately predict the CIMS
sensitivity of the test set compounds. Furthermore, we ana-
lyze which descriptors most effectively enhance model per-
formance and explore whether chemical qualitative insights
can be derived from them.

5.1 CIMS detection prediction

The classification ROC curves and relative AUC values for
each ionization scheme are presented in Fig. 6 for the five
molecular descriptors. All ROC curves lie above the diago-
nal, which implies that our RF models can classify if a pesti-
cide is detectable based on its atomic and chemical structure.
However, they do so with varying degrees of success. The
best performance is achieved with the MACCS, MBTR and
RDKitPROP descriptors, with average AUC values above
0.86. The TopFP and CM descriptors perform worse, in par-
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Table 2. Accuracy mean value and standard deviation of the predic-
tion on the test dataset with RF for all reagent ions with the five dif-
ferent molecular descriptors. The values were obtained by repeating
the training on the largest training size (80 % of the dataset), with
five different random re-shuffles of the dataset.

Ionization Training Descriptor Accuracy
method size

Br− 554 TopFP 0.75± 0.04
MACCS 0.78± 0.02
CM 0.64± 0.04
MBTR 0.76± 0.06
RDKitPROP 0.76± 0.03

O−2 554 TopFP 0.78± 0.06
MACCS 0.83± 0.04
CM 0.73± 0.05
MBTR 0.80± 0.04
RDKitPROP 0.84± 0.02

H3O+ 554 TopFP 0.83± 0.02
MACCS 0.85± 0.02
CM 0.76± 0.02
MBTR 0.81± 0.01
RDKitPROP 0.79± 0.03

AceH+ 554 TopFP 0.80± 0.02
MACCS 0.83± 0.02
CM 0.76± 0.03
MBTR 0.82± 0.01
RDKitPROP 0.83± 0.02

ticular for the negative ionization schemes, most likely due
to the smaller number of training samples.

Table 2 reports the classification accuracy for each reagent
ion over five random re-shuffles of the datasets. The learn-
ing curves for the accuracy can be found in the Supplement
(Fig. S7), where we also present the learning curves for simi-
lar performance metrics such as recall, precision and F1 score
(Figs. S8, S9 and S10, respectively). All classification mod-
els reach an accuracy above 0.6. The CM descriptor shows
the worst overall performance for Br− (0.64± 0.04 of accu-
racy), and MACCS reaches the best overall performance for
H3O+ (0.85± 0.02 of accuracy). In general, the accuracy is
worse for Br−, while O−2 is on par with H3O+ and AceH+.
Overall, MBTR and MACCS yield the highest accuracy, fol-
lowed by TopFP and RDKitPROP and then CM.

MBTR is the largest and most complex descriptor we have
tested. Its good performance is similar to previous observa-
tions for vapor pressure (Lumiaro et al., 2021) and ioniza-
tion energy predictions (Stuke et al., 2019). The fact that the
MACCS key achieves a similar performance is at first sur-
prising because it performed poorly in the earlier studies. The
good classification performance reported here, however, in-
dicates that the chemical complexity of the pesticides is well
captured by the questions encoded in the MACCS keys.

The ROC curves and the accuracy metrics demonstrate
good discriminative capabilities for predicting pesticide de-
tection. This performance is particularly noteworthy given
the challenges posed by the class imbalance in the dataset
and the relatively small training set of just 554 observations,
which is modest compared to typical ML applications. The
fact that all models classify well indicates that they can cap-
ture the inherent chemical and structural diversity of the pes-
ticides, which can provide additional insight into the inter-
action between the target molecules and reagent ions (see
Sect. 5.3).

With an accuracy and AUC of around 0.8 our best-
performing models are good enough to be useful in deploy-
ments. We expect that the trained models can predict de-
tection with CIMS (specifically with Br−, O−2 , H3O+, or
AceH+ as reagent ions) for molecules with similar structural
features to those in our dataset. This could speed up labora-
tory analyses or field deployment for measuring campaigns
or safety and security systems since one can a priori check
if a pesticide will be detectable without having to perform a
CIMS experiment.

