Articles | Volume 25, issue 11
https://doi.org/10.5194/acp-25-5633-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-5633-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Partitioning of ionic surfactants in aerosol droplets containing glutaric acid, sodium chloride, or sea salts
School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
Department of Chemistry, Oregon State University, Corvallis, OR 97331, United States
Kunal Ghosh
Center for Atmospheric Research, University of Oulu, Oulu, P.O. Box 4500, 90014, Finland
Konstantin Tumashevich
Center for Atmospheric Research, University of Oulu, Oulu, P.O. Box 4500, 90014, Finland
Nønne L. Prisle
Center for Atmospheric Research, University of Oulu, Oulu, P.O. Box 4500, 90014, Finland
School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
Related authors
Hang Yin, Jing Dou, Liviana Klein, Ulrich K. Krieger, Alison Bain, Brandon J. Wallace, Thomas C. Preston, and Andreas Zuend
Atmos. Chem. Phys., 22, 973–1013, https://doi.org/10.5194/acp-22-973-2022, https://doi.org/10.5194/acp-22-973-2022, 2022
Short summary
Short summary
Iodine and carbonate species are important components in marine and dust aerosols, respectively. We introduce an extended version of the AIOMFAC thermodynamic mixing model, which includes the ions I−, IO3−, HCO3−, CO32−, OH−, and CO2(aq) as new species, and we discuss two methods for solving the carbonate dissociation equilibria numerically. We also present new experimental water activity data for aqueous iodide and iodate systems.
Leighton A. Regayre, Léa M. C. Prévost, Kunal Ghosh, Jill S. Johnson, Jeremy E. Oakley, Jonathan Owen, Iain Webb, and Ken S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2025-3755, https://doi.org/10.5194/egusphere-2025-3755, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Tiny particles called aerosols affect how much sunlight the Earth reflects back into space – one of the biggest climate uncertainties. We use a large set of climate model simulations and find that uncertainty drops in some regions, but persists in other areas, after comparing models to observations. By identifying the specific processes that cause the remaining uncertainty, we guide future efforts to reduce the aerosol forcing uncertainty so we can make more reliable climate predictions.
Kunal Ghosh, Rukhsar Parveen, and Yelia Shankaranarayana Mayya
Aerosol Research Discuss., https://doi.org/10.5194/ar-2024-23, https://doi.org/10.5194/ar-2024-23, 2024
Preprint withdrawn
Short summary
Short summary
We investigated the space charge influence on the aerosol neutralization principle used in all aerosol measurement instruments. We found that the space charge cause ions to separate unevenly, leading to different rates of neutralization in different parts of the inlet, impacting the effectiveness of the neutralization process.
Gargi Sengupta, Minjie Zheng, and Nønne L. Prisle
Atmos. Chem. Phys., 24, 1467–1487, https://doi.org/10.5194/acp-24-1467-2024, https://doi.org/10.5194/acp-24-1467-2024, 2024
Short summary
Short summary
The effect of organic acid aerosol on sulfur chemistry and cloud properties was investigated in an atmospheric model. Organic acid dissociation was considered using both bulk and surface-related properties. We found that organic acid dissociation leads to increased hydrogen ion concentrations and sulfate aerosol mass in aqueous aerosols, increasing cloud formation. This could be important in large-scale climate models as many organic aerosol components are both acidic and surface-active.
Sampo Vepsäläinen, Silvia M. Calderón, and Nønne L. Prisle
Atmos. Chem. Phys., 23, 15149–15164, https://doi.org/10.5194/acp-23-15149-2023, https://doi.org/10.5194/acp-23-15149-2023, 2023
Short summary
Short summary
Atmospheric aerosols act as seeds for cloud formation. Many aerosols contain surface active material that accumulates at the surface of growing droplets. This can affect cloud droplet activation, but the broad significance of the effect and the best way to model it are still debated. We compare predictions of six models to surface activity of strongly surface active aerosol and find significant differences between the models, especially with large fractions of surfactant in the dry particles.
