Articles | Volume 25, issue 22
https://doi.org/10.5194/acp-25-15631-2025
https://doi.org/10.5194/acp-25-15631-2025
Research article
 | 
17 Nov 2025
Research article |  | 17 Nov 2025

Development of a parametrised atmospheric NOx chemistry scheme to help quantify fossil fuel CO2 emission estimates

Chlöe N. Schooling, Paul I. Palmer, Auke Visser, and Nicolas Bousserez

Related authors

Modelling the impact of anthropogenic aerosols on CCN concentrations over a rural boreal forest environment
Petri Clusius, Metin Baykara, Carlton Xavier, Putian Zhou, Juniper Tyree, Benjamin Foreback, Mikko Äijälä, Frans Graeffe, Tuukka Petäjä, Markku Kulmala, Pauli Paasonen, Paul I. Palmer, and Michael Boy
Atmos. Chem. Phys., 26, 1967–1992, https://doi.org/10.5194/acp-26-1967-2026,https://doi.org/10.5194/acp-26-1967-2026, 2026
Short summary
A machine-learning reference dataset for SO2 plumes observed by TROPOMI: uncertainties and emission estimates
Douglas P. Finch and Paul I. Palmer
EGUsphere, https://doi.org/10.5194/egusphere-2025-5900,https://doi.org/10.5194/egusphere-2025-5900, 2026
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Temporal variability of NOx emissions from power plants: a comparison of satellite- and inventory-based estimates
Gerrit Kuhlmann, Erik Franciscus Maria Koene, Chloe Natasha Schooling, Paul Ian Palmer, Òscar Collado López, and Marc Guevara
EGUsphere, https://doi.org/10.5194/egusphere-2025-6057,https://doi.org/10.5194/egusphere-2025-6057, 2026
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
The Greenhouse gas Emission Monitoring network to Inform Net-zero Initiatives UK (GEMINI-UK): network design, theoretical performance, and initial data
Alexander Kurganskiy, Liang Feng, Neil Humpage, Paul I. Palmer, A. Jerome P. Woodwark, Stamatia Doniki, and Damien Weidmann
Atmos. Meas. Tech., 18, 7525–7563, https://doi.org/10.5194/amt-18-7525-2025,https://doi.org/10.5194/amt-18-7525-2025, 2025
Short summary
Using geostationary-satellite-derived sub-daily fire radiative power variability versus prescribed diurnal cycles to assess the impact of African fires on tropospheric ozone
Haolin Wang, William Maslanka, Paul I. Palmer, Martin J. Wooster, Haofan Wang, Fei Yao, Liang Feng, Kai Wu, Xiao Lu, and Shaojia Fan
Atmos. Chem. Phys., 25, 17501–17526, https://doi.org/10.5194/acp-25-17501-2025,https://doi.org/10.5194/acp-25-17501-2025, 2025
Short summary

Cited articles

Andrew, R. M.: A comparison of estimates of global carbon dioxide emissions from fossil carbon sources, Earth Syst. Sci. Data, 12, 1437–1465, https://doi.org/10.5194/essd-12-1437-2020, 2020. a
Berezin, E. V., Konovalov, I. B., Ciais, P., Richter, A., Tao, S., Janssens-Maenhout, G., Beekmann, M., and Schulze, E.-D.: Multiannual changes of CO2 emissions in China: indirect estimates derived from satellite measurements of tropospheric NO2 columns, Atmos. Chem. Phys., 13, 9415–9438, https://doi.org/10.5194/acp-13-9415-2013, 2013. a, b
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, Journal of Geophysical Research: Atmospheres, 106, 23073–23095, 2001. a
Breiman, L.: Random Forests, Machine Learning, 45, 5–32, https://doi.org/10.1023/a:1010933404324, 2001. a
Cooper, M. J., Martin, R. V., Hammer, M. S., Levelt, P. F., Veefkind, P., Lamsal, L. N., Krotkov, N. A., Brook, J. R., and McLinden, C. A.: Global fine-scale changes in ambient NO2 during COVID-19 lockdowns, Nature, 601, 380–387, https://doi.org/10.1038/s41586-021-04229-0, 2022. a
Download
Short summary
This study presents a new method to estimate fossil fuel CO2 (ffCO2) emissions by modelling NOx chemistry. Our regression models predict NOx chemical rates and NO2 : NO ratios with R² values above 0.95 using meteorological inputs. Incorporating these regressions reduces computational time compared to traditional methods and enables integration into model inversion frameworks. This scalable approach supports global emissions monitoring and climate change mitigation efforts.
Share
Altmetrics
Final-revised paper
Preprint