5.2 Quantitative prediction of CIMS sensitivity to target
molecules

We now turn to evaluate the performance of the regression
models tasked to predict the CIMS sensitivity of the pes-
ticides. The MAE learning curves of the KRR models are
shown in Fig. 7 for five random seeds and the different de-
scriptors. For all the reagent ions, the MAE decreases with
increasing training size indicating that our models indeed
learn with data. The learning rate is comparable to earlier
work (Lumiaro et al., 2021; Stuke et al., 2019) that used
much larger datasets. Usually, the variance decreases with
increasing dataset size, which is not the case in Fig. 7. We
attribute the variability in learning curves to the small size
of the training dataset. When subsets of data are selected us-
ing different random seeds, the limited number of observa-
tions leads to inconsistent sampling of data patterns, which
prevents the model from stabilizing, particularly against out-
liers. As a result, the variance across learning curves as the
training set size grows remains high due to the small sample
size.

Table 3 presents the average MAE values for the highest
training size for each ionization method and descriptor aver-
aged over the five random seeds. All trained models achieved
an error lower than one logarithmic unit of signal intensity.
Such low MAEs present a significant achievement consider-
ing both the complex task and the small size of the dataset
and the fact that CIMS signals vary over several orders of
magnitude.

We find the lowest MAEs for the positive polarity ioniza-
tion methods, most likely because the available datasets are
larger. Unlike classification, the different descriptors perform
similarly to the regression task. Overall, MACCS is still the
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Figure 6. Evaluation of the classification performance with RF, by the use of ROC curves for the four ionization schemes (Br−, O−2 , H3O+,
AceH+) with the five molecular descriptors (MACCS, MBTR, TopFP, CM, properties). For each curve, we report the AUC value. The x axis
reports the false positive rate, and the y axis reports the true positive rate. The mean value and standard deviation are obtained by repeating
the training with five different random re-shuffles of the dataset.

best, followed by TopFP and MBTR. The fact all descrip-
tors learn similarly is surprising since they capture different
features of the elemental and structural features. We believe
this behavior stems from the inherent characteristics of the
dataset. The noise and variability in the data could obscure
the potential advantages of these more complex descriptors.
Moreover, since we employed KRR as our regression model,
its ability to learn intricate patterns might be limited by the
inherent challenges present in the data.

The results demonstrate that all models can achieve a
MAE under one unit of logarithmic signal intensity, which
is impressive, especially considering the even lower number
of observations compared to the classification task (174 in
the worst case). Such an accuracy is already sufficient for
deployment in field studies. For suspected molecules or pol-
lutants, ML models could estimate the expected signal in-

tensity and subsequently its concentration in the atmosphere
without relying on quantum chemical computations or direct
measurements. Conversely, insight into the detection pro-
cesses could be garnered by identifying chemical features
that correlate with the signal intensity for the different ion-
ization methods. We will present such analysis in the next
section.

5.3 Chemical insight

Next, we explore the chemical insight our ML classification
models offer into ion–molecule interactions. As a proof of
concept, we aim to relate the model’s findings to established
knowledge and note any unexpected influential features. We
focus on the RF classifier model, as it enables straightfor-
ward identification of key molecular features associated with
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Figure 7. Learning curve with mean absolute error (MAE) of the signal intensity values in logarithmic scale of Br−, O−2 , H3O+ and AceH+

datasets, based on the TopFP, MACCS, CM, MBTR and properties as the descriptors. The x axis reports the training set size, and the y axis
reports the MAE of the logarithmic signal intensity. The mean value and standard deviation are obtained by repeating the training with five
different random re-shuffles of the dataset.