Minjie Zheng, Hongyu Liu, Florian Adolphi, Raimund Muscheler, Zhengyao Lu, Mousong Wu, and Nønne L. Prisle
Geosci. Model Dev., 16, 7037–7057, https://doi.org/10.5194/gmd-16-7037-2023, https://doi.org/10.5194/gmd-16-7037-2023, 2023
Short summary
Short summary
The radionuclides 7Be and 10Be are useful tracers for atmospheric transport studies. Here we use the GEOS-Chem to simulate 7Be and 10Be with different production rates: the default production rate in GEOS-Chem and two from the state-of-the-art beryllium production model. We demonstrate that reduced uncertainties in the production rates can enhance the utility of 7Be and 10Be as tracers for evaluating transport and scavenging processes in global models.
Sampo Vepsäläinen, Silvia M. Calderón, Jussi Malila, and Nønne L. Prisle
Atmos. Chem. Phys., 22, 2669–2687, https://doi.org/10.5194/acp-22-2669-2022, https://doi.org/10.5194/acp-22-2669-2022, 2022
Short summary
Short summary
Atmospheric aerosols act as seeds for cloud formation. Many aerosols contain surface active material that accumulates at the surface of growing droplets. This can affect cloud droplet activation, but the broad significance of the effect and the best way to model it are still debated. We compare predictions of six different model approaches to surface activity of organic aerosols and find significant differences between the models, especially with large fractions of organics in the dry particles.
Hang Yin, Jing Dou, Liviana Klein, Ulrich K. Krieger, Alison Bain, Brandon J. Wallace, Thomas C. Preston, and Andreas Zuend
Atmos. Chem. Phys., 22, 973–1013, https://doi.org/10.5194/acp-22-973-2022, https://doi.org/10.5194/acp-22-973-2022, 2022
Short summary
Short summary
Iodine and carbonate species are important components in marine and dust aerosols, respectively. We introduce an extended version of the AIOMFAC thermodynamic mixing model, which includes the ions I−, IO3−, HCO3−, CO32−, OH−, and CO2(aq) as new species, and we discuss two methods for solving the carbonate dissociation equilibria numerically. We also present new experimental water activity data for aqueous iodide and iodate systems.
Nønne L. Prisle
Atmos. Chem. Phys., 21, 16387–16411, https://doi.org/10.5194/acp-21-16387-2021, https://doi.org/10.5194/acp-21-16387-2021, 2021
Short summary
Short summary
A mass-based Gibbs adsorption model is presented to enable predictive Köhler calculations of droplet growth and activation with considerations of surface partitioning, surface tension, and non-ideal water activity for chemically complex and unresolved surface active aerosol mixtures, including actual atmospheric samples. The model is used to calculate cloud condensation nuclei (CCN) activity of aerosol particles comprising strongly surface-active model atmospheric humic-like substances (HULIS).
Jack J. Lin, Kamal Raj R Mundoli, Stella Wang, Esko Kokkonen, Mikko-Heikki Mikkelä, Samuli Urpelainen, and Nønne L. Prisle
Atmos. Chem. Phys., 21, 4709–4727, https://doi.org/10.5194/acp-21-4709-2021, https://doi.org/10.5194/acp-21-4709-2021, 2021
Short summary
Short summary
We used surface-sensitive X-ray photoelectron spectroscopy (XPS) to study laboratory-generated nanoparticles of atmospheric interest at 0–16 % relative humidity. XPS gives direct information about changes in the chemical state from the binding energies of probed elements. Our results indicate water adsorption and associated chemical changes at the particle surfaces well below deliquescence, with distinct features for different particle components and implications for atmospheric chemistry.
Georgia Michailoudi, Jack J. Lin, Hayato Yuzawa, Masanari Nagasaka, Marko Huttula, Nobuhiro Kosugi, Theo Kurtén, Minna Patanen, and Nønne L. Prisle
Atmos. Chem. Phys., 21, 2881–2894, https://doi.org/10.5194/acp-21-2881-2021, https://doi.org/10.5194/acp-21-2881-2021, 2021
Short summary
Short summary
This study provides insight into hydration of two significant atmospheric compounds, glyoxal and methylglyoxal. Using synchrotron radiation excited X-ray absorption spectroscopy, we confirm that glyoxal is fully hydrated in water, and for the first time, we experimentally detect enol structures in aqueous methylglyoxal. Our results support the contribution of these compounds to secondary organic aerosol formation, known to have a large uncertainty in atmospheric models and climate predictions.
Noora Hyttinen, Reyhaneh Heshmatnezhad, Jonas Elm, Theo Kurtén, and Nønne L. Prisle
Atmos. Chem. Phys., 20, 13131–13143, https://doi.org/10.5194/acp-20-13131-2020, https://doi.org/10.5194/acp-20-13131-2020, 2020
Short summary
Short summary
We present aqueous solubilities and activity coefficients of mono- and dicarboxylic acids (C1–C6 and C2–C8, respectively) estimated using the COSMOtherm program. In addition, we have calculated effective equilibrium constants of dimerization and hydration of the same acids in the condensed phase. We were also able to improve the agreement between experimental and estimated properties of monocarboxylic acids in aqueous solutions by including clustering reactions in COSMOtherm calculations.
Cited articles
Alvarez, N. J., Walker, M., and Anna, S. L.: A criterion to assess the impact of confined volumes on surfactant transport to liquid – fluid interfaces, Soft. Matter., 8, 8917–8925, https://doi.org/10.1039/c2sm25447f, 2012.
Bain, A., Chan, M. N., and Bzdek, B. R.: Physical properties of short chain aqueous organosulfate aerosol, Environ. Sci. Atmos., 3, 1365–1373, https://doi.org/10.1039/d3ea00088e, 2023a.
Bain, A., Ghosh, K., Prisle, N. L., and Bzdek, B. R.: Surface-Area-to-Volume Ratio Determines Surface Tensions in Microscopic, Surfactant-Containing Droplets, ACS Cent. Sci., 9, 2076–2083, https://doi.org/10.1021/acscentsci.3c00998, 2023b.
Bain, A., Prisle, N. L., and Bzdek, B. R.: Model-Measurement Comparisons for Surfactant-Containing Aerosol Droplets, ACS Earth Sp. Chem., 8, 2244–2255, https://doi.org/10.1021/acsearthspacechem.4c00199, 2024a.
Bain, A., Lalemi, L., Dawes Croll, N., Miles, R., Prophet, A., Wilson, K., and Bzdek, B.: Surfactant partitioning dynamics in freshly generated aerosol droplets, J. Am. Chem. Soc., 146, 16028–16038, https://doi.org/10.1021/jacs.4c03041, 2024b.
Bertram, T. H., Cochran, R. E., Grassian, V. H., and Stone, E. A.: Sea spray aerosol chemical composition: elemental and molecular mimics for laboratory studies of heterogeneous and multiphase reactions, Chem. Soc. Rev., 47, 2374–2400, https://doi.org/10.1039/c7cs00008a, 2018.
Bondy, A. L., Bonanno, D., Moffet, R. C., Wang, B., Laskin, A., and Ault, A. P.: The diverse chemical mixing state of aerosol particles in the southeastern United States, Atmos. Chem. Phys., 18, 12595–12612, https://doi.org/10.5194/acp-18-12595-2018, 2018.
Boyer, H. C., Bzdek, B. R., Reid, J. P., and Dutcher, C. S.: Statistical Thermodynamic Model for Surface Tension of Organic and Inorganic Aqueous Mixtures, J. Phys. Chem. A, 121, 198–205, https://doi.org/10.1021/acs.jpca.6b10057, 2017.
Burdette, T. C. and Frossard, A. A.: Characterization of seawater and aerosol particle surfactants using solid phase extraction and mass spectrometry, J. Environ. Sci., 108, 164–174, https://doi.org/10.1016/j.jes.2021.01.026, 2021.
Burdette, T. C., Bramblett, R. L., Deegan, A. M., Coffey, N. R., Wozniak, A. S., and Frossard, A. A.: Organic Signatures of Surfactants and Organic Molecules in Surface Microlayer and Subsurface Water of Delaware Bay, ACS Earth Sp. Chem., 6, 2929–2943, https://doi.org/10.1021/acsearthspacechem.2c00220, 2022.
Bzdek, B. R. and Bain, A: Surface-Area-To-Volume Ratio Determines Surface Tensions in Microscopic, Surfactant-Containing Droplets, [data set], https://doi.org/10.5523/bris.bi3umjin511z28gg91upzvcxx, 2023.