signal detectability. This is achieved by analyzing which fea-
tures are most influential in the RF model’s classification
decisions. We will focus on the MACCS and RDKitPROP
descriptors because they are the most interpretable. In the
case of MACCS, the insight into the interaction can be ex-
tracted by analyzing the occurrence of molecules detected
and not detected for each feature, i.e., each MACCS key
(sub-structure) of the molecular structure. In the case of RD-
KitPROP, the insight into the interaction can be formulated
by analyzing each feature, i.e., property. For each ionization
method, we pick the largest training set size and then obtain
the feature ranking and the corresponding coefficients (im-
portance values) from the trained RF models for the five ran-
dom seeds. We then average the importance values for each
feature and rank again. For each ionization method, we pick
the largest training set size and then obtain the feature rank-

ing and the corresponding coefficients (importance values)
from the trained RF models for the five random seeds. We
then average the importance values for each feature and rank
again.

We then compare the most important features of a given
ionization method to those of the other ionization methods
by means of the Pearson correlation coefficient. Figure 8
shows the Pearson correlation coefficient of the normalized
feature importance values in percentage for the RDKitPROP
and MACCS descriptors. For both descriptors, the features
for the negative (Br− and O−2 ) and positive polarity ioniza-
tion methods (H3O+ and AceH+) correlate strongly (above
86.8 %). The inter-correlation between the features of the
positive and negative reagent ions, however, is much weaker
(between 21.4 % and 52.7 %). The Pearson correlation coef-
ficients reveal that the polarity of the reagent ion predomi-
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Figure 8. Pearson correlation coefficient (%) of the normalized features importance values obtained from the RF estimator trained on 80 %
of the data with optimized hyperparameters based on MACCS and RDKitPROP.

Table 3. Mean absolute errors (MAEs) and standard deviation of
the prediction on the test dataset with KRR for all reagent ions with
the five different molecular descriptors. The values were obtained
by repeating the training on the largest training size (80 % of the de-
tected dataset) with five different random re-shuffles of the dataset.

Ionization Training Descriptor MAE
method size [log(signal intensity)]

Br− 240 TopFP 0.74± 0.10
MACCS 0.72± 0.06
CM 0.82± 0.05
MBTR 0.74± 0.07
RDKitPROP 0.86± 0.06

O−2 174 TopFP 0.55± 0.07
MACCS 0.60± 0.08
CM 0.74± 0.07
MBTR 0.61± 0.03
RDKitPROP 0.64± 0.05

H3O+ 376 TopFP 0.47± 0.06
MACCS 0.44± 0.03
CM 0.48± 0.03
MBTR 0.47± 0.04
RDKitPROP 0.45± 0.04

AceH+ 379 TopFP 0.50± 0.05
MACCS 0.44± 0.03
CM 0.54± 0.05
MBTR 0.50± 0.03
RDKitPROP 0.48± 0.04

nately determines which molecular features the ion interacts
with. We made a similar observation in Fig. 3b, where we
saw that the signal intensities cluster strongly by the polarity
of the reagent ion.

Figure 9 reports the importance values in percentage for
the most important features of the RDKitPROP model for the

Figure 9. RDKitPROP RF best estimator features importance (%)
of a subset of properties for each ionization method.

four ionization methods. Tables S16 and S17 in the Supple-
ment provide the values for all the properties, and addition-
ally, the average value of the property is calculated individ-
ually for detected and undetected pesticides. No feature has
an importance above 10 %, and only four of them reach an
importance above 6 %: TPSA and LipinskiHBA in the case
of positive reagent ions and LipinskiHBD and NumHBD in
the case of negative reagent ions. The next most important
properties are NumHBA and NumAtoms for positive polarity
ionization methods and then HallKierAlpha, CrippenClogP,
FractionCSP3, AMw and ExactMw presenting similar im-
portance for both positive and negative polarity ionization
methods.