Bzdek, B. R., Power, R. M., Simpson, S. H., Reid, J. P., and Royall, C. P.: Precise, contactless measurements of the surface tension of picolitre aerosol droplets, Chem. Sci., 7, 274–285, https://doi.org/10.1039/c5sc03184b, 2016.
Bzdek, B. R., Reid, J. P., Malila, J., and Prisle, N. L.: The surface tension of surfactant-containing, finite volume droplets, P. Natl. Acad. Sci. USA, 117, 8335–8343, https://doi.org/10.1073/pnas.1915660117, 2020.
Bzdek, B. R., Walker, J. S., and Bain, A.: Partitioning of Ionic Surfactants in Aerosol Droplets Containing Glutaric Acid, Sodium Chloride, or Sea Salts, University of Bristol [data set], https://doi.org/10.5523/bris.2zfsfzzmm3fed2c397n38lznqj, 2025.
Carter-Fenk, K. A., Dommer, A. C., Fiamingo, M. E., Kim, J., Amaro, R. E., and Allen, H. C.: Calcium bridging drives polysaccharide co-adsorption to a proxy sea surface microlayer, Phys. Chem. Chem. Phys., 23, 16401–16416, https://doi.org/10.1039/d1cp01407b, 2021.
Cochran, R. E., Laskina, O., Jayarathne, T., Laskin, A., Laskin, J., Lin, P., Sultana, C., Lee, C., Moore, K. A., Cappa, C. D., Bertram, T. H., Prather, K. A., Grassian, V. H., and Stone, E. A.: Analysis of organic anionic surfactants in fine and coarse fractions of freshly emitted sea spray aerosol, Environ. Sci. Technol., 50, 2477–2486, https://doi.org/10.1021/acs.est.5b04053, 2016.
Cross, A. W. and Jayson, G. G.: The effect of small quantities of calcium on the adsorption of sodium dodecyl sulfate and calcium at the gas-liquid interface, J. Colloid Interf. Sci., 162, 45–51, 1994.
De Leeuw, G., Andreas, E. L., Anguelova, M. D., Fairall, C. W., Lewis, E. R., O'Dowd, C., Schulz, M., and Schwartz, S. E.: Production flux of sea spray aerosol, Rev. Geophys., 49, 1–39, https://doi.org/10.1029/2010RG000349, 2011.
Dutcher, C. S., Wexler, A. S., and Clegg, S. L.: Surface tensions of inorganic multicomponent aqueous electrolyte solutions and melts, J. Phys. Chem. A, 114, 12216–12230, https://doi.org/10.1021/jp105191z, 2010.
E-AIM online model: Extended AIM thermodynamic model: Surface tension of aqueous solutions, https://www.aim.env.uea.ac.uk/aim/surftens/surftens.php, last access: 30 May 2025.
Eastoe, J. and Dalton, J. S.: Dynamic surface tension and adsorption mechanisms of surfactants at the air-water interface, Adv. Colloid Interf. Sci., 85, 103–144, https://doi.org/10.1016/S0001-8686(99)00017-2, 2000.
Eastoe, J., Nave, S., Downer, A., Paul, A., Rankin, A., Tribe, K., and Penfold, J.: Adsorption of ionic surfactants at the air-solution interface, Langmuir, 16, 4511–4518, https://doi.org/10.1021/la991564n, 2000.
El Haber, M., Gérard, V., Kleinheins, J., Ferronato, C., and Nozière, B.: Measuring the Surface Tension of Atmospheric Particles and Relevant Mixtures to Better Understand Key Atmospheric Processes, Chem. Rev., 124, 10924–10963, https://doi.org/10.1021/acs.chemrev.4c00173, 2024.
Fan, T., Ren, J., Liu, C., Li, Z., Liu, J., Sun, Y., Wang, Y., Jin, X., and Zhang, F.: Evidence of Surface-Tension Lowering of Atmospheric Aerosols by Organics from Field Observations in an Urban Atmosphere: Relation to Particle Size and Chemical Composition, Environ. Sci. Technol., 58, 11363–11375, https://doi.org/10.1021/acs.est.4c03141, 2024.