As mentioned in Sect. 3.1, some properties present repet-
itive information, which means that the overall importance
relative to the number of HBDs, as an example, is shared
between the NumHBD property and the LipinskiHBD prop-
erty. Either property probably would have reached a higher
importance if only one of the two had been considered.
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The other two properties that present repetitive information
are the number of HBAs (with importance shared between
NumHBA and LipinskiHBA) and the molecular weight (with
importance shared between AMw and ExactMw). Going
into more detail, the number of HBDs correlates strongly
with negative polarity ionization methods and the number of
HBAs with positive ones. This behavior is expected because
the HBD quantifies the number of hydrogen atoms attached
to either oxygen or nitrogen atoms. Both of these groups
can create a hydrogen bond and thus promote the interaction
with negative reagent ions. Conversely, the HBA encodes the
number of oxygen or nitrogen atoms in the molecule, which
can both create a hydrogen bond and accept a proton, pro-
moting the interaction with positive reagent ions.

The high importance of TPSA highlights the significance
of the molecular polar surface in the ionization mechanism.
The polarity of the target molecule can increase the chances
of interacting with the reagent ion, therefore increasing the
resulting signal intensity. The tendency of ionization, and
thus the CIMS signal intensity, then increases with increas-
ing polarity. Notably, our models assign a higher importance
to the polarity for positive reagent ions, possibly due to the
higher number of detected pesticides in the data. However, it
is important to note that TPSA was originally calculated and
implemented by not including halogen contributions in the
equation (Ertl et al., 2000; Landrum, 2006). Therefore, the
high presence of bromine, fluorine and iodine atoms in pes-
ticides influences the polarity and might result in a different
polar surface area.

Similar to TPSA, CrippenClogP emphasizes the role of
hydrophilicity in our interaction analysis. The importance
of molecular weight and NumAtoms indicates that larger
molecular size correlates with detectability, as it provides
more functional groups and a greater collision cross-section,
thereby possibly increasing the likelihood of interactions
with the reagent ion.

HallKierAlpha was also found useful in predicting molec-
ular detection characteristics, which indicates that for each
molecule the sum of the scaled measures of each atom’s co-
valent radius (adjusted for its hybridization state relative to
the covalent radius of a sp3 hybridized carbon atom) relates
to the reagent ion–target molecule interaction. For all ioniza-
tion methods, both detected and undetected molecules have
negative HallKierAlpha values (see Tables S16 and S17),
suggesting that the molecules in the dataset generally have
smaller average atomic sizes relative to a sp3 hybridized car-
bon atom. Detected molecules exhibit, on average, a smaller
HallKierAlpha value than undetected ones. However, it is not
clear if this difference in HallKierAlpha values is statistically
significant.

The presence of FractionCSP3 among the most impor-
tant features indicates that the fraction of sp3 hybridized
carbons in the molecule contributes to the reagent ion–
molecule interaction. With an in-depth analysis, the data sug-
gest that molecules with a “rigid” structure (fewer sp3 car-

Figure 10. MACCS RF best estimator features importance (%) of
a subset of MACCS keys for each ionization method.

bons) slightly prefer interaction with negative reagent ions,
while molecules with flexible structures (more sp3 carbons)
slightly prefer interaction with positive reagent ions.

We observe that several of the identified important features
relate to proton affinity. The number of HBAs (NumHBA,
LipinskiHBA) is directly correlated to proton affinity as it
calculates the number of sites available to accept a proton.
The TPSA describes the molecule’s polarity, and for cer-
tain molecules, a higher TPSA could correlate with a higher
proton affinity. HallKierAlpha correlates as well since ev-
ery atom’s covalent radius is adjusted for its hybridization
state and electronegativity, reflecting the likelihood of atoms
within a molecule to donate electron density to a proton.
FractionCSP3, while not correlating directly to proton affin-
ity, might influence the overall basicity of the molecule (e.g.,
a higher number of sp3 carbons in the molecule potentially
affects the electron density of heteroatoms indirectly).