Frossard, A. A., Gérard, V., Duplessis, P., Kinsey, J. D., Lu, X., Zhu, Y., Bisgrove, J., Maben, J. R., Long, M. S., Chang, R. Y., Beaupré, S. R., Kieber, D. J., Keene, W. C., Nozière, B., and Cohen, R. C.: Properties of seawater surfactants associated with primary marine aerosol particles produced by bursting bubbles at a model air – sea interface, Environ. Sci. Technol., 53, 9047–9417, https://doi.org/10.1021/acs.est.9b02637, 2019.
Gérard, V., Nozière, B., Baduel, C., Fine, L., Frossard, A. A., and Cohen, R. C.: Anionic, cationic, and nonionic surfactants in atmospheric aerosols from the Baltic Coast at Asko, Sweden: Implications for cloud droplet activation, Environ. Sci. Technol., 50, 2974–2982, https://doi.org/10.1021/acs.est.5b05809, 2016.
Gérard, V., Nozière, B., Fine, L., Ferronato, C., Singh, D. K., Frossard, A. A., Cohen, R. C., Asmi, E., Lihavainen, H., Kiveka, N., Aurela, M., Brus, D., Frka, S., and Kusan, A. C.: Concentrations and adsorption isotherms for amphiphilic surfactants in PM1 aerosols from different regions of Europe, Environ. Sci. Technol., 53, 12379–12388, https://doi.org/10.1021/acs.est.9b03386, 2019.
Gong, S. L., Barrie, L. A., and Lazare, M.: Canadian Aerosol Module (CAM): A size-segregated simulation of atmospheric aerosol processes for climate and air quality models 2. Global sea-salt aerosol and its budgets, J. Geophys. Res.-Atmos., 107, 1–14, https://doi.org/10.1029/2001JD002004, 2002.
Good, N., Topping, D. O., Allan, J. D., Flynn, M., Fuentes, E., Irwin, M., Williams, P. I., and Coe, H.: Consistency between parameterisations of aerosol hygroscopicity and CCN activity during the RHaMBLe discovery cruise, Atmos. Chem. Phys., 10, 3189–3203, https://doi.org/10.5194/acp-10-3189-2010, 2010.
Hasenecz, E. S., Kaluarachchi, C. P., Lee, H. D., Tivanski, A. V., and Stone, E. A.: Saccharide transfer to sea spray serosol enhanced by surface activity, calcium, and protein interactions, ACS Earth Sp. Chem., 3, 2539–2548, https://doi.org/10.1021/acsearthspacechem.9b00197, 2019.
Irwin, M., Good, N., Crosier, J., Choularton, T. W., and Mcfiggans, G.: Reconciliation of measurements of hygroscopic growth and critical supersaturation of aerosol particles in central Germany, Atmos. Chem. Phys., 10, 11737–11752, https://doi.org/10.5194/acp-10-11737-2010, 2010.
Iyota, H. and Krastev, R.: Miscibility of sodium chloride and sodium dodecyl sulfate in the adsorbed film and aggregate, Colloid Polym. Sci., 287, 425–433, https://doi.org/10.1007/s00396-008-1981-0, 2009.
Jacobs, M. I., Johnston, M. N., and Mahmud, S.: Exploring How the Surface-Area-to-Volume Ratio Influences the Partitioning of Surfactants to the Air–Water Interface in Levitated Microdroplets, J. Phys. Chem. A, 128, 9986–9997, https://doi.org/10.1021/acs.jpca.4c06210, 2024.
Jayarathne, T., Sultana, C. M., Lee, C., Malfatti, F., Cox, J. L., Pendergraft, M. A., Moore, K. A., Azam, F., Tivanski, A. V, Cappa, C. D., Bertram, T. H., Grassian, V. H., Prather, K. A., and Stone, E. A.: Enrichment of Saccharides and Divalent Cations in Sea Spray Aerosol During Two Phytoplankton Blooms, Environ. Sci. Technol., 50, 11511–11520, https://doi.org/10.1021/acs.est.6b02988, 2016.
Kleinheins, J., Marcolli, C., Dutcher, C. S., and Shardt, N.: A unified surface tension model for multi-component salt, organic, and surfactant solutions, Phys. Chem. Chem. Phys., 26, 17521–17538, https://doi.org/10.1039/d4cp00678j, 2024.