We note that different reagent ions react with the analyte
in distinct ways (see the Introduction). While our results sup-
port the predictive nature of properties like proton affinity,
specifically for positive reagent ions, the ML model’s advan-
tage lies in its flexibility. As shown, this approach aligns well
with established knowledge, yet the ML methodology com-
bined with molecular representations can relate any reagent
ion or ionization mechanism to the magnitude of CIMS sig-
nals using only the analyte molecular structure.

Figure 10 reports the importance values in percentage of
a representative subset of the 50 most important keys (e.g.,
reaching 1 % importance for at least one ionization method)
of the MACCS descriptor for the four ionization methods
(the remaining important keys can be found in Tables S18
and S19 in the Supplement). We find no key with importance
above 6 %, suggesting that in complex systems such as pesti-
cides, no single structural or chemical feature dominates the
interaction with the reagent ions. Instead, multiple features
of the molecule participate in the interaction, by connecting
either actively to the reagent ion or passively through, e.g.,
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inductive effects that increase the bond strength. It is also im-
portant to remember that our dataset is quite diverse. Thus,
specific features or functional groups could have different
importance for different types of molecules, decreasing the
overall importance values. The groups with the highest im-
portance are amines (NH, either primary or secondary) and
hydroxyl (OH) for negative reagent ions and nitrogen and ni-
trogen atoms with three single bonds (NA(A)A, where “A”
stands for any element) for positive reagent ions. All other
features do not surpass 2.5 % of importance, on average.

Additionally, Table 4 reports a subset of the 50 most
important MACCS features. The table reports individually
for each reagent ion: the key (sub-structure), its importance
value (IMP, %), the proportion of appearance in the dataset
(PP %) and the average count of the appearing key per
molecule (Avg) (calculated individually for detected (D) and
undetected (ND) pesticides).

NH is most important for Br− and O−2 (3.56 % and 5.64 %
of importance respectively). It is nearly twice as important
for detected than undetected pesticides (approx. 57 % vs. ap-
prox. 24 %). With 2.29 % and 3.19 %, the importance of OH
is slightly lower than for NH. Like NH, OH groups trigger
predominately for detected pesticides (approx. 23 % for de-
tected vs. 6 % for undetected molecules). For both OH and
NH groups, the undetected pesticides had a higher average
frequency of appearance (Avg, how many times a group is
present in a molecule, for the full dataset on average, by con-
sidering only the detected or undetected cases). However, we
note that negative reagent ions suffer from a class imbalance,
and the high number of undetected cases could influence this
statistic.

Both OH and NH are HBD groups. OH is known to be im-
portant for the interaction with negative reagent ions, while
the importance of NH groups for this interaction has been
observed by quantum chemical calculations in Partovi et al.
(2023). With our ML models, we find these relations solely
through patterns in the data.

For positive ionization schemes, OH groups do not reach
1 % of importance and do not present any relevant variation
between detected and undetected. Amine groups reach 1 % of
importance and correlate with detected pesticides (44 % for
detected vs. 19 % for undetected molecules). For AceH+ ion-
ization, NH is only the 4th most important feature. The most
important groups for positive ionization are instead those
containing nitrogen. Being a HBA, nitrogen is an element
that can facilitate the interaction between reagent ions and
sample molecules.

The presence of nitrogen (N in the table) reaches 3.65 %
and 4.00 % in importance for H3O+ and AceH+. In both
datasets, N appears approximately in 88 % of the detected
pesticides and in 52 % of the undetected pesticides. Similarly,
NA(A)A groups reach 3.80 % and 3.93 % of importance for
H3O+ and AceH+. This group is common in the studied
dataset (for positive reagent ions: approximately 83 % for de-
tected but only 42 % for undetected pesticides).