Kumar, B., Tikariha, D., Ghosh, K. K., Kumar, B., Tikariha, D., and Ghosh, K. K.: Effects of Electrolytes on Micellar and Surface Properties of Some Monomeric Surfactants Effects of Electrolytes on Micellar and Surface Properties of Some Monomeric Surfactants, J. Dispers. Sci. Technol., 33, 265–271, https://doi.org/10.1080/01932691.2011.561178, 2012.
Malila, J. and Prisle, N. L.: A monolayer partitioning scheme for droplets of surfactant solutions, J. Adv. Model. Earth Syst., 10, 3233–3251, https://doi.org/10.1029/2018MS001456, 2018.
May, N. W., Olson, N. E., Panas, M., Axson, J. L., Tirella, P. S., Kirpes, R. M., Craig, R. L., Gunsch, M. J., China, S., Laskin, A., Ault, A. P., and Pratt, K. A.: Aerosol Emissions from Great Lakes Harmful Algal Blooms, Environ. Sci. Technol., 52, 397–405, https://doi.org/10.1021/acs.est.7b03609, 2018.
Nozière, B., Baduel, C., and Jaffrezo, J. L.: The dynamic surface tension of atmospheric aerosol surfactants reveals new aspects of cloud activation, Nat. Commun., 5, 1–7, https://doi.org/10.1038/ncomms4335, 2014.
Ovadnevaite, J., Zuend, A., Laaksonen, A., Sanchez, K. J., Roberts, G., Ceburnis, D., Decesari, S., Rinaldi, M., Hodas, N., Facchini, M. C., Seinfeld, J. H., and O'Dowd, C.: Surface tension prevails over solute effect in organic-influenced cloud droplet activation, Nature, 546, 637–641, https://doi.org/10.1038/nature22806, 2017.
Penfold, J. and Thomas, R. K.: Neutron reflection and the thermodynamics of the air–water interface, Phys. Chem. Chem. Phys., 24, 8553–8577, https://doi.org/10.1039/d2cp00053a, 2022.
Preston, T. C. and Reid, J. P.: Accurate and efficient determination of the radius, refractive index, and dispersion of weakly absorbing spherical particle using whispering gallery modes, J. Opt. Soc. Am. B, 30, 2113–2122, https://doi.org/10.1364/JOSAB.30.002113, 2013.
Preston, T. C. and Reid, J. P.: Determining the size and refractive index of microspheres using the mode assignments from Mie resonances, J. Opt. Soc. Am. A, 32, 2210–2217, https://doi.org/10.1364/JOSAA.32.002210, 2015.
Prisle, N. L.: A predictive thermodynamic framework of cloud droplet activation for chemically unresolved aerosol mixtures, including surface tension, non-ideality, and bulk – surface partitioning, Atmos. Chem. Phys., 21, 16387–16411, https://doi.org/10.5194/acp-21-16387-2021, 2021.
Prisle, N. L., Asmi, A., Topping, D., Partanen, A. I., Romakkaniemi, S., Dal Maso, M., Kulmala, M., Laaksonen, A., Lehtinen, K. E. J., McFiggans, G., and Kokkola, H.: Surfactant effects in global simulations of cloud droplet activation, Geophys. Res. Lett., 39, L05802, https://doi.org/10.1029/2011GL050467, 2012.
Prosser, A. J. and Franses, E. I.: Adsorption and surface tension of ionic surfactants at the air – water interface: review and evaluation of equilibrium models, Colloid. Surface. A, 178, 1–40, 2001.
Qazi, M. J., Schlegel, S. J., Backus, E. H. G., Bonn, M., Bonn, D., and Shahidzadeh, N.: Dynamic Surface Tension of Surfactants in the Presence of High Salt Concentrations, Langmuir, 36, 7956–7964, https://doi.org/10.1021/acs.langmuir.0c01211, 2020.
Radke, M.: Sterols and anionic surfactants in urban aerosol: Emissions from wastewater treatment plants in relation to background concentrations, Environ. Sci. Technol., 39, 4391–4397, https://doi.org/10.1021/es048084p, 2005.