Next, we will analyze other groups with importance for
both positive and negative reagent ions. Five important fea-
tures relate to the presence of halogens: the first three indi-
cate if a halogen is present (X), if it has three single bonds
(XA(A)A) and if it is bonded to a ring (X!A$A, where “!”
stands for a chain or non-ring bond and “$” stands for a ring
bond). The last two specify whether the halogen is a chlo-
rine (Cl) or fluorine (F) atom. These halogen-related features
range between 1 % and 2 % in importance across the four
ionization schemes (F is the only one not reaching 1 % of
importance for positive reagent ions). For negative reagent
ions, these groups are 10 %–20 % more prevalent in detected
than undetected pesticides. However, the average frequency
of appearance per molecule between detected and undetected
molecules does not present any clear difference. In contrast,
molecules detected by positive reagent ions have 15 %–20 %
fewer halogen features than undetected molecules (specifi-
cally for the groups X, XA(A)A, X!A$A). The frequency of
appearance per molecule is also higher for undetected pes-
ticides, with an average of three to six groups per molecule
(compared to two to three groups per molecule for detected
instances). F shows the opposite trend for positive reagent
ions. It has a slightly higher presence and a higher average
group frequency for detected molecules. However, as previ-
ously stated, F does not reach 1 % of importance for positive
ionization schemes, so this result might not be as relevant as
for the other features. In summary, the presence of halogens
in a molecule enhances the detectability of negative ioniza-
tion schemes and reduces it for positive ones.

The carbonyl group has a moderate importance (< 2 %)
for all ionization schemes. For Br− and O−2 , the importance
is 1.8 % and 1.52 % and for H3O+ and AceH+ 0.82 % and
1.57 %, respectively. Focusing on negative reagent ions, C=O
appears approximately in 70 % of the detected pesticides and
in 50 % of the undetected ones, with a similar frequency per
molecule (1.3 times). Carbonyl is a HBA group. Its impor-
tance for negative ionization schemes could therefore be due
to either an inductive effect of oxygen or a possible redirec-
tion of the reagent ion to HBD groups. For positive reagent
ions, C=O is present in approximately 64 % detected and
40 % undetected molecules, following its ability to accept
hydrogens.

Among the important MACCS keys, we find three which
enumerate whether there is one, more than one or more than
two methyl groups (CH3, CH3> 1 and CH3> 2). The pos-
itive ionization schemes show a greater prevalence of these
features for detected pesticides than the negative schemes.
For positive reagent ions, CH3 is most important when it ap-
pears two times in a molecule.

Overall, RDKitPROP and MACCS in combination with
RF have given us valuable insights into CIMS ion–molecule
interactions. In the case of positive polarity ionization meth-
ods, the results obtained with the chemical insight analysis
support known alternative methods of identifying whether a
molecule can be detected, by highlighting a series of proper-
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Table 4. MACCS-based RF best estimator feature importance (%) of a subset of structural keys (groups). For each key, the structure, the
importance value (IMP, %) and the proportion of presence (PP, %), with, in addition, the average group count per molecule (Avg) for detected
(D) and undetected (ND) molecules, are stated. In the name of the structures, the special characters stand for “A”, any element; “X”, halogen;
“!”, chain or non-ring bond; and “$”, ring bond.

Br− O−2
D ND D ND

Structure IMP % PP % Avg PP % Avg IMP % PP % Avg PP % Avg

NH 3.56 50.33 1.28 25.95 1.38 5.64 64.22 1.26 23.79 1.41
OH 2.29 21.00 1.02 6.11 1.25 3.19 24.77 1.02 6.95 1.18
N 0.66 83.67 2.39 71.50 2.05 0.57 87.16 2.41 72.00 2.10
NA(A)A 0.50 77.33 3.10 64.12 2.83 0.53 79.36 3.32 65.47 2.76
X 1.70 66.67 2.90 48.09 2.68 1.19 67.43 2.86 50.95 2.75
XA(A)A 1.87 64.33 3.43 43.00 3.60 1.38 64.68 3.33 46.53 3.63
X!A$A 1.59 54.00 4.13 36.39 4.94 1.19 53.67 3.79 39.58 4.95
Cl 1.18 53.33 1.94 40.20 2.37 0.99 50.46 1.72 43.79 2.38
F 1.56 25.67 3.34 10.43 2.56 1.81 28.90 3.48 11.58 2.60
C=O 1.80 68.33 1.34 50.38 1.32 1.52 72.48 1.31 51.58 1.34
CH3 0.76 74.67 2.58 82.70 2.87 1.16 70.18 2.55 83.37 2.83
CH3> 1 1.39 56.00 3.10 71.50 3.16 1.14 53.21 3.04 70.11 3.17
CH3> 2 (& . . . ) 0.94 35.00 3.76 43.77 3.90 1.21 29.82 3.86 44.63 3.84

H3O+ AceH+

D ND D ND

Structure IMP % PP % Avg PP % Avg IMP % PP % Avg PP % Avg

NH 1.44 44.68 1.29 19.28 1.49 1.82 44.94 1.28 18.26 1.58
OH 0.81 10.43 1.00 17.04 1.18 0.82 10.34 1.00 17.35 1.18
N 3.65 88.30 2.28 52.47 1.97 4.00 88.19 2.26 52.05 2.04
NA(A)A 3.80 82.98 2.87 42.15 3.31 3.93 82.91 2.88 41.55 3.29
X 1.33 49.15 2.41 70.85 3.36 1.27 50.42 2.44 68.49 3.36
XA(A)A 1.27 45.53 2.79 66.37 4.55 1.35 47.05 2.81 63.47 4.64
X!A$A 2.07 37.02 3.23 58.74 6.21 1.24 39.66 3.26 53.42 6.52
Cl 1.81 38.51 1.50 61.43 3.01 1.34 40.51 1.51 57.53 3.13
F 0.63 19.15 3.04 12.56 3.14 0.48 18.99 3.10 12.79 2.96
C=O 0.82 63.62 1.31 46.64 1.39 1.57 64.77 1.32 43.84 1.38
CH3 1.44 85.96 2.90 65.02 2.34 1.15 84.81 2.86 67.12 2.44
CH3> 1 2.28 72.55 3.25 48.43 2.80 1.69 70.68 3.23 52.05 2.86
CH3> 2 (& . . . ) 1.85 47.66 3.90 23.77 3.62 1.34 45.36 3.92 28.31 3.58

ties that can relate to proton affinity. In the case of negative
polarity ionization methods, a substantial comparison can be
made with literature findings, mainly based on detailed quan-
tum chemical calculations. Based on RDKitPROP, the num-
ber of HBDs in the molecule was attributed more than 10 %
of importance (by combining LipinskiHBD and NumHBD
percentages), while based on MACCS, HBD groups such as
OH and NH were found among the most important ones.

These results agree with atmospheric chemistry studies
such as Iyer et al. (2016) and Hyttinen et al. (2018), where
quantum chemical calculations indicated that for organic va-
pors, OH is the primary functional group interacting with
negative reagent ions. Similarly, Partovi et al. (2023), in a
study of pesticide molecules, identified NH groups as signif-
icant in interactions with Br− when OH groups were absent.

Thus, our model supports these findings by identifying im-
portant features directly from data patterns without needing
intensive quantum chemical methods.

While previous studies focused on single compound
classes (e.g., homogenous sets of volatile organic com-
pounds), or in a limited amount of complex compounds, our
method utilizes a less homogeneous and larger dataset. The
chemical insight analysis of our work provides a general pro-
file of the interaction mechanism, supporting the findings
from the literature but also highlighting other functionalities
that might affect the signal due to their relation to the elec-
tronic structure.

This data-driven approach also required minimal compu-
tational resources due to the simplicity of the RDKitPROP
and MACCS descriptors, contrasting with the higher de-
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mands of quantum chemical calculations. Although quantum
chemical approaches remain essential for detailed, molecule-
specific interactions, our ML model effectively reveals
broader trends, distinguishing between detected and unde-
tected molecules across the four studied ionization schemes.