Rohde, A. and Sackmann, E.: Quasielastic light-scattering studies of micellar sodium dodecyl sulfate solutions at the low concentration limit, J. Colloid Interf. Sci., 70, 494–505, https://doi.org/10.1016/0021-9797(79)90057-2, 1979.
Rumble, J. R. (Ed.): Handbook of Chemistry and Physics, 102nd Edn., CRC Press/Taylor and Francis, Boca Raton, FL, ISBN 9780367712600, 0367712601, 2021.
Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J., Dunlea, E. J., Feingold, G., Ghan, S., Guenther, A. B., Kahn, R., Kraucunas, I., Kreidenweis, S. M., Molina, M. J., Nenes, A., Penner, J. E., Prather, K. A., Ramanathan, V., Ramaswamy, V., Rasch, P. J., Ravishankara, A. R., Rosenfeld, D., Stephens, G., and Wood, R.: Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system, P. Natl. Acad. Sci. USA, 113, 5781–5790, https://doi.org/10.1073/pnas.1514043113, 2016.
Song, Y. C., Haddrell, A. E., Bzdek, B. R., Reid, J. P., Bannan, T., Topping, D. O., Percival, C., and Cai, C.: Measurements and predictions of binary component aerosol particle viscosity, J. Phys. Chem. A, 120, 8123–8137, https://doi.org/10.1021/acs.jpca.6b07835, 2016.
Sorjamaa, R., Svenningsson, B., Raatikainen, T., Henning, S., Bilde, M., and Laaksonen, A.: The role of surfactants in Köhler theory reconsidered, Atmos. Chem. Phys., 4, 2107–2117, https://doi.org/10.5194/acp-4-2107-2004, 2004.
Tao, W. K., Chen, J. P., Li, Z., Wang, C., and Zhang, C.: Impact of aerosols on convective clouds and precipitation, Rev. Geophys., 50, RG2001, https://doi.org/10.1029/2011RG000369, 2012.
Tuckermann, R.: Surface tension of aqueous solutions of water-soluble organic and inorganic compounds, Atmos. Environ., 41, 6265–6275, https://doi.org/10.1016/j.atmosenv.2007.03.051, 2007.
Wang, X., Deane, G. B., Moore, K. A., Ryder, O. S., Stokes, M. D., Beall, C. M., Collins, D. B., Santander, M. V., Burrows, S. M., Sultana, C. M., and Prather, K. A.: The role of jet and film drops in controlling the mixing state of submicron sea spray aerosol particles, P. Natl. Acad. Sci. USA, 114, 6978–6983, https://doi.org/10.1073/pnas.1702420114, 2017.
Weinheimer, R. M., Evans, D. F., and Cussler, E. L.: Diffusion in surfactant solutions, J. Colloid Interf. Sci., 80, 357–368, https://doi.org/10.1016/0021-9797(81)90194-6, 1980.
Wu, L., Li, X., Kim, H., Geng, H., Godoi, R. H. M., Barbosa, C. G. G., Godoi, A. F. L., Yamamoto, C. I., De Souza, R. A. F., Pöhlker, C., Andreae, M. O., and Ro, C. U.: Single-particle characterization of aerosols collected at a remote site in the Amazonian rainforest and an urban site in Manaus, Brazil, Atmos. Chem. Phys., 19, 1221–1240, https://doi.org/10.5194/acp-19-1221-2019, 2019.
Zdziennicka, A., Szymczyk, K., Krawczyk, J., and Jańczuk, B.: Activity and thermodynamic parameters of some surfactants adsorption at the water-air interface, Fluid Phase Equilib., 318, 25–33, https://doi.org/10.1016/j.fluid.2012.01.014, 2012.
Short summary
We measure the surface tension of picoliter-volume droplets containing strong ionic surfactants and cosolutes and compare this to surface tension predictions using two independent surfactant partitioning models. Under high-water-activity conditions, experimental measurements and model predictions show no change when NaCl cosolute is replaced with sea salt. Model predictions show that total surfactant concentrations in the range of tens to hundreds of millimolar are required to lower the surface tension of accumulation-mode aerosol.
We measure the surface tension of picoliter-volume droplets containing strong ionic surfactants...
Altmetrics
Final-revised paper
Preprint