6 Conclusions

In summary, we developed a ML workflow for predicting
the detection with CIMS (with a classification algorithm)
and CIMS sensitivity to molecules (with a regression al-
gorithm) to improve atmospheric compound identification.
The goal is to evaluate if our ML model can accurately pre-
dict detections and signal intensities, thus offering a foun-
dation to build a database of simulated compounds’ signals
for compound identification purposes with CIMS. Currently,
compound identification is typically achieved by comparing
an unknown compound’s spectrum to a reference database.
While this work does not provide direct identification of un-
known compounds, it establishes a methodology for devel-
oping such a database, which could be expanded for broader
use in atmospheric chemistry.

Two standard solutions containing 693 pesticides were an-
alyzed with the Orbitrap TD-MION-MS. A RF classifier and
a KRR model were trained on five different molecular struc-
ture representations. The best descriptor found is MACCS
for both the classification and the regression. In the case
of classification, MACCS reaches 0.85± 0.02 of accuracy
and AUC of 0.91± 0.01; in the case of regression, MACCS
can reach 0.44± 0.03 of MAE in logarithmic units of sig-
nal intensity. Models based on this descriptor have the low-
est errors in both algorithms and are also easy to understand
and implement, as they encode the presence of functional
groups, or sub-structures starting from SMILES strings. Be-
cause of its white-box nature, the MACCS descriptor can
provide chemical insight. Our feature importance analysis of
the RF classifier provided insight into the reagent-ion inter-
action. RDKitPROP highlighted trends in the data that are
generally known from basic chemical intuition. The feature
analysis of the MACCS-based model highlighted the pos-
sible sub-structures that might impact the detection of the
molecules. Models based on the two negative polarity ion-
ization methods, Br− and O−2 , presented similar results, such
as the high importance of OH and NH groups, and carbonyls
and halogens. Positive polarity ionization methods, H3O+

and AceH+, also presented similar results and highlighted
the key role of nitrogen in detection and halogens in decreas-
ing the chances of detection. These are the most relevant fea-
tures found for the ML model, which generalizes features of
experimental data.

The results demonstrate that it is possible to extract predic-
tive information even in small experimental datasets. How-
ever, more instances could help to generalize the structural
features better and help prevent class imbalance problems.

Currently, our ML models are directly applicable to pre-
dicting the detection and signal intensity of molecules with
molecular structures similar to those in our dataset. For
molecules with more diverse structures, transfer learning ap-
proaches could use these trained models as a baseline, updat-
ing learned parameters to accommodate the characteristics of
new structures.

Applying our approach directly to field measurements
will require a comprehensive, standardized dataset of atmo-
spheric compounds with a limited number of reagent ions for
practical applications. Such a dataset could facilitate accurate
mapping of ionization tendencies, potentially enabling com-
pound identification directly from field CIMS measurements
in the future. Moreover, while this workflow was developed
using high-resolution Orbitrap data, it can also be utilized
with lower-resolution data, though this may introduce greater
uncertainties.

The ML models developed in this work are a first step
towards optimizing CIMS measurements for comprehensive
reaction product detection with ML, aiming to enhance the
general understanding of complex analyses such as those
of atmospheric CIMS in the future. In future work, study-
ing datasets with similar structures to atmospheric com-
pounds (focusing on oxygenated compounds) could bring a
greater understanding of the reagent ion and sample molecule
interaction inside the instrumentation, thereby providing a
greater understanding of the compounds detected in situ at-
mospheric measurement. An improvement in the ML perfor-
mance could come from both experimental data and synthetic
data. Furthermore, the development of standardized exper-
imental datasets is crucial, as these can significantly boost
the possibility of using artificial intelligence algorithms and
enhance the accuracy and reliability of future atmospheric
analyses.

Code and data availability. The full dataset is freely avail-
able online at https://doi.org/10.5281/zenodo.11208543 (Bortolussi
et al., 2024a). The ML methods implemented in this study are avail-
able at https://gitlab.com/cest-group/pesticidesms (Bortolussi et al.,
2024b).